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Abstract: The development of mechatronic systems involves the use of multiple disciplines,
from mechanical engineering to electronics engineering and computer science. Traditionally,
every discipline was developed independently and then integrated to generate the final system.
However, high quality designs cannot be achieved without simultaneously considering all the
engineering disciplines. This mechatronic approach carries intrinsic complexity into system
design process and numerous researches are on-going in order to find out optimal methods.
This article refines a SysML-based design process for the high level development of mechatronic
systems, focusing on the integration of modelling and simulation as fundamental aspect for an
integrated approach. How conceptual SysML diagrams may support the generation of simulation
models is shown, along with a chain of simulations for an integrated design. The proposed
approach is applied to a prototype case study designed from scratch, in order to be validated
and to demonstrate its potentiality.

Keywords: SysML, Simulation, Modelling, MBSE, Mechatronic Systems.

1. INTRODUCTION

Mechatronic systems (MTSs) consist in the synergetic
integration of mechanical engineering with electronic and
intelligent computer control in the design and manufactur-
ing of industrial products and processes, Harashima et al.
(1996). The design of these systems requires a multidis-
ciplinary approach through the integration of the single
disciplines. Each discipline focuses on a particular aspect
of the system and exploits different Domain Specific Mod-
els (DSMs) that should be merged and integrated. In order
to cope with this situation, several tools implementing dif-
ferent capabilities are commercially available and start to
have quite a large diffusion among industrial development
communities (e.g. SysML 1 , AutomationML 2 , Lifecycle
Modelling Language 3 etc.). However, the implementation
of tools is not enough to develop performing systems, and
optimal industrial processes are necessary.

The System Modelling Language (SysML) is a general-
purpose graphical modelling language which is meant to
become the ”lingua franca” for MTSs modelling. Up to
now, SysML has been mostly used as tool for reverse
engineering processes; for example, Karban et al. (2011).
Some tentatives were carried out in order to utilize it as
supporting tool for the design process (e.g. Rosenberg and
Mancarella (2010) for the development of an audio player,
Weilkiens (2008) for an on-board computer for rental
cars), but mostly for re-designing the behaviour of already

1 SysML: http://www.omg.org/spec/SysML
2 AutomationML: http://www.automationml.org/o.red.c/home.html
3 Lifecycle Modelling Language: http://www.lifecyclemodeling.org/

existing systems concerning their interactions with the
external world. In a previous work, Barbieri et al. (2014)
introduce a SysML-based design methodology for MTSs.
The integration of the involved domains is performed at
two levels:

• Modelling (information) level; e.g. relating a require-
ment with the components which fulfil it.

• Simulation level; e.g. hardware in the loop simulation
(HIL), in which the real controller is connected to
a simulated physical model of the machine, Maclay
(1997).

Purpose of this article is to link the two levels defined
above. This link is pursued through the definition of
a workflow. Then, the previous defined methodology is
refined through the identification of a chain of simulations.
These simulations can be performed in the different phases
of the design process through the proposed workflow.

The paper is organized as follows: related works are
described in section 2. Section 3 explains how to integrate
modelling and simulation, and the chain of simulations
inserted in the methodology. Section 4 resumes the design
process and applies the proposed approach to a case study.
Conclusions and future works are reported in section 5.

2. RELATED WORK

2.1 Model-Based Design

Model-Based Systems Engineering is the formalized ap-
plication of modelling to support system requirements,



design, analysis, verification and validation activities be-
ginning in the conceptual design phase and continuing
throughout development and later life cycle phases, IN-
COSE (2007). In the last years, this concept has been
recognized as fundamental for a mechatronic design. In
fact, there is the need to develop the designed system
through an unique core model which works as the reposi-
tory and dependency trace of the information of the differ-
ent mechatronic domains. This is the idea of Model Based
Design (MBD), El-Khoury et al. (2005). AutomationML
and SysML may be used for this purpose.

AutomationML, introduced by Drath et al. (2008), reuses
mature data formats to store information about topol-
ogy (through CAEX), geometry and kinematics (through
COLLADA), and logic (through PLCopen XML). The
language is proper for connecting information contained in
DSMs; e.g. the dimensions of components in CAD draw-
ings. Whereas, SysML is used at higher level: for tracing
and (above all) relating DSMs, but not necessarily the
information contained into them. We think that the central
model must be the most general as possible for containing
information of all the involved domains. For this reason,
we decided to utilize SysML for the application of the
MBD approach. However, MBD is just a tool for realizing
the integration among the different domains of MTSs and
must be supported by an integrated design methodology.

2.2 Link conceptual and domain specific models

MBD implies the exchange of information among the
central SysML model and all the tools necessary for the
design. There are two different ways for reaching this task:

• model transformation for generating DSMs from
SysML models (either ”manually” or automatically);
for example SysML to Modelica, Paredis et al. (2010);
• connection with existing DSMs: utilization of the

SysML model as a system representation and a repos-
itory of the system parameters and the DSMs. Dif-
ferent plugins are being born for implementing this
connection (e.g. ParaMagic 4 ).

Current tendency is to have a high level SysML model
which contains an overview and traces dependencies
among DSMs, and detailed SysML views which allow the
one to one translation in DSMs, Shah et al. (2010). Every
SysML view is modelled through a profile (Domain Specific
Language, DSL) for mapping the semantic of the DSMs
into SysML. Model Driven Engineering is also included
in this category for the software viewpoint. Here, a higher
layer of abstraction (e.g. SysML model, Chiron and Kouiss
(2007)) is created and deployed in control code (e.g. Vogel-
Heuser et al. (2005)).

However, these approaches lead to detailed SysML models
with specialist views difficult to manage and to under-
stand for people of other engineering domains. Moreover,
unlimited extensions of the language would be generated,
”destroying” the aim of a general purpose modelling lan-
guage. For these reasons, we only create high level SysML
models and we hyperlink them to DSMs.

4 ParaMagic: http://www.intercax.com/products/paramagic

2.3 Conclusion

In order to integrate mechatronic domains during design
process, there is the need to identify a method for integrat-
ing SysML modelling and simulations performed in DSMs.
This should be reached without extending the SysML
language with DSLs. A proposal is illustrated in Sec. 3.

3. INTEGRATION OF MODELLING AND
SIMULATION

3.1 The proposed workflow

Following the criteria defined in Sec. 2, we propose the
workflow shown in Fig. 1, which consists of:

• Conceptual model: SysML diagrams for rationalizing
what will be implemented in the simulation tool.
Which diagrams to utilize depends on the performed
simulation. For example, for dynamics simulations,
an internal block diagram (ibd) can be used for rep-
resenting the structure, and a state machine diagram
(stm) for the behaviour.

• DSM implementation: implementation (and not one
to one translation) of the conceptual SysML diagrams
in a simulation environment and model execution.
Then, SysML model is hyperlinked to the generated
DSM in order to trace its (file) path. A possible imple-
mentation at the example of a dynamics simulation
performed in MATLAB 5 is described next:
(1) Each block of the ibd becomes a sub-system

in the Simulink environment. Each block imple-
ments the dynamics equations of the represented
object.

(2) Parameters are assigned to the equations (e.g.
dimensions, friction coefficients etc.).

(3) All the sub-systems are connected as indicated in
the ibd for generating the system model.

(4) The behaviour represented in the stm is imple-
mented in Stateflow.

(5) An integrated simulation is performed linking the
Simulink and Stateflow models.

Comparing the simulation implementation described
above and a standard modelling process, it can be no-
ticed that the validation of the model is missing. Vali-
dation is generally performed through the comparison
of simulation results with experiments. However, a
physical prototype is usually not available in all the
phases of the design process. In fact, different alter-
natives for fulfilling a functionality can be developed
and the generation of a physical prototype for each
alternative might result in a long and expensive activ-
ity. For this reason, simulation is performed for com-
paring alternatives modelled assigning same values to
the common parameters. In this way, alternatives are
evaluated on the basis of their plausible behaviour.
When the real physical behaviour is identified, one
can perform again the comparison in order to validate
the results.

• Failure-modes analysis: evaluation of all the possi-
ble failures and determination of new functions for
making the system work correctly; e.g. definition of
functions for fault detection and fault management.

5 MATLAB: MathWorks www.mathworks.com



• Refinement: refinement of the requirements and of
the conceptual simulation models; e.g. the need of a
strategy for managing a certain fault is found out.
• Comparison matrix: if different alternatives must be

evaluated, a comparison is performed on the basis
of the trade-off criteria and weights defined in the
stakeholder requirements.

Fig. 1. SysML template for the integration of modelling
and simulation at the example of the simulation type
”n”.

3.2 Benefits of the approach

In short, the approach consists in the creation of concep-
tual SysML diagrams, in their ”manual” implementation
in simulation environments, and in the hyperlink of the
SysML model to the generated DSMs. This brings the
following benefits:

• Simulation rationalization: SysML language provides
a tool for rationalizing the simulation models without
starting the simulation activity from the blank can-
vas; for example, boundaries of components can be
defined along with interfaces, simulation objectives
etc. SysML model contains high level information
without all the details which would have required the
implementation of DSLs and transformations from
SysML to DSMs (and vice-versa) for keeping consis-
tency.
• Comprehension: simulation is rationalized in a gen-

eral purpose modelling language and not in the lan-
guage of the DSM. People, not expert in a certain
simulation environment, can understand high level
information concerning that environment.
• Traceability: SysML model traces the file path of

DSMs and indicates their role in the design process;
for example, a certain DSM is used for verifying a
requirement.

3.3 The proposed chain of simulations

Different granularities of simulations can be performed for
designing MTSs, Lasa et al. (1999). A list is reported
below sorted on the basis of the required level of detail
and computational efforts, from the coarsest to the finest.
Simulation categories are illustrated with typical use cases:

• Discrete event simulation (DES): mainly used for the
simulation of lines and plants where only functional
behaviour is important.
• Virtual commissioning simulation (VC): for virtual

debug of control logic (usually through HIL), but

also for operator training, conceptual design and com-
munication, and control logic definition; usually per-
formed through kinematics or simplified (i.e. differen-
tial equations solved with high tolerances) dynamics
simulations.

• Dynamics simulation (DS) and multibody analysis:
for the study of the physical behaviour of intercon-
nected rigid or flexible bodies; usually utilized for
dimensioning type, size and tuning of actuators.

• Finite element method (FEM): used for problems
where geometry plays an important role as structural
analysis, magnetic fields, turbulent flow etc.

DES, VC and DS allows the simulation of both the physics
and control logic of the designed system. For this reason,
they constitute a fundamental step for an integrated design
and will be inserted in the proposed approach for:

• DES: for deriving functional attributes from target
requirements; e.g. lot size, cycle time etc.

• VC: for comparing different physical and control logic
alternatives and for deriving kinematics parameters;
e.g cam profile of actuators.

• DS: for deriving necessary physical parameters which
will guide the choice of commercial components; e.g.
required torque of electrical motors.

4. CASE STUDY

4.1 Introduction

In Barbieri et al. (2014), we propose an integrated design
through the application of the W model. Fig. 2 illustrates
the different phases of the process. Every phase becomes a
package in SysML and contains SysML diagrams in order
to guide designers during the development process and to
trace information.

Next, the methodology is resumed.

(1) System Context: definition of the context in which
the system will operate and of the high level require-
ments.

(2) System Analysis: definition of the technical require-
ments, the functions the system must perform and
system subdivision in modules.

(3) Specific Solutions and Dependency Analysis: break
down of the system requirements in module require-
ments and definition of feasible means for fulfilling
them.

(4) Virtual System Integration: combination of the identi-
fied means for generating different alternatives of the
system, and system simulation in order to compare
different physical and control logic solutions, refine
the requirements and identify necessary physical pa-
rameters. DES, VC and DS are performed through
the workflow identified in Sec. 3.1.

(5) Domain Specific Design: detailed development of the
modules and selection of commercial components
through the application of domain specific methods
and tools; e.g. FEM simulation for dimensioning
components during operational and static conditions.

(6) System Integration: integration of the designed mod-
ules for generating the final system and Verification
and Validation (V&V) through simulations and ex-



Fig. 2. The proposed W model

perimental tests. DS, HIL and DES can be utilized in
this phase.

(7) Final System: folder which contains the information
useful for the reuse into other projects; for example
requirements, interfaces, DSMs information etc.

After having recall the design methodology, its application
on a case study is shown. The study was performed on
a prototype MTS developed from scratch: a transport
system for sorting packages. The main purpose was to
test the whole methodology, and the benefits of using the
proposed workflow and the identified chain of simulations.
Whereas, we were not interested on designing a real
working system. For this reason, we just performed DES
and VC simulations, while we skipped DSs and the choice
of commercial components. All the SysML diagrams were
implemented through MagicDraw 6 . Next, the study is
shown with a deep explanation of the parts relative to
the simulation workflow.

4.2 System context

Project mission was to create a system able to sort inlet
packages in group of either three or four on the basis of
the operator choice. Starting from that, the context in
which the system operates was defined, along with the
logical interaction (i.e. static interface and communication
protocol with the external world), and requirements from
possible stakeholders.

4.3 System analysis

Stakeholder requirements were broken down in system
requirements. The system functional architecture was then
individuated and the system was decomposed in three
modules, assigning them the functions they must fulfil:

• Module 1 −→ ”Collect packages from the upstream
conveyor”, ”Provide packages to the downstream con-
veyor” and ”Transport packages”;

• Module 2 −→ ”Sort packages”;
• Module 3 −→ ”Discharge unsorted packages”.

6 MagicDraw: No Magic Inc. http://www.nomagic.com/

4.4 Specific solution and dependency analysis

System requirements were broken down in module require-
ments and feasible means were associated to the modules.
These had to implement the functions individuated in
the system functional analysis (e.g. a mechanical feeder is
able to sort packages pushing them into the downstream
conveyor).

• Module 1 −→ Conveyor;
• Module 2 −→ Obstruction (blocks packages and re-

leases them when the proper number is accumu-
lated), Mechanical feeder, Robot (picks and places
packages in the downstream conveyor), Brake (as
the obstruction solution but with the difference that
packages are slowed down and not stopped) and Di-
vider+Obstructions (longitudinal bar which places
packages transported from a conveyor in different po-
sitions along an obstruction; obstruction is removed
when the proper number is accumulated);

• Module 3 −→ Pressured air.

4.5 Virtual system integration

The identified means were integrated, generating differ-
ent alternatives of the system. Then, simulations were
performed in order to determine the best solution, and
to define the control logic and kinematics parameters.
We utilized FlexSim 7 for DES and IndustrialPhysics 8

for VC. The proposed workflow was applied for both the
simulations:

• Conceptual simulation model: DES: an activity dia-
gram was defined for each alternative. Each diagram
displays the performed functions in a logical order.
Then, the activities were divided in two categories:
the ones which are automatically executed by means
(e.g. a wall automatically stops packages which col-
lide) and the ones which needs actuators, sensors and
a control logic to be performed. These last activities
were refined through state machine diagrams. Fig. 3

7 FlexSim: http://www.flexsim.com
8 IndustrialPhysics: http://www.machineering.de



illustrates the conceptual diagrams for the robot al-
ternative. VC: internal block diagram for representing
the system structure and the exchanged items, and
state machine diagram for the system behaviour.

Fig. 3. DES rationalization: activity diagram of the robot
alternative, and state machine diagram of the pick
and place activity. At this level of the design, just the
nominal functioning was considered because the most
relevant for the trade-off analysis.

• Simulation implementation: implementation of the
conceptual models in the simulation environment.
DES: activities are implemented by FlexSim objects
and the control logic is inserted through internal
scripts, Fig. 4. VC: each SysML block becomes an
object in IndustrialPhysics and the control logic is
inserted through internal scripts.

Fig. 4. DES of the robot alternative. The activities de-
fined in SysML are implemented in FlexSim: collect
packages → connection between the source and the
conveyor; transport→ conveyor; stop→ opening and
closing of the conveyor output port; pick and place→
robot. The control logic is implemented in a script.

• Failure-modes analysis: different failures were found
out through the simulated models. These were doc-
umented in a table, which contains the functions
related to that failure and the derived requirements
for managing it. An example is shown in Fig. 5.

For the failure-modes analysis through different
types of simulations is important to remind that:

DES is a functional simulation based on statistical
distributions and time gains, while VC a physical
simulation. For this reason, failures can be identified
in VC, whereas can only be inserted through statisti-
cal distributions in DES. For example, the fall down
of packages due to the collision with a pneumatic
actuator which has an incorrect motion profile, can be
identified just through VC simulation. Consequently,
in the context of failures managing, DES was utilized
for determining timing aspects (e.g. available time)
and control logic, while VC for identifying possible
failures.

Fig. 5. Failure analysis of the obstruction solution during
VC simulation.

• Refinement: refinement of the conceptual models and
of the requirements with the results of the simulation
and the failure-mode analysis. For example, after VC,
requirements and control logic for managing fall and
attached packages were inserted.

• Comparison matrix: comparison of the different alter-
natives through the trade-off requirements, attribut-
ing different weights on the basis of the stakeholders
objective hierarchy. An example is shown in Fig. 6.

After DES and VC simulations, the obstruction solution
resulted as the most promising one. For this reason, the
other solutions were discharged and the obstruction was
deeper designed. As an iterative process, if in the next
phases this solution was not acceptable, we would come
back to this phase and choose the second one. In the same
way, more than one alternative might be designed and
another trade-off executed subsequently.

Fig. 6. Excel comparison matrix after the DES of the
different alternatives. A grade from one to three was
assigned for every criteria and multiplied for the
weight inside the brackets.

4.6 Domain specific design

As indicated before, we skipped the choice of commercial
components and the domain specific design phase. We
just implemented the control logic defined in the system
integration phase in PLC code. The design pattern, pro-
posed by Fantuzzi et al. (2011), was utilized. It consists
in a centralized control in which every object becomes a
modular PLC program which supervises and synchronizes
its child objects (i.e. other PLC programs). The process is
shown in Fig. 7 at the example of the conveyor module.

4.7 System integration

Control code was debugged through HIL. The real con-
troller (Rockwell PLC) was connected to a virtual model



Fig. 7. Implementation of the conveyor behaviour defined
in the virtual system integration phase (left side) in
IEC 61131-3 Sequential Function Chart (right side).

of the machine (IndustrialPhysics model). Eventually, the
”satisfy by” and ”verify by” compartment of the require-
ment tables were filled.

4.8 Final system

Requirements, interfaces and DSMs information were in-
serted in this folder. However, guidelines and a template
for the representation of the final folder information will be
matter of future investigation. The idea is to structure the
folder in a way that, copying it (or part of it) into another
project, you can have a re-usable MTS (or sub-system).

5. CONCLUSION AND FUTURE WORKS

This work has refined a MBD methodology defining a
workflow for integrating modelling and simulation, and
identifying which simulations may be performed for an
integrated design. The approach was applied in the design
of a prototype MTS for sorting packages. The study
started from the stakeholder requirements and, through
the implementation of the design methodology and the
defined chain of simulations, we were able to virtually
design (at high level) the whole system.

Next, future works are illustrated. In this paper, we showed
how the domains involved in MTSs design can be inte-
grated through a chain of DES, VC and DS simulations.
However, the borders among DES, VC and DS are not
always clear. For example, kinematics parameters might be
identified both with DES and VC. A deeper investigation
will be conducted for defining application use cases and
borders of each simulation.

Moreover, there are many other types of available simula-
tions; see Ptolemaeus (2014) for an overview. A study will
be conducted in order to:

• define which simulation types allow the integrated
design of MTSs;
• define when these simulations should be performed in

the proposed design process.

Eventually, requirements, interfaces, and DSMs informa-
tion are inserted in the final system folder. However, a

definition of the information that this folder should con-
tain and a template for its representation has not been
investigated yet.
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