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1. Introduction 

Capturing the knowledge about existing systems and analysis and design of conceived systems require an 
adequate methodology, which should be both formal and intuitive. Formality is required to maintain a 
coherent representation of the system under study, while the requirement that the methodology be intuitive 
stems from the fact that humans are the ultimate consumers of the knowledge. Object-Process Methodology 
(OPM) is an ontology- and systems theory-based vehicle for knowledge representation and management 
that perfectly meets the formality and intuition requirements through a unique combination of graphics and 
natural language. We start by a brief account of ontology and general systems theory, which form the basis 
for OPM. 

Ontology is defined as a branch of philosophy that deals with modeling the real world (Wand and 
Weber, 1989). Ontology discusses the nature and relations of being, or the kinds of existence (Ontology 
Markup Language, 2001). More specifically, ontology is the study of the categories of things that exist or 
may exist in some domain (Sowa, 2001). The product of such a study, called ontology, is a catalog of the 
types of things that are assumed to exist in a domain of interest from the perspective of a person who uses a 
specific language, for the purpose of talking about that domain. The traditional goal of ontological inquiry 
is to discover those fundamental categories or kinds that define the objects of the world. The natural and 
abstract worlds of pure science, however, do not exhaust the applicable domains of ontology. There are 
vast, human-designed and human-engineered systems such as manufacturing plants, businesses, military 
bases, and universities, in which ontological inquiry is just as relevant and equally important. In these 
human-created systems, ontological inquiry is primarily motivated by the need to understand, design, 
engineer, and manage such systems effectively. Consequently, it is useful to adapt the traditional 
techniques of ontological inquiry in the natural sciences to these domains as well (IDEF Family of 
Methods, 2001). 

The types in the ontology represent the predicates, word senses, or concept and relation types of the 
language L when used to discuss topics in the domain D. An uninterpreted logic, such as predicate calculus, 
conceptual graphs, or Knowledge Interchange Format (2001), is ontologically neutral. It imposes no 
constraints on the subject matter or the way the subject may be characterized. By itself, logic says nothing 
about anything, but the combination of logic with ontology provides a language about the entities in the 
domain of interest and relationships among them. 

An informal ontology may be specified by a catalog of types that are either undefined or defined only by 
statements in a natural language. In every domain, there are phenomena that the humans in that domain 
discriminate as (conceptual or physical) objects, processes, states, and relations. A formal ontology is 
specified by a collection of names for concept and relation types organized in a partial ordering by the 
Generalization-Specialization (also referred to as the type-subtype) relation. Formal ontologies are further 
distinguished by the way the subtypes are distinguished from their supertypes. An axiomatized ontology 
distinguishes subtypes by axioms and definitions stated in a formal language, such as logic; a prototype-
based ontology distinguishes subtypes by a comparison with a typical member or prototype for each 
subtype. Examples of axiomatized ontologisms include formal theories in science and mathematics, the 
collections of rules and frames in an expert system, and specifications of conceptual schemas in languages 



like SQL. OPM concepts and their type ordering are well defined, hence OPM belongs to the family of 
axiomatized ontology. 

The IDEF5 method (IDEF Family of Methods, 2001) is designed to assist in creating, modifying, and 
maintaining ontologies. Ontological analysis is accomplished by examining the vocabulary that is used to 
discuss the characteristic objects and processes that compose the domain, developing definitions of the 
basic terms in that vocabulary, and characterizing the logical connections among those terms. The product 
of this analysis, an ontology, is a domain vocabulary complete with a set of precise definitions, or axioms, 
that constrain the meanings of the terms sufficiently to enable consistent interpretation of the data that use 
that vocabulary. 

2. General Systems Theory 

General systems theory (GST) argues that however complex or diverse the world that we experience is, we 
will be able to describe it by concepts and principles that are common to all systems and are independent of 
their domain of discourse. Following this argument, uncovering and establishing those commonalties 
would enable us to analyze and solve problems in any domain, pertaining to any type of system.  

2.1   A Brief History of General Systems Theory 
The dawn of General Systems Theory (GST) can be traced back to Aristotle, who articulated the basic 
synergy principle: The whole is more than the sum of the parts. Galileo, who emphasized the analytic 
approach, replaced this synthesis-oriented view. The analytic approach, which is based on experimentation 
and introspection, opened the door for modern scientific analysis. Descartes developed the scientific 
method to be able to analyze complex phenomena by breaking them into elementary particles (which we 
now call objects) and processes. OPM rests on these same premises: objects and process. 

In modern times, efforts to construct a unifying theory that tackles complex systems in the various 
domains of human activity – natural, social and engineering sciences – dates to the early 1920s. Lotka 
(1956) articulated the principles of what would become modern systems theory, and applied them to 
biological phenomena, such as the circulation of elements and growth of organisms. Defay (1929) and 
Schrödinger (1967) utilized thermodynamic principles to explore biological systems and made it clear that 
an organism is an open system that exchanges matter and energy with its environment in order to remain 
stable.  

Bertalanffy (1968) established GST principles on the basis of ideas he developed in the 1930’s and 
published in 1955. GST reconciles competing concepts of cybernetics and system dynamics. Just as in 
economics, Keynes defined “whole” as the entire economic system, in biology Darwin defined “whole” as 
a system of nature. In spite of the remoteness between economics and biology, they share common system 
principles. Understanding the need for communication among domain experts to increase the overall 
knowledge of the operation of the system, Bertalanffy (1975) listed the following aims of GST:  
• There is a general tendency towards integration in the various sciences, natural and social;  
• Such integration seems to be centered in a general theory of systems; and  
• This theory may be an important means for aiming at exact theory in the non-physical fields of 

science.   
• Developing unifying principles that run through the universe of the individual sciences, this theory 

brings us nearer to the goal of the unity of science, and may lead to a much-needed integration in 
scientific education.   

Bertalanffy viewed GST as being comprised of three elements: 
Mathematical Systems Theory: The description of the system is provided in terms of a set of measures 

that define the states and transformations of the system at various points in time. Formal mathematics, such 
as a set of differential equations or a graph-theoretical description are employed for this purpose. The 
system is precisely described from an internal aspect, using attributes such as stability, wholeness and sum, 
growth mechanisms, competition and finality. Externally, the system is described in “black box” terms of 
inputs and outputs – we do not know what goes on inside – and in control theory terms, such as feedback 
and goal. This mode is useful for thinking about the system and its environment. 

System technology: Society and its use of technology have become so complex, that they are no longer 
amenable to traditional analysis. GST allows one to effectively cope with this complexity. Ecosystems, 



industrial complexes, education, urban and political environments, socioeconomic entities and a variety of 
organizations exhibit structure and behavior that lend them to analysis within the GST framework. 

System philosophy: GST strives to be a fully articulated worldview that contrasts with the mechanistic 
framework of the traditional scientific approach. GST is a new paradigm, complete with ontology and 
epistemology, covering “real systems, conceptual systems and abstract systems.” The coverage of real 
systems pertains to the scientific approach, while the conceptual and abstract ones may be new to 
traditional human thinking habits.  

In 1956, Boulding (1956) identified the communication problems that can occur during systems 
integration: subsystem specialists (which we call domain experts, e.g., physicists, ecumenists, chemists, 
sociologists, etc.) have their own languages, but in order for successful integration to take place, all 
subsystem specialists must speak a common language, such as mathematics. The communication among 
specialists of various domains at some level in the hierarchy of systems discussed below contributes to the 
development of knowledge at higher levels.  

Mathematics is so widely recognized for its generality and abstracting power, that it has been used in 
almost any domain of knowledge and human interest. Building on graph theory, OPM can be viewed as a 
field of mathematics for general systems modeling. Conversely, mathematics can be expressed in OPM 
terms, with variables being objects and operators, processes. 

In their seminal work, Shannon and Weaver (1949) listed three stages in the development of scientific 
analysis: (1) Organized simplicity, which is the basis for classical mechanics and based on the assumption 
that the orderliness of the world is built up from simple units and relations; (2) unorganized complexity, the 
basis for statistical physics, which accounts for complexity arising from random occurrences; and (3) 
organized complexity, expressed by information theory, which accounts for complexity by identifying 
fundamental ordering relations. They claimed that the third stage is the model for science in the 20th 
century. In 1948, Wiener (1961) suggested that cybernetics draws on systems, information, and control 
theories. He analyzed feedback and goal-directed behavior and applied them to social, biological and 
mechanical systems. His envisaging of the central role of computers in industry and intellectual processes 
provided the impetus for systems dynamics theory and cognitive science. 

Kerzner (1995) defined GST as “an approach that attempts to integrate and unify scientific information 
across many fields of knowledge.” GST tries to solve problems by looking at the total picture, rather than 
through an analysis of the individual components. He goes on to note that an increasing number of scholars 
are recognizing the central role General Systems Theory should play in various, seemingly remote 
domains, such as project management.  

2.2   The Hierarchy of System Levels 
Boulding (1956) postulated that all areas of scientific interest could be categorized according to their level 
of development in the following universal hierarchy of system levels. 

(1) The level of frameworks – the level of static structure, for example the anatomy of the universe; 
(2) The level of clockworks – the level of simple dynamic systems with predetermined motion; 
(3) The thermostat level – the level at which the system is self-regulating in maintaining equilibrium 
through control or cybernetic mechanisms; 
(4) The cell level – the level of self-maintaining structure, at which life begins to differentiate from not-life; 
(5) The genetic-societal level, which is typified by the plant and dominated by the empirical world of the 
botanist; 
(6) The animal system level, which is characterized by mobility, teleological (purposeful) behavior and 
self-awareness; 
(7) The human level, at which the human being is considered as a system with self-awareness and the 
ability to utilize language and symbolism; 
(8) The social system level, which exhibits human organizations, complete with value systems, 
communication and education abilities, emotions and history recording capabilities; and finally 
(9) Transcendental systems level, which feature the ultimate and absolutes, and the inescapable and 
unknowable things that nevertheless exhibit systemic structure and relationship. 

Function, structure, and behavior are the three main aspects that systems exhibit. Function is the top-
level utility that the system provides its beneficiaries who use it or are affected by it, either directly or 



indirectly. The system’s function is enabled by its architecture – the combination of structure and behavior. 
The system’s architecture is what enables it to function so as to benefit its users. 

Most interesting useful and challenging systems are those in which structure and behavior are highly 
intertwined and hard to separate. For example, in a manufacturing system, the manufacturing process 
cannot be contemplated in isolation from its inputs – raw materials, model, machines, and operators – and 
its output – the resulting product. The inputs and the output are objects, some of which are transformed by 
the manufacturing process, while others just enable it.  

Modeling of complex systems should conveniently combine structure and behavior in a single model. 
Motivated by this observation, OPM (Dori 1995, 2002) is a comprehensive, holistic approach to modeling, 
study, development, engineering, evolution, and lifecycle support of systems. Employing a combination of 
graphics and a subset of English, the OPM paradigm integrates the object-oriented, process-oriented, and 
state transition approaches into a single frame of reference. Structure and behavior coexist in the same 
OPM model without highlighting one at the expense of suppressing the other to enhance the comprehension 
of the system as a whole. 

Rather than requiring that the modeler views each of the system's aspects in isolation and struggle to 
mentally integrate the various views, OPM offers an approach that is orthogonal to customary practices. 
According to this approach, various system aspects can be inspected in tandem for better comprehension. 
Complexity is managed via the ability to create and navigate via possibly multiple detail levels, which are 
generated and traversed through by several abstraction/refinement mechanisms. 

Due to its structure-behavior integration, OPM provides a solid basis for representing and managing 
knowledge about complex systems, regardless of their domain. This chapter provides an overview of OPM, 
its ontology, semantics, and symbols. It then describes applications of OPM in various domains. 

3. The OPM Ontology 

The elements of the OPM ontology, shown in Table 1, are divided into three groups: entities, structural 
relations, and procedural links.  

3.1   Entities  
Entities, the basic building blocks of any system modeled in OPM, are of three types: stateful objects, 
namely objects with states, and processes. As defined below, processes transform objects by (1) creating 
them, (2) destroying them, or (3) changing their state. The symbols for these three entities are respectively 
shown as the first group of symbols at the left hand side of Figure 1, which is the symbols in the toolset 
available as part of the GUI of OPCAT 2 (Dori, Reinhartz-Berger et al. 2003). 

 

 

Figure 1.  The three groups of OPM symbols in the toolset of OPCAT 2 

3.2   OPM Things: Objects and Processes 
Objects are (physical or informatical) things that exist, while processes are things that transform (create, 

destroy, or change the state of) objects. Following is a set of basic definitions that build on top of each 
other. 

An object is a thing that exists. 



Objects are the things that are being transformed in the system. 

Transformation is generation (creation) or consumption (destruction) of an 
object, or a change of its state. 

Processes are the things that transform objects in the system. 

A process is a thing that represents a pattern of object transformation. 

Table 1.  Things of the OPM ontology and their basic attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In OPL, bold Arial font denotes non-reserved phrases, while non-bold Arial font denotes reserved phrases. 
In OPCAT, various OPM elements are colored with the same color as their graphic counterparts (by 
default, objects are green, processes are blue, and states are brown). 

Objects and processes are collectively called things. The first two lines of Table 1 show the symbol and 
a description of the two types of OPM things. The next two lines show two basic attributes that things can 
have: essence and affiliation.  

Essence is an attribute that determines whether the thing is physical or 
informational.  

The default essence is informatical. A thing whose essence is physical is symbolized by a shaded shape.  

Affiliation is an attribute that determines whether the thing is environmental 
(external to the system) or systemic.  

The default affiliation is systemic. A thing whose affiliation is environmental is symbolized by a dashed 
contour.  

3.3   OPM States 
Objects can be stateful, i.e., they may have one or more states.  

Thing /     
Attribute Symbol Description / OPL sentence 

A thing (entity) that has the potential of stable, 
unconditional physical or mental existence. Object 
Object Name is an object. 

A thing representing a pattern of transformation 
that objects undergo. 

Process 

Processing is a process. 

An attribute that determines whether the thing 
(object or process) is physical (shaded) or 
informational. Essence 

 
Processing is physical. 

An attribute that determines whether the thing is 
environmental (external to the system, dashed 
contour) or systemic. Affiliation 

 
Processing is environmental. 



A state is a situation at which an object can exist at certain points during its 
lifetime or a value it can assume. 

Stateful objects can be affected, i.e., their states can change.  

Effect is a change in the state of an object. 

Table 2.  States and values 

 

 

 

 

 

4. OPM Structure Modeling 

Structural relations express static, time-independent relations between pairs of entities, most often between 
two objects. Structural relations, shown as the middle group of six symbols in Figure 1, are of two types: 
fundamental and tagged.  

4.1   The four fundamental structural relations  
Fundamental structural relations are a set of four structural relations that are used frequently to denote 
relations between things in the system. Due to their prevalence and usefulness, and in order to prevent too 
much text from cluttering the diagram, these relations are designated by the four distinct triangular symbols 
shown in Figure 1.  

The four fundamental structural relations are: 

(1) aggregation-participation, a solid triangle, , which denotes the relation between a whole thing and its 
parts, 

(2) generalization-specialization, a blank triangle, , which denotes the relation between a general thing 
and its specializations, giving rise to inheritance, 

(3) exhibition-characterization, a solid inside blank triangle, , which denotes the relation between an 
exhibitor – a thing exhibiting a one or more features (attributes and/or operations) – and the things that 
characterize the exhibitor, and 

(4) classification-instantiation, a solid circle inside a blank triangle, , which denotes the relation between 
a class of things and an instance of that class.  

 Symbol Description / OPL sentence 

A situation at which an object can exist. Stateful 
object with 
two states Website can be reachable or 

unreachable. 

A value that an object can assume. 
Value 

 
Temperature is 15. 

A state can be initial, default, or final. Stateful 
object with 
three states: 

initial, 
default, and 

final 

Car can be new, which is initial, used, 
which is default, or junk, which is final. 



Table 3.  The fundamental structural relation names, OPD symbols, and OPL sentences 

Structural Relation Name 

Forward Backward 

Root 
 

Refineables 

OPD with 3 
refineables 

OPL Sentences with 1, 2, 
and 3 refineables 

Aggregation Participation 
Whole 

Parts 

A consists of B. 
A consists of B and C. 

A consists of B, C, and D. 

Exhibition Characterization 
Exhibitor 

Features 

A exhibits B. 
A exhibits B and C. 

A exhibits B, C, and D. 

Generalization Specialization 
General 

Specializations 

B is an A. 
B and C are As. 

B, C, and D are As. 

Classification Instantiation 
Class 

Instances 

B is an instance of A. 
B and C are instances of A. 

B, C, and D are instances of A. 

 

Table 3 lists the four fundamental structural relations and their respective OPDs and OPL sentences. The 
name of each such relation consists of a pair of dash-separated words. The first word is the forward relation 
name, i.e., the name of the relation as seen from the viewpoint of the thing up in the hierarchy. The second 
word is the backward (or reverse) relation name, i.e., the name of the relation as seen from the viewpoint of 
the thing down in the hierarchy of that relation. 

Each fundamental structural relation has a default, preferred direction, which was determined by how 
natural the sentence sounds. In Table 3¸the preferred shorthand name for each relation is underlined. As 
Table 3 shows, each one of the four fundamental structural relations is characterized by the hierarchy it 
induces between the root—the thing attached to the tip of the triangle and the leaves—the thing(s) attached 
to the base of the triangle, as follows.  

(1) In aggregation-participation, the tip of the solid triangle, , is attached to the whole thing, while the 
base—to the parts.  

(2) In generalization-specialization, the tip of the blank triangle, , is attached to the general thing, while 
the base—to the specializations.  

 (3) In exhibition-characterization, the tip of the solid inside blank triangle, , is attached to the exhibitor 
(the thing which exhibits the features), while the base is attached to the features (attributes and 
operations).  

 (4) In classification-instantiation, the tip of the solid circle inside a blank triangle, , is attached to the 
thing class, while the base—to the thing instances.  

The things which are the leaves of the hierarchy three, namely the parts, features, specializations, and 
instances, are collectively referred to as refineables, since they refine the ancestor, the root of the tree. 

Refineable is a generalization of part, feature, specialization, and instance. 

The third column in Table 3 lists for each fundamental structural relations the name of the root (whole, 
exhibitor, general, class) and the corresponding refineables (parts, features, specializations, and instances). 
The next column contains an OPD with three refineables, while the rightmost column lists the syntax of 
three OPL sentences for each fundamental structural relation, with one, two, and three refineables, 
respectively.  

Having presented the common features of the four fundamental structural relations, in the next four 
subsections we provide a small example for each one of them separately.    



4.2   aggregation-participation 
Aggregation-participation denotes the relation between a whole and it comprising parts or components. 
Consider, for example, the excerpt taken from Section 2.2 of the RDF Primer (Manola and Miller 2003): 

… each statement consists of a subject, a predicate, and an object. 

This is a clear case of whole-part, or aggregation-participation relation. The OPM model of this 
statement, which consists of both the OPD and the corresponding OPL, is shown in Figure 2. Note that the 
OPL sentence, "RDF Statement consists of Subject, Predicate, and Object." which was generated by 
OPCAT automatically from the graphic input, is almost identical to the one cited from the RDF Primer. 
The same OPD exactly (disregarding the graphical layout) can be produced by inputting the text of the OPL 
sentence above. This is a manifestation of the OPM graphics-text equivalence principle.   

 

Figure 2.  OPD of the sentence "RDF Statement consists of Subject, Predicate, and Object." 

4.3   Generalization-specialization 
Generalization-specialization is a fundamental structural relationship between a general thing and one or 
more of its specializations. Continuing our example from the RDF Primer (Manola and Miller 2003), 
consider the very first sentence from the abstract: 

The Resource Description Framework (RDF) is a language for representing 
information about resources in the World Wide Web. 

Let us take the main message of this sentence, which is that RDF is a language. This is exactly in line 
with the OPL syntax, so we can input the OPL sentence “RDF is a Language.” into OPCAT and see what 
we get.  

 

Figure 3.  The OPD obtained by inputting into OPCAT the OPL sentence "RDF is a Language." 



The result, without any diagram editing, is shown in Figure 3, along with the conversation window titled 
“Add new OPL sentence,” in which this sentence was typed prior to the OPD creation.  

4.4   Exhibition-characterization 
We continue to scan the RDF Primer (Manola and Miller 2003), where is Section 2.2.1 we find the 
sentence 

RDF has a simple data model. 

To model this statement, we need to rephrase this sentence into the following three sentences: 

1. RDF is characterized by a data model. 

2. The data model of RDF is characterized by a complexity attribute. 

3. The value of this complexity attribute is “simple.” 

These three sentences are further rephrased to conform to the OPL syntax as 
follows: 

1.   RDF exhibits Data Model. 

2.   Data Model exhibits Complexity. 

3.   Complexity is simple.   

  

Figure 4.  The OPD representing the sentence “RDF has a simple data model." 

4.5   Classification-instantiation 
Reading through the RDF Primer, we find in Section 3.3 on datatypes the sentence: 

Datatypes are used by RDF in the representation of values, such as integers, 
floating point numbers, and dates. 
… 
 RDF predefines just one datatype, rdf:XMLLiteral, used for embedding 
XML in RDF. 

An OPL interpretation of these two sentences, respectively, is: 

1.   RDF exhibits many Datatypes. 

2.   XMLLiteral is an instance of Datatype. 



 

Figure 5.  The OPM model of XMLLiteral, an instance of a Datatype of RDF 

Figure 5 is the OPM model of XMLLiteral, an instance of a Datatype of RDF. 

5. OPM Behavior Modeling 

Procedural links connect entities (objects, processes, and states) to express dynamic, time-dependent 
behavior of the system. Behavior, the dynamic aspect of a system, can be manifested in OPM in three 
ways:  
(1) A process can transform (generate, consume, or change the state of) objects, 
(2) An object can enable a process without being transformed by it, and  
(3) An object or a process can trigger an event that might, in turn, invoke a process if some conditions are 
met. 
 Accordingly, a procedural link can be a transformation link, an enabling link, or an event link.  

In order to be able to talk about object transformation, we need to first define state and demonstrate how 
states are used. 

5.1   Object states 
In Figure 6 we added to the object Check two states: The initial state uncashed and the final state cashed. 
This causes the addition of the following OPL sentence to the OPL paragraph: 

Check can be uncashed, which is initial, or cashed, which is final. 

5.2   Transformation links 
A transformation link expresses how a process transforms one or more objects. The transformation of an 
object can be its consumption, generation, or state change. The transforming process is the transformer, 
while object that is being transformed is called transformee. 

5.3   Input and output links 
Having added the states to the object Check, we can now show how the process Cashing affects Check by 
changing its state. In Figure 7, Cashing was added and linked to the two states of Check: An input link 
leads from the initial uncashed state to Cashing, while an output link leads from Cashing to the final state 
cashed. 



The OPL sentence generated automatically by OPCAT as a result of adding these input and output links 
is: 

Cashing changes Check from uncased to cashed. 

 

Figure 6.  Adding states to Check 

Table 4.  OPD and OPL syntax for objects with one, two, and three or more states, and optional 
time designator attributes 

Number of 
states          

or timeline 
OPD OPL 

Single state 
 

Stateful Object is singular. 

Two states 
   

Stateful Object can be 
singular or plural. 

Three states or 
more 

 

Stateful Object can be first, 
second, third, or fourth.  

Three states or 
more 

 

Stateful Object can be first, 
which is initial, second, third, 
which is default, or fourth, 
which is final. 

 



 

Figure 7.  The Cashing process changes the state of Check from the uncashed to cashed. 

5.4   Effect link 
Sometimes we may not be interested in specifying the states of an object but still show that a process does 
affect an object by changing its state from some unspecified input state to another unspecified output state. 
To express this, we suppress (hide) the input and output states of the object, so the edges of the input and 
output links “migrate” to the contour of the object and coincide, yielding the effect link shown in Figure 8. 

The OPL sentence that represents this graphic construct is: 

Cashing affects Check. 

 

Figure 8.  Suppressing the input and output states of Check cause the two link edges to migrate to the contour of 
Check and coincide, yielding the single bidirectional effect link between Check and Cashing. 

5.5   Result and consumption links 
We have seen that one type of object transformation is effect, in which a process changes the state of an 
object from some input state to another output state. When these two states are expressed (i.e., explicitly 
shown), then we can use the pair of input and output links to specify the source and destination states of the 
transformation. When the states are suppressed, we express the state change by the effect link, a more 
general and less informative transformation link. 

State change is the least drastic transformation that an object can undergo. Two more extreme 
transformations are generation and consumption, denoted respectively by the result and consumption links. 



Generation is a transformation which causes an object, which had not existed prior to the process 
execution, to become existent. For example, Check is born as a result of a Check Making process.  

As Figure 9 shows, the object Check is generated as a result of executing the process Check Making. The 
result link is the arrow originating from the generating process and leading to the generated object. The 
OPL sentence that represents this graphic construct (shown also in Figure 9) is: 

Check Making yields Check. 

In contrast to generation, consumption is a transformation which causes an object, which had existed 
prior to the process execution, to become non-existent. For example, Check is consumed as a result of a 
Destroying process.  

 

Figure 9.  The object Check is generated as a result of executing the Check Making process. 

As Figure 10 shows, the object Check is consumed as a result of executing the process Destroying. The 
consumption link is the arrow originating from the consumed object and leading to the consuming process. 
The OPL sentence that represents this graphic construct (shown also in Figure 10) is: 

Destroying consumes Check. 



 

Figure 10.  The object Check is consumed as a result of executing the Destroying process. 

5.6   State-specified result and consumption links 
We sometimes wish to be specific and state not only that an object is generated by a process, but also at 
what state that object is generated. Some other times, we might wish to be able to state not only that an 
object is consumed by a process, but also at what state that object has to be in order for it to be consumed 
by the process. As Figure 9 shows, the object Check is generated in its unendorsed state as a result of 
executing the process Check Making. 

 

Figure 11.  The object Check is generated in its unendorsed state as a result of executing the Check Making 
process. 



The OPL sentence that represents this state-specified result link graphic construct (shown also in Figure 
11) is: 

Check Making yields unendorsed Check.  

In comparison, the “regular,” non-state-specified result link is the same, except that the (initial) state is 
not specified: 

Check Making yields Check.  

The difference is the addition of the state name (unendorsed in our case) before the name of the object 
(Check) that owns that state. 

Analogously, a state-specified consumption link leads from a (final) state to the consuming process. For 
example, assuming a check can only be destroyed if it is cashed, Figure 12 shows the state-specified 
consumption link leading from the final state cashed of Check to the consuming process Destroying.  

 

Figure 12.  The object Check is consumed in its cashed state as a result of executing the Destroying process. 

The OPL sentence that represents this state-specified consumption link graphic construct (shown also in 
Figure 12) is: 

Destroying consumes cashed Check.  

5.7   Summary of procedural links between processes and objects  
Table 5 provides a summary of the six procedural links between a process and a (possibly stateful) object. 
They are divided into three pairs: Input and output links, which always come as a pair, consumption and 
result links, and state-specified consumption and result links. 



Table 5.  Summary of the procedural links between a process and an object or its state 

Transformation 
Link Type 

Source 
Entity 

Destination 
Entity OPD OPL 

Input link Input       
state 

Affecting 
process 

Output link Affecting 
process 

Output      
state 

 

 
Affecting Process 
changes Object from 
input state to output 
state. 

Consumption 
link 

Consumed 
object 

Consuming 
process 

 

Consuming Process    
consumes                       
Consumed Object. 

Result link Generating 
process 

Resulting  
object  

Generating Process     
yields                            
Generated Object. 

State-specified 
Consumption 

link 

Final state 
of the 

consumed 
object 

Consuming 
process 

 

Consuming Process    
consumes terminal       
Consumed Object.  

State-specified 
Result link 

Generating 
process 

Initial state 
of the 

resulting 
object  

Generating Process    
yields initial                   
Generated Object. 

5.8   Enablers and enabling links 
An enabler is an object that is required for a process to happen, but is not transformed by the process. 

An enabling link expresses the need for a (possibly state-specified) object to be present in order for the 
enabled process to occur. The enabled process does not transform the enabling object. Enablers are divided 
into instruments and conditioners, each of which can be stateless or stateful.  

6. Applications of OPM and Summary   

OPM has been applied in many domains, including education (Dori & Dori, 1996), computer integrated 
manufacturing (Dori, 1996A; Dori, Gal & Etzion, 1996), The R&D universe and its feedback cycles 
(Myersdorf & Dori, 1997), real-time systems (Peleg & Dori, 2000), banking (Dori, 2001), requirements 
engineering (Soffer, Golany, Dori & Wand, 2001), Web applications development (Reinhartz-Berger, Dori, 
& Katz, 2002), ERP modeling (Soffer, Golany & Dori, 2001), axiomatic design (Soderborg, Crawley & 
Dori, 2002), computational synthesis (Dori & Crawley, 2003), software reuse (Reinhartz-Berger, Dori, & 
Katz, 2002), systems architecture (Soderborg, Crawley, & Dori, 2003), and Web Service Composition 
(Yin, Wenyin, & Chan. 2004).  

This chapter has presented an overview of Object-Process Methodology and its applications in a variety 
of domains. There are a number of important OPM-related issues that could not be discussed in detail in 
this chapter due to space limitations. One such topic is complexity management. Complexity is managed in 



OPM via in-zooming, unfolding, and state-expression, which provide for looking at any complex system at 
any desired level of granularity without loosing the context and the "big picture." Another issue is the 
systems development and evolution methodology with OPM, for which a comprehensive reflective 
metamodel (which uses OPM) has been developed. These issues and others are treated in detail in the OPM 
book (Dori, 2002). 

The domain-independent nature of OPM makes it suitable as a general, comprehensive, and 
multidisciplinary framework for knowledge representation and reasoning that emerge from conceptual 
modeling, analysis, design, implementation, and lifecycle management. The ability of OPM to provide 
comprehensive lifecycle support of systems of all kinds and complexity levels is due to its foundational 
ontology that builds on a most minimal set of stateful objects and processes that transform them. Another 
significant uniqueness of OPM is its unification of system knowledge from both the structural and 
behavioral aspects in a single diagram – OPD. It is hard to think of a significant domain of discourse and a 
system in it, in which structure and behavior are not interdependent and intertwined. A third unique feature 
of OPM is its dual knowledge representation in graphics and text and the capability to automatically switch 
between these two modalities. Due to its single model, expressed in both graphics and text, OPM lends 
itself naturally for representing and managing knowledge, as it is uniquely poised to cater to the tight 
interconnections between structure and behavior that are so hard to separate.   

OPM and its supporting tool OPCAT continue to evolve. The site www.ObjectProcess.org is a rich, 
continuously updated resource of OPM-related articles, free software downloads, and more.  
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Key Terms 
 

Object-Process Methodology – A generic methodology for systems modeling and knowledge 
representation based on a single model expressed in graphics and text, in which stateful objects and 
processes are the basic building blocks.  
Object – A thing that exists.  
State – A situation at which an object can exist at certain points during its lifetime or a value it can 
assume. 
Transformation – Generation (creation) or consumption (destruction) of an object, or a change of its 
state.  
Process – A thing that represents a pattern of object transformation. 
Essence – An attribute that determines whether the thing is informatical (the default) or physical. The  
Affiliation – An attribute that determines whether the thing is systemic (the default) or environmental 
(external to the system). 
Structural relation – A relation between objects that holds in the system regardless of time. 
Procedural link – A link between an object and a process that expresses the behavior of the system. 
 


