
Specification of Abstract Platform
AUTOSAR FO R20-11

Document Title Specification of Abstract Platform
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 947

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Migration of document to standard
Foundation
• Restructuring and further conceptual

detailing
• Addition of several Appendix

examples

2019-11-28 R19-11
AUTOSAR
Release
Management

• Initial release

1 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Table of Contents

1 Introduction 6

1.1 Document Structure . 6
1.2 Terms and Abbreviations . 6
1.3 Document Conventions . 7
1.4 Scope and Limitations . 9

2 Concept 11

2.1 Background . 11
2.2 Usage . 12

2.2.1 General . 12
2.2.2 AUTOSAR Specific . 13

2.3 Modeling Approach . 13
2.3.1 Meta-Model Choice . 13
2.3.2 Bottom-up vs Top-down . 14

2.3.2.1 Top-down . 14
2.3.2.2 Bottom-up . 14

2.3.3 Meta-class selection . 14

3 Abstract Platform 16

3.1 Methodology . 16
3.1.1 Overview . 16

3.2 System Model . 17
3.2.1 Overview . 17
3.2.2 Root Composition . 18

3.3 Software Component Model . 19
3.3.1 Overview . 19
3.3.2 Component Compositions . 20

3.3.2.1 SwComponentPrototypes 20
3.3.3 Component Types . 20
3.3.4 Connectors . 23
3.3.5 Port Groups . 23

3.4 Port Interfaces . 24
3.4.1 Overview . 24
3.4.2 Composite Interface . 25

3.4.2.1 Elements of Composite Interface 26
3.5 Data Types . 30

3.5.1 Overview . 30
3.5.2 Properties of Data Definitions 30
3.5.3 Data Type Categories . 32
3.5.4 Application Data Types . 35
3.5.5 Sub-classes of ApplicationDataType 36

3.5.5.1 Deferred Data Type 36
3.5.6 Type Tracing . 37

3.5.6.1 Deferred Data Type 38

3 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4 Requirements 40

4.1 Overview . 40

A Examples 41

A.1 System . 41
A.2 Component hierarchy . 41
A.3 Data type tracing . 43

B Mentioned Class Tables 44

C History of Constraints and Specification Items 50

C.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11 . 50

C.1.1 Added Traceables in R19-11 50
C.1.2 Changed Traceables in R19-11 51
C.1.3 Deleted Traceables in R19-11 51
C.1.4 Added Constraints in R19-11 51
C.1.5 Changed Constraints in R19-11 52
C.1.6 Deleted Constraints in R19-11 52

C.2 Constraint and Specification Item History of this document according
to AUTOSAR Release R20-11 . 52

C.2.1 Added Traceables in R20-11 52
C.2.2 Changed Traceables in R20-11 53
C.2.3 Deleted Traceables in R20-11 54
C.2.4 Added Constraints in R20-11 54
C.2.5 Changed Constraints in R20-11 54
C.2.6 Deleted Constraints in R20-11 54

D Splitable Elements in the Scope of this Document 56

E Variation Points in the Scope of this Document 57

4 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

References

[1] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[2] Virtual Functional Bus
AUTOSAR_EXP_VFB

[3] Meta Model
AUTOSAR_MMOD_MetaModel

[4] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

5 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

1 Introduction

1.1 Document Structure

This document contains the specification of the design of an AUTOSAR abstract plat-
form (XP). Due to the specification being abstract of the AUTOSAR adaptive platform (
AP) and AUTOSAR classic platform (CP), it is released as part of the AUTOSAR foun-
dation (FO).

The document is structured in the following way:

Section 1 (this chapter) documents the terms, abbreviations, conventions; scope and
limitations in the specification and requirement tracing.

Section 2 provides a description of the big picture, sets the background reasons and
motivation for the specification and usage principles for intended stakeholders. Addi-
tionally, the general modeling approach and modeling decisions are described.

Section 3 dives into the design aspects of an abstract platform. The modeling is de-
scribed along with constraints and requirement specifics. The sub-sections follow the
main use-cases: introduction of new meta-classes and description of existing meta-
classes to realize the design of an abstract platform and...

Section 4 annotation and traceability of requirements.

1.2 Terms and Abbreviations

The following table contains a list of terms used in the scope of this document along
with the spelled-out meaning of each of the abbreviations.

Term/Abbre-
viation

Meaning

AA (AUTOSAR) Adaptive Application

AP (AUTOSAR) Adaptive Platform/Standards

API Application Programming Interface

ASD Abstract Platform System Description
ARXML AUTOSAR XML
CP (AUTOSAR) Classic Platform/Standards
ECU Electrical Control Unit
FO (AUTOSAR) Foundation Standards
GENIVI GENeva In-Vehicle Infotainment

5

6 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Term/Abbre-
viation

Meaning

IDL Interface Description Language

IO Input/Output

JSON JavaScript Object Notation

NVM Non Volatile Memory

OEM Original Equipment Manufacturer

OS Operating System
RPC Remote Procedure Call
RSI REST Services Interface
SOA Service-Oriented Architecture
SWC Software Component

SYSML Systems Modelling Language

VFB Classic/Adaptive Platform Virtual Functional Bus
VFB++ Abstract Platform VFB
VISS Vehicle Information Service Specification

VIWI Volkswagen Infotainment Web Interface
W3C World Wide Web Consortium
XML Extensible Markup Language
XP Abstract Platform
XSC Abstract Software Component
XSD XML Schema Definition

Table 1.1: Terms and Abbreviations used in the scope of this Document

1.3 Document Conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
PortPrototypes. By this means the document resembles terminology used in the
AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest
of the text by a unique numerical constraint ID, a headline, and the actual constraint
text starting after the d character and terminated by the c character.

The purpose of these constraints is to literally constrain the interpretation of the
AUTOSAR meta-model such that it is possible to detect violations of the standardized
behavior implemented in an instance of the meta-model (i.e. on M1 level).

7 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that
corresponds to an M1 modeling issue as part of the diagnostic message issued by the
tool.

The attributes of the classes introduced in this document are listed in form of class
tables. They have the form shown in the example of the top-level element AUTOSAR:

Please note that constraints are not supposed to be enforceable at any given time in an
AUTOSAR workflow. During the development of a model, constraints may legitimately
be violated because an incomplete model will obviously show inconsistencies.

However, at specific points in the workflow, constraints shall be enforced as a safeguard
against misconfiguration.

The points in the workflow where constraints shall be enforced, sometimes also known
as the "binding time" of the constraint, are different for each model category, e.g. on the
classic platform, the constraints defined for software-components are typically enforced
prior to the generation of the RTE while the constraints against the definition of an Ecu
extract shall be applied when the Ecu configuration for the Com stack is created.

For each document, possible binding times of constraints are defined and the binding
times are typically mentioned in the constraint themselves to give a proper orientation
for implementers of AUTOSAR authoring tools.

Class AUTOSAR
Package M2::AUTOSARTemplates::AutosarTopLevelStructure

Note Root element of an AUTOSAR description, also the root element in corresponding XML documents.

Tags:xml.globalElement=true

Base ARObject

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data of an Autosar file.

Tags:xml.sequenceOffset=10

arPackage ARPackage * aggr This is the top level package in an AUTOSAR model.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

fileInfo
Comment

FileInfoComment 0..1 aggr This represents a possibility to provide a structured
comment in an AUTOSAR file.

Stereotypes: atpStructuredComment
Tags:
xml.roleElement=true
xml.sequenceOffset=-10
xml.typeElement=false

introduction DocumentationBlock 0..1 aggr This represents an introduction on the Autosar file. It is
intended for example to rpresent disclaimers and legal
notes.

Tags:xml.sequenceOffset=20

Table 1.2: AUTOSAR

The first rows in the table have the following meaning:

8 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating
the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML
tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.

The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distin-
guish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given
data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation),
an UML attribute in the class (attr primitive attribute), or just referenced by it (ref
reference). Instance references are also indicated (iref instance reference) in this
field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes
and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value rep-
resent the appendix of the document. The purpose of the appendix is to support the
explanation of certain aspects of the document and does not represent binding con-
ventions of the standard. The verbal forms for the expression of obligation specified
in [TPS_STDT_00053] shall be used to indicate requirements, see Standardization
Template, chapter Support for Traceability ([1]).

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability
([1]).

1.4 Scope and Limitations

In the AUTOSAR timeline, the XP specification was added after the CP and AP. It is
also independent of the existing CP/APs, and for that reason, it is released as part of
the AUTOSAR Foundation.

The XP uses the terms: VFB and VFB++. The AUTOSAR VFB is conceptually described
in [2]. While that document resides in the CP, the general principles in [2] chapter
"Overall mechanisms and concepts" also apply to AP and XP. In particular the idea of
a VFB level view applies in modeling terms to the set of those meta-model artifacts
i.e. components, ports, interfaces, connectors used to describe the functional inter-

9 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

ECU communications. This is independent of whether the platform under discussion is
signal based, service based or abstract.

An XP VFB++ description is a purely functional design description. It is independent of
topology and deployment and thus does not describe these.

An XP description has its technical borders. The basis of an XP description shall be
an AUTOSAR System description. This fits together with general methodology of
AUTOSAR to root the description of an AUTOSAR system in an own description, see
3.2.

The scope of the XP system description is, on VFB level, from the outlining of the
SWC design down to the detailing of the definition of application level data types in the
software interfaces, see 3.5.

See [TPS_SWCT_01229], [TPS_SWCT_01230] and [TPS_SWCT_01236] for details
on application level data types.

10 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

2 Concept

2.1 Background

The existing AUTOSAR meta-model provides a means to comprehensively design and
deploy applications on CP ECUs and AP Machines. Depending on the intended chosen
platform for concrete deployment, the feature/function design model is (intentionally)
tightly coupled to the choice of platform.

A system designer is drawn a priori into a concrete decision whether to design and
deploy on AP or CP or indeed non-AUTOSAR platform. The design choices become
therefore biased by the intended deployment platform.

Figure 2.1: Placement of an abstract platform

An system designer at an early software design stage may not necessarily care about
for example what type of concrete component shall implement the function, or, which
type of concrete interface provides the required data.

Rather the designer just wants to model the interaction between the functional soft-
ware blocks and specify the basics: i.e. signal names, the directional flow of the data
(providers/consumers) and the physical data types. Further refinement of the design
will be done in a downstream stage, i.e. separation of concerns.

In methodology terms, this dovetails quite neatly to the whole design approach of
AUTOSAR - whereby typically a staged approach to design is used. Foreseeably, this
would be generally more suited to a green-fields or blank-page design methodology
implemented in the OEM1 - in contrast to other types of design methodology, e.g. where
the supplier has very limited technical design decision.

1and progressing through various stages of refinement ending in a design finalization (by either in-
house or external supplier)

11 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

2.2 Usage

2.2.1 General

The specification aims to provide a system description of a functional model. It further
allows requirement annotation and general traceability of model elements including
requirements and functional elements. The abstract description may provide a higher
level view of a system, to help a system designers "‘step back"’ from early decisions
about deployment, or indeed whether to defer that decision to a downstream design
stage or to a supplier(s).

While the principal use-cases are founded for AP and CP, it is not (by design) intended
to be exclusive to those platforms. Usage with other automotive or non-automotive
domains should also be possible as shown in Figure 2.2.

Standardized Non-AUTOSAR systems have their own domain-specific models/IDLs
and it is not within the scope of the XP to try to determine what these domain-specific
models/IDLs are - or indeed, whether they should be accommodated in the scope
of the XP. Rather, the intention is that through domain-specific tooling some form of
model-to-model translation/derivation can be done from an XP description to a non-
AUTOSAR model.

Figure 2.2: General relationship between abstract and concrete level standards

12 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

2.2.2 AUTOSAR Specific

There is not a hard modeling dependency between an XP and a AP/CP platform view
in the sense that the concrete level depends on the abstract. The methodological
approach does not forbid a system designer bypassing entirely an XP model and de-
signing only in an AP/CP model to achieve the desired result2.

Nevertheless, with the support of tooling and tracing, it should be similarly entirely
possible to create an XP out of an AP/CP description.

An example scenario is shown in Figure 2.3. An abstract platform model with several
levels of compositions of XSCs of different flavors, is derived to parallel AP/CP models.
In this case a split of the XPmodel is shown, but in general, any number of permutations
could be possible include a full derivation to either platform.

Figure 2.3: Relationship between AUTOSAR Abstract, Classic and Adaptive models

2.3 Modeling Approach

2.3.1 Meta-Model Choice

If the goal is to allow an abstract design, it could be argued that the chosen M2 model
should also be abstract (of AUTOSAR). However, while the abstract design should be
open to designers of non-AUTOSAR platforms to utilize, the primary focus is usage
within the AUTOSAR domain i.e. AP/CP.

For that reason, the argumentation of using the AUTOSAR Meta-Model [3] as the ba-
sis for the M2 level modeling approach is solidified. The XP is designed using the
AUTOSAR meta-model, but should not restrict usage of abstract designs to AUTOSAR.

2backwards compatibility

13 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

2.3.2 Bottom-up vs Top-down

Based on the assumption of the meta-model choice in 2.3.1, the next point is how to
approach the creation of an abstract platform model. In very general terms, there are
two possible approaches: bottom-up and top-down. Note: AUTOSAR supports tracing
between models with dedicated meta-model artifacts in [4] chapter "‘Documentation
Support::Documentation Block"’.

2.3.2.1 Top-down

If an XP model is created top-down, the VFB++ functional interactions are modeled us-
ing a green fields approach - this abstract model is then traced through to the creation
of a new concrete model.

If the concrete model shall be an AUTOSAR model this involves deriving the VFB++
view to the VFB view in the respective AP/CP. If the concrete model is a non-AUTOSAR
model it is in the domain of the non-AUTOSAR model to define this.

While this approach offers more freedom to design, there is a risk of specifying an XP
which, in the end, is too distant from the needs of the existing platforms. The more
likely approach therefore is to favor the bottom-up method.

2.3.2.2 Bottom-up

If an XP model is created by bottom-up, an existing concrete platform model is taken
as the basis for the content. This in practice means that this form of XP description is
immediately more valid than the former approach because it already has a basis in a
concrete platform model. This approach would also allow for an automated creation of
an XP description.

If the concrete model is an AP and CP model, the existing VFB view in the AP/CP plat-
forms should be abstracted upstream to create the XP VFB++ model. If the concrete
model is a non-AUTOSAR model it is in the domain of the non-AUTOSAR model to
define this.

With this approach, the XP design is better guaranteed to fit well with the existing
platforms.

2.3.3 Meta-class selection

Having decided on the general approach for the design of the XP, the next question
is which approach to use regarding meta-class selection, i.e. re-use existing meta-
classes or re-design new meta-classes.

14 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

While the AP and CP are based on different architecture principles, they mostly share
the same modeling principles on VFB level and thus the VFB modeling. The approach
is therefore to examine the VFB level model in both platforms as a primary basis and
the non-AUTOSAR platforms as a secondary basis.

The existing AUTOSAR meta-model, especially the specification of the AUTOSAR
Software-Component Template [5] already provides a good basis to comprehensively
design a software component model. The principles therein may also be found in other
more generic non-AUTOSAR component models.

It may be that any given identical meta-class may be used in any of the XP, AP or CP
platforms. This approach is similar to that used when designing the AP meta-model,
and similarly, it is necessary to either extend meta-classes with XP specifics and con-
strain them to the XP ([TPS_GST_00372]).

15 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

3 Abstract Platform

3.1 Methodology

3.1.1 Overview

An abstract platform system description provides the possibility to achieve a higher-
level software view on the system. An architect can decide during design time which
type of downstream AUTOSAR system description to use. A level of architectural free-
dom through abstraction is attained by formally describing the functional interactions on
a component model level, but without fixing details of any downstream implementation
platform.

[TPS_APSD_01000]{DRAFT} Principle of an abstract platform system descrip-
tion dAn abstract platform system description allows a platform independent specifica-
tion of the functional interactions of inter-connected software components.c()

[TPS_APSD_01001]{DRAFT} VFB level modeling of an abstract platform dAn ab-
stract platform description uses those VFB level elements in the AUTOSAR meta-
model as the basis for modeling.c()

[TPS_APSD_01002]{DRAFT} Agnosticism of deployment aspects dAn abstract
platform is agnostic of deployment aspects.c()

AUTOSAR CP/AP models are still the basis for platform specific software design and
should remain independent of an XP. To preserve the separation of concerns, it should
be avoided that AUTOSAR CP/AP models use XP artifacts. The inverse case (usage of
CP/AP in an XP) however, is allowed.

This is enforced by utilizing the tagging mechanism to place platform specific restric-
tions on those XP artifacts to exclude their visibility in CP/AP models. Refer to [TPS_-
GST_00372] in [4] chapter "‘Usage of UML in AUTOSAR Templates::UML Tags"’ for an
explanation of tagging.

[TPS_APSD_01035]{DRAFT} Placement of an abstract platform model dAn ab-
stract platform model is wholly independent of concrete platform models.c()

[TPS_APSD_01003]{DRAFT} Exclusion of abstract platform artifacts to an
AUTOSAR concrete platform dThe abstract platform uses the AUTOSAR
mmt.RestrictToStandards tag to exclude abstract platform meta-model artifacts from
other platforms.c()

16 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Figure 3.1: Abstract Platform System Description in Methodology

3.2 System Model

3.2.1 Overview

As per existing system descriptions in AP and CP, an XP needs its own system descrip-
tion to distinguish XP content from other types of system descriptions/extracts. The
basis for all AUTOSAR system descriptions/extracts is the meta-class System and as
with other AUTOSAR system descriptions, the category shall be used to identify the
content.

[TPS_APSD_01004]{DRAFT} System category for a system description with
Abstract Platform content dThe System element that contains design artifacts that
are relevant for an Abstract Platform shall have the category:

• ABSTRACT_PLATFORM_SYSTEM_DESCRIPTION.

c()

See A.1 for an example ARXML listing.

17 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

ARElement
AtpStructureElement

System

+ systemVersion: RevisionLabelString

AtpPrototype
Identifiable

RootSwCompositionPrototype

SwComponentType

CompositionSwComponentType

��������
 ��
���������������
�
������
��������

������������ ! ���"#

$%&'���"��� (� ���)�

"�"��)��"�� ��)�

+rootSoftwareComposition 0..1

«atpVariation,atpSplitable»

«isOfType»

+softwareComposition
1
{redefines atpType}

Figure 3.2: Modeling of an Abstract Platform System

3.2.2 Root Composition

As with other types of Systems in AP and CP, the RootSwCompositionProto-
type in an XP references a CompositionSwComponentType as the root compo-
sition. With reference to [TPS_APSD_01019], this has the semantics of just a plain old
composition.

Class System

Package M2::AUTOSARTemplates::SystemTemplate

Note The top level element of the Abstract Platform System Description.

Tags:atp.recommendedPackage=Systems

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

mapping SystemMapping * aggr Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mapping.shortName, mapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild

5

18 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class System

rootSoftware
Composition

RootSwComposition
Prototype

0..1 aggr Aggregation of the root software composition, containing
all software components in the System in a hierarchical
structure.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=rootSoftwareComposition.shortName, root
SoftwareComposition.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

systemVersion RevisionLabelString 1 attr Version number of the System Description.

Table 3.1: System

Class RootSwCompositionPrototype

Package M2::AUTOSARTemplates::SystemTemplate

Note The RootSwCompositionPrototype represents the top-level-composition of software components within a
given System.

This may for example be a more or less complete VFB++ description.

Therefore the RootSwComposition will only occasionally contain all atomic software components that are
used in a complete VFB System. The OEM is primarily interested in the required functionality and the
interfaces defining the integration of the Software Component into the System. The internal structure of
such a component contains often substantial intellectual property of a supplier. Therefore a top-level
software composition will often contain empty compositions which represent subsystems.

The contained SwComponentPrototypes are fully specified by their SwComponentTypes (including Port
Prototypes, PortInterfaces, VariableDataPrototypes, etc.).

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

software
Composition

CompositionSw
ComponentType

1 tref We assume that there is exactly one top-level composition
that includes all Component instances of the system

Stereotypes: isOfType

Table 3.2: RootSwCompositionPrototype

3.3 Software Component Model

3.3.1 Overview

The XP software component model follows generally the aspects laid out in [5] chapter
"‘Overview::Software Components..."’. The principles of reusability of SWCs and the
type-prototype pattern are applicable in an XP, albeit in most cases, with a more re-
strictive view than the concrete platforms. An example of this more restrictive view is
in the permitted types of software components shown later.

Another feature taken over from [5] is the ability to specify a hierarchy of SWCs of ar-
bitrary complexity. In contrast to the CP software component model which specifies
precise atomic SWC types with precise use cases in mind; the XP relaxes this kind of
precision and targets a more generic typing of SWCs.

19 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

The XP SWC model allows a component design which does not force any intended
downstream usage to the designer, but nevertheless allows a limited set of indicators
[TPS_APSD_01005] to identify the intended usage of the component.

3.3.2 Component Compositions

This [TPS_APSD_01006] is no different than in AP and CP which handle encapsu-
lation of SWCs the same. The modeling principles of compositions and encapsula-
tion are suitably explained in [5] chapters "‘Composition::Overview"’ and "‘Composi-
tion::SwComponentPrototype"’ and do not need to be further detailed here.

[TPS_APSD_01006]{DRAFT} Recursive component definition in an abstract plat-
form dAn abstract component design allows recursive depth-wise definition of compo-
nents.c()

3.3.2.1 SwComponentPrototypes

The meta-class CompositionSwComponentType aggregates SwComponentPro-
totype in the role component which facilitates the modeling of an arbitrary nesting
of components of SwComponentTypes. However, the XP only utilizes Composition-
SwComponentTypes as the contained type.

[TPS_APSD_01019]{DRAFT} Typing of SwComponentPrototypes used in a
CompositionSwComponentType in an abstract platform dThe SwComponent-
Prototype.type aggregated in a CompositionSwComponentType shall be Com-
positionSwComponentType in an abstract platform.c()

3.3.3 Component Types

In an XP, an designer should have the freedom to design a VFB++ hierarchical SWC
model in a rather free-floating manner. The SWCs can be described by utilizing a subset
of intended component types.

The approach is to allow a modeling of a generic type of component, Composition-
SwComponentType as the generic component type. In other words, an abstract plat-
form component is not bound to a specific use case. The CompositionSwCompo-
nentType inherits from the category attribute from Identifiable which means
it can be assigned a subset of a categorys to specify the functional intent of the
component.

20 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpPrototype

SwComponentPrototype

CompositionSwComponentType

AtpStructureElement

SwConnector

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement
Identifiable

PortGroup

��������
 ��
���������
�����������

+connector *

«atpVariation,atpSplitable»

+port 0..*

«atpVariation,atpSplitable»«atpVariation»

+portGroup 0..*

«instanceRef»

+innerGroup 0..*

«atpVariation»

+outerPort

0..*

«isOfType»

+type

0..1
{redefines atpType}

+component 0..*

«atpVariation,atpSplitable»

Figure 3.3: Modeling of Abstract Platform Components

Since CompositionSwComponentType is used in this way instead of a designated
AtomicSwComponentType, it means CompositionSwComponentType is used all
the way down the component hierarchy tree. To distinguish between the cases where
a CompositionSwComponentType is designated as an actual plain composite soft-
ware component, or as a ’quasi’ atomic software component the category is re-
stricted depending on the intent.

Without [constr_6803], it is very arbitrary how to trace the usage of a component be-
tween an XP and a concrete platform - foreseeably the abstract component could only
be derived by default to say an arbitrary representation in a downstream platform and
it would be a pure manual step and not allow for any future automation. Usage of the
category should therefore allow an architect to specify some finer detailing of the
component type.

[TPS_APSD_01005]{DRAFT} Identification of component types in an abstract
platform dThe abstract platform uses the category of the CompositionSwCom-
ponentType as a means to optionally identify the intended usage of the Composi-
tionSwComponentType.c()

[constr_6803]{DRAFT} Standarized values of CompositionSwCom-
ponentType.category dIn a System with the category set to AB-
STRACT_PLATFORM_SYSTEM_DESCRIPTION, any CompositionSwComponent-
Type which is referenced by a SwComponentPrototype in the role type shall have
the category set to:

• XP_COMPONENT_APPLICATION

c()

[TPS_APSD_01020]{DRAFT} Semantics of a CompositionSwComponentType
of category XP_COMPONENT_APPLICATION dA composition of category
XP_COMPONENT_APPLICATION in an abstract platform represents an application soft-
ware component.c()

21 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

See A.2 for an example ARXML listing.

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw
ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means hierarchical
structures of software-components can be created.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

component SwComponent
Prototype

* aggr Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=component.shortName, component.variation
Point.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

Table 3.3: CompositionSwComponentType

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

type SwComponentType 0..1 tref Type of the instance.

Stereotypes: isOfType

Table 3.4: SwComponentPrototype

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mult. Kind Note

5

22 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class SwComponentType (abstract)

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

Table 3.5: SwComponentType

3.3.4 Connectors

While support for modeling of port connectors in an XP entirely makes sense for certain
downstream architectures, in others it doesn’t. Especially for SOA based platforms it
can be argued that they are superfluous - SOA middlewares typically only create the
"‘connection"’ when the provided service is "‘found"’ during run time after the other side
has initiated a search.

[TPS_APSD_01012]{DRAFT} Modeling of connectors in an abstract platform
dThe XP allows modeling of connectors, but defers their concrete application to a down-
stream platform.c()

In other words, the XP is agnostic of the concrete platform, but to facilitate a usage of
connectors in a concrete platform where they have real semantics, it does not prohibit
their use.

The XP therefore takes over the modeling of connectors from [5] chapter
"‘Overview::Composition::Connectors"’.

3.3.5 Port Groups

Port grouping is fairly standard in component models, though it is really at the discretion
of the model itself what the semantic meaning of a port group is. Several scenarios
are possible such as limiting inclusion of discrete ports in discrete groups or allowing
discrete ports to be mapped into different groups. Some models define an abstract

23 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

port group as being a composition which may be further decomposed in a downstream
platform.

[TPS_APSD_01009]{DRAFT} Grouping of ports in an abstract platform
dAssigning discrete ports to zero or more port groups shall be possible in an abstract
platform.c()

3.4 Port Interfaces

3.4.1 Overview

The XP follows the same general principles laid down in [5] chapter "‘Overview::Port
Interface..."’. The XP restricts the model to disallow that the same port is read/write.

[TPS_APSD_01007]{DRAFT} Prototyping of ports in an abstract platform dAn ab-
stract platform port is either in the role of requirer or provider but not both.c()

24 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

CompositeInterface

������������	
 ��
��

�����������	��	
���� �

��������������

«isOfType»

+requiredInterface
0..1
{redefines atpType}

«isOfType»

+providedInterface
0..1
{redefines atpType}

+port 0..*

«atpVariation,atpSplitable»

Figure 3.4: Modeling of Abstract Platform Ports

3.4.2 Composite Interface

The XP does not mandate for specific types of PortInterfaces. Whereas in CP/AP,
the respective VFB models in each, specify specific types of PortInterfaces for an
intended functional usage, e.g.: AP ServiceInterface is intended for a SOA based
deployment, the XP opts for an interface type which could be applied generically.

The XP does allow to provide some further semantics to a CompositeInterface to
indicate an intended usage for a certain port via CompositeInterface.category.
This serves as a hint which may be optionally considered when deriving (if it has a

25 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

semantical meaning on the downstream platform), even though the CompositeIn-
terface itself does convey anything relating to the functional usage or underlying
signaling architecture between ports [TPS_APSD_01010].

[TPS_APSD_01008]{DRAFT} Generic typing of interfaces in an abstract platform
dThe abstract platform does not semantically bind types of PortInterfaces to a
particular functional usage.c()

[TPS_APSD_01010]{DRAFT} Agnosticism of abstract platform interfaces to mid-
dleware deployments dAn abstract platform interface is agnostic of both architecture
and any middleware deployment options.c()

[TPS_APSD_01022]{DRAFT} Semantics of a CompositeInterface dA Compos-
iteInterface inherits from a PortInterface and provides an functionally agnos-
tic PortInterface type to allow data exchange between PortPrototypes.c()

[constr_6807]{DRAFT} Exclusivity of a CompositeInterface to an Abstract
Platform dA CompositeInterface shall not type a PortPrototype unless the
category of the System is ABSTRACT_PLATFORM_SYSTEM_DESCRIPTION.c()

The rationale for [constr_6807] is grounded in [TPS_APSD_01003].

3.4.2.1 Elements of Composite Interface

The make-up of a CompositeInterface borrows from the approach taken in the AP
ServiceInterface to allow flexibility as to the choice of how data is exchanged.1

It is possible that a downstream platform only supports atomic interface types, in this
case, during derivation, the individual elements of a CompositeInterface must be
mapped to discrete atomic interfaces. Obviously, this may have an impact on ports
which would then need to be created or alternatively some facade pattern employed.

[TPS_APSD_01023]{DRAFT} Elements of a CompositeInterface dA Compos-
iteInterface allows the following forms of data exchange:

• a ClientServerOperation aggregated in the role command.

• a VariableDataPrototype aggregated in the role indication.

c()

[TPS_APSD_01024]{DRAFT} Semantics of a CompositeInterface.command dA
command is a RPC with optional function arguments, called by the requirer and exe-
cuted on the side of the provider.c()

1An alternative approach to a CompositeInterface could be to use CP style atomic interfaces (a
singular message exchange element). However, the aggregation of singular exchange elements in a
CompositeInterface offers more flexibility.

26 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

[TPS_APSD_01025]{DRAFT} Semantics of a CompositeInterface.indica-
tion dA indication is a plain block of data that shall be updated (indicated) by
the provider.c()

[constr_6806]{DRAFT} Standarized values of CompositeInterface.category
dThe category of a CompositeInterface can be set to either:

• XP_PORT_CTRL_SECURITY

• XP_PORT_CTRL_TIMESYNC

• XP_PORT_DATA_STORAGE

• XP_PORT_DATA_APPLICATION

c()

[TPS_APSD_01026]{DRAFT} Semantics of a CompositeInterface of cat-
egory XP_PORT_CTRL_SECURITY dA CompositeInterface of category
XP_PORT_CTRL_SECURITY represents a control port to a security entity: e.g. a cryp-
tographic or authentication entity.c()

[TPS_APSD_01027]{DRAFT} Semantics of a CompositeInterface of cat-
egory XP_PORT_CTRL_TIMESYNC dA CompositeInterface of category
XP_PORT_CTRL_TIMESYNC represents a control port to a time synchronization entity:
e.g. AP TimeSynchronizationInterface.c()

[TPS_APSD_01028]{DRAFT} Semantics of a CompositeInterface of cat-
egory XP_PORT_DATA_STORAGE dA CompositeInterface of category
XP_DATA_CTRL_STORAGE represents a port to a storage entity used to hold
persistent data: e.g. AP PersistencyInterface or CP NvDataInterface.c()

[TPS_APSD_01029]{DRAFT} Semantics of a CompositeInterface of cat-
egory XP_PORT_DATA_APPLICATION dA CompositeInterface of category
XP_PORT_DATA_APPLICATION represents a general application data port: e.g. an
AP ServiceInterface.c()

27 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

PortInterface

CompositeInterface

ARElement
AtpType

AutosarDataType

DataPrototype

AutosarDataPrototype

VariableDataPrototype
AtpStructureElement

Identifiable

ClientServerOperation

ArgumentDataPrototype

+ direction: ArgumentDirectionEnum [0..1]

������������	
 ��
��

�����������������	����

� � ��

���������� � �����

�����������	��	
���� �

 ������	�!��������	����

«isOfType»

+type 0..1
{redefines atpType}

+argument * {ordered}

«atpVariation»

«atpVariation»

+command 0..*

«atpVariation»

+indication 0..*

Figure 3.5: Modeling of Abstract Platform interfaces

Class PortInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ClientServerInterface, CompositeInterface, DataInterface, ModeSwitchInterface, TriggerInterface

Attribute Type Mult. Kind Note

– – – – –

Table 3.6: PortInterface

Class CompositeInterface

Package M2::AUTOSARTemplates::AbstractPlatform

Note This represents the ability to define a PortInterface that consists of a composition of commands and
indications.

Tags:
atp.Status=draft
atp.recommendedPackage=CompositeInterfaces

5

28 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class CompositeInterface

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

command ClientServerOperation * aggr This represents the collection of commands or function
calls (with optional data arguments) defined in the context
of an ApplicationInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

indication VariableDataPrototype * aggr This represents the collection of indication or events (with
optional data argument) defined in the context of an
ApplicationInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

Table 3.7: CompositeInterface

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A remote procedure call declared within the scope of the current interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

Table 3.8: ClientServerOperation

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain arbitrary values in a software component. In particular, the
value of a VariableDataPrototype is likely to change over its lifetime.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table 3.9: VariableDataPrototype

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

5

29 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class ArgumentDataPrototype

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

direction ArgumentDirection
Enum

0..1 attr This attribute specifies the direction of the argument
prototype.

Table 3.10: ArgumentDataPrototype

3.5 Data Types

3.5.1 Overview

The XP partially takes over the AUTOSAR data typing model and principles defined
in [5] chapter "‘Data Description"’. With reference to [TPS_SWCT_01229] and the
table "‘Abstraction Levels for Describing Data", only the Application Data Level shall
be used.

The XP is concerned with a modeling of high-level data types and attributes of data
types like the physical meaning of a data type. XP data types are not concerned with
implementation or platform level data types; it is expected that these are fully in the
domain of a concrete platform.

[TPS_APSD_01014]{DRAFT} Allowed data types in an abstract platform dThe ab-
stract platform allows deferral of data typing or data typing using:

• integrals in the form of category=VALUE

• structures in the form of category=STRUCTURE

• arrays in the form of category=ARRAY

• strings in the form of category=STRING

• booleans in the form of category=BOOLEAN

c()

[TPS_APSD_01013]{DRAFT} Usage of application level data types dData typing in
the abstract platform uses the AUTOSAR application level data types.c()

[TPS_APSD_01030]{DRAFT} Exclusion of implementation level data types dThe
abstract platform does not support modeling of implementation level data types.c()

3.5.2 Properties of Data Definitions

The properties of data definitions from [5] chapter "‘Data Description::Properties of
Data Definitions"’ also apply in XP. However, due to the reduced subset of supported

30 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

categorys of ApplicationDataTypes (see 3.5.3), the list of SwDataDefProps
attributes is therefore also constrained respectively.

The semantical meaning of those attributes defined in Table 3.11 is specified in [5]
chapter "‘Data Description::Elements used in Properties of Data Definitions"’.

[constr_6812]{DRAFT} SwDataDefProps applicable to ApplicationDataTypes
exclusive to the abstract platform dA complete list of the allowed SwDataDefProps
attributes and their multiplicities which are allowed for a given category is shown in
table 3.11.c()

Attributes of SwDataDefProps Root Elem. Attribute Existence
per Category

A
p
p
l
i
c
a
t
i
o
n
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
D
e
f
e
r
r
e
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

V
A
L
U
E

S
T
R
U
C
T
U
R
E

A
R
R
A
Y

S
T
R
I
N
G

B
O
O
L
E
A
N

annotation x x x x * * * * *
compuMethod x 0..1 0..1

dataConstr.dataConstrRule.physConstrs x x x 0..1 0..1 0..1

dataConstr.dataConstrRule.internalConstrs x x x d/c2 d/c d/c

displayFormat x x x 0..1 0..1 0..1 0..1

invalidValue x 0..1 0..1 0..1

swTextProps x 1

unit x 0..1 0..1 0..1

Other Attributes below the Root Element
element:
ApplicationRecordElement x x x 1..*

element:
ApplicationArrayElement x x x 1

ApplicationArrayElement.arraySizeSemantics x 0..1

ApplicationArrayElement.maxNumberOfElements x 1

Table 3.11: Allowed Attributes vs. category for ApplicationDataTypes

2don’t care

31 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Class <<atpVariation>> SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Tags:vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mult. Kind Note

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags:xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags:xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags:xml.sequenceOffset=210

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags:xml.sequenceOffset=255

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags:xml.sequenceOffset=120

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags:xml.sequenceOffset=350

Table 3.12: SwDataDefProps

3.5.3 Data Type Categories

The basis for allowed application data types in an XP are those application data types
cited in AUTOSAR Software-Component Template [5] chapter "‘Data Types::Data Cat-
egories"’ - but not all categorys of ApplicationDataType are supported in XP.

[constr_6810] Applicable categories for data types in an abstract platform dTable
3.13 defines the applicable data type categorys relating to applicable meta-model
classes.c()

32 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Category Applicable to ... Description

A
p
p
l
i
c
a
t
i
o
n
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
D
e
f
e
r
r
e
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
P
r
i
m
i
t
i
v
e
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

VALUE x x x Contains a single value.

STRUCTURE x x x
Holds one or several further elements which can have different

AutosarDataTypes.

STRING x x x
Contains a single value interpreted as a text string (note that it appears

as a single value for the application domain).

ARRAY x x x A fixed-sized array of sub-elements of the same type.

BOOLEAN x x x Contains a single boolean (true/false) state.

Table 3.13: Usage of category for Data Types

ARElement
AtpType

AutosarDataType

DataPrototype

AutosarDataPrototype

AtpBlueprint
AtpBlueprintable

ApplicationDataType

«atpVariation»
SwDataDefProps

ApplicationCompositeDataTypeApplicationPrimitiveDataType

ApplicationArrayDataTypeApplicationRecordDataType

ApplicationDeferredDataType

+swDataDefProps

0..1

«isOfType» +type

0..1
{redefines atpType}

Figure 3.6: Modeling of Abstract Platform data types

33 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table 3.14: AutosarDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationDeferredDataType, ApplicationPrimitiveDataType

Attribute Type Mult. Kind Note

– – – – –

Table 3.15: ApplicationDataType

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 3.16: ApplicationPrimitiveDataType

Class ApplicationCompositeDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for all application data types composed of other data types.

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Subclasses ApplicationArrayDataType, ApplicationRecordDataType

5

34 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class ApplicationCompositeDataType (abstract)

Attribute Type Mult. Kind Note

– – – – –

Table 3.17: ApplicationCompositeDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

element
(ordered)

ApplicationRecord
Element

* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 3.18: ApplicationRecordDataType

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

0..1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table 3.19: ApplicationArrayDataType

3.5.4 Application Data Types

The XP is targeting a platform independent design of data exchange between SWCs
(applications). To keep to the underlying goal of remaining independent of concrete
platform implementation details, a description of the used data types in the XP is there-
fore naturally limited to application data types.

35 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

The AUTOSAR data type model starts with AutosarDataType. The meta-class
AutosarDataType inherits from Identifiable which provides the identifying at-
tributes needed: longName, shortName. The category is then used to identify the
underlying category of application level data type.

3.5.5 Sub-classes of ApplicationDataType

The XP supports the sub-classes in the table in [constr_6810]. Partially those sub-
classes are re-used from [5] chapter "‘Data Types::Application Data Type"’ and are
thus defined there. The sub-classes defined purely by the XP are detailed here.

[TPS_APSD_01031]{DRAFT} Sub-classes of ApplicationDataType dIn an abstract
platform, the abstract meta-class ApplicationDataType is sub-classed into:

• ApplicationDeferredDataType

c()

These XP specific sub-classes are detailed in the following sections.

3.5.5.1 Deferred Data Type

Due to the fact that a data type may not yet be known in the XP, or shall be defined
later in the design in a downstream stage, XP typing can be deferred with the proviso
that it shall be concretely defined during derivation to a concrete platform or mapping
to a implementation data type.

This is done using the XP exclusive type called ApplicationDeferredDataType.
Fully usable in an XP, together with their properties (Table 3.11).

[TPS_APSD_01015]{DRAFT} Deferral of the category of data type in an abstract
platform dThe abstract platform provides a non-committal data type Application-
DeferredDataType to allow deferral of an actual data type to a later stage.c()

[TPS_APSD_01032]{DRAFT} Semantics of an ApplicationDeferredDataType
dAn ApplicationDeferredDataType represents a placeholder, Identifiable
within a model, but having no actual applicable category of data type.c()

As mentioned previously in 3.5.3, AUTOSAR ApplicationDataTypes are assigned
a category value from the Table 3.13. The ApplicationDeferredDataType how-
ever is an exception to this rule since it has no concrete type yet.

It is therefore necessary to exclude any assignment of categorys of type in a model
[constr_6814]. Further to that, no properties of data definitions are assigned to Ap-
plicationDeferredDataType which would convey in any way concrete data type
characteristics [constr_6812]. In other words, the list of attributes is deliberately very
constrained in order to be agnostic of concrete data typing.

36 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

[constr_6814]{DRAFT} Restriction of ApplicationDeferredDataType.cate-
gory dThe category of an ApplicationDeferredDataType shall be unas-
signed/undefined.c()

Class ApplicationDeferredDataType

Package M2::AUTOSARTemplates::AbstractPlatform

Note An abstract placeholder data type in which the precise application data type is deferred to a later stage.

Tags:
atp.Status=draft
atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 3.20: ApplicationDeferredDataType

3.5.6 Type Tracing

As mentioned previously, the XP is not concerned with those data types below the level
of ApplicationDataTypes. Data type tracing between an XP and a concrete plat-
form model must be done on the same level - in the context of AUTOSAR, that means
tracing only between ApplicationDataTypes in XP/CP/AP as shown in Figure 3.7.

Figure 3.7: Permitted data type tracing

Any usage of XP ApplicationDataTypes in a CP or CP is not allowed (Figure
3.7 left). Any indirect tracing between XP ApplicationDataTypes and either
CP AbstractImplementationDataTypes or AP AbstractImplementation-
DataTypes is not supported (Figure 3.7 right).

37 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

Figure 3.8: Prohibited data type tracing

[TPS_APSD_01036]{DRAFT} Data type tracing between abstract and concrete
platform models dTracing of data types between abstract and concrete platform mod-
els is solely on the level of ApplicationDataTypes.c()

For a model based example view on tracing see chapter A.3. The remainder of this
section details any aspects to consider when tracing (deriving/abstracting) XP specific
sub-classes of ApplicationDataTypes (listed by sub-chapter here).

3.5.6.1 Deferred Data Type

Since an ApplicationDeferredDataType is basically a placeholder type, and
holds no concrete data type properties, it is straightforward to trace this type between
an abstract and concrete platform.

[TPS_APSD_01037]{DRAFT} Compatibility of an ApplicationDeferred-
DataType dDuring tracing, the ApplicationDeferredDataType provides none,
and the concrete platform type provides all of the aspects of necessary typing.c()

[TPS_APSD_01016]{DRAFT} Concrete data type resolution of an Applica-
tionDeferredDataType dThe precise data typing of a ApplicationDeferred-
DataType is not required until the methodology step before, or latest during:

• derivation of ApplicationDataTypes defined in the context of an XP, to corre-
sponding ApplicationDataTypes defined in the context of either a CP or an
AP.

• derivation of ApplicationDataTypes defined in the context of an XP, to a cor-
responding domain specific representation in a non-AUTOSAR platform.

c()

[TPS_APSD_01033]{DRAFT} Traceability of an ApplicationDeferred-
DataType dIf the concrete platform is:

38 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

• an AUTOSAR platform: an ApplicationDeferredDataType can be traced to
any of the supported ApplicationDataTypes on the concrete platform.

• a non-AUTOSAR platform: tracing is domain specific.

c()

39 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4 Requirements

4.1 Overview

The AUTOSAR meta-model already provides a healthy set of meta-classes for the topic
of requirements in the AUTOSAR Standardization Template [1] [TPS_STDT_00060].
For requirements engineering (annotation, documentation, rationalization, traceability)
in an XP, they can be directly applied.

The XP allows requirement engineering to be performed within the context of an XP
system description. A top-level requirement can be added which can be recursively
broken-down (decomposed) into N x child level requirements and annotated to an XP
description.

It is at the discretion of the designer how and when to do this step and to decide when
the current decomposition level is sufficient. During the concrete platform implemen-
tation stage a developer would then implement according to the requirements.There
are no restrictions on what a requirement is, nor on the number of decompositions of a
requirement. The meta-class StructuredReq may be reused directly for requirement
specification.

[TPS_APSD_01034]{DRAFT} Requirement annotation and in an abstract plat-
form dAn abstract platform description supports recursive depths of requirements an-
notation, decomposition.c()

For a detailed description of AUTOSAR’s support for traceability of all kinds refer to [4]
chapter "‘Documentation Support"’.

40 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

A Examples

This chapter contains a collection of examples that reflect concepts described in differ-
ent chapters of this document. The content of the chapter provides mere explanation
and does not add anything to the model semantics.

A.1 System

The listing in A.1 illustrates the definition of a System to describe an abstract platform.

Listing A.1: Example ARXML for abstract platform system
<SYSTEM>
<SHORT-NAME>MySystem</SHORT-NAME>
<CATEGORY>ABSTRACT_PLATFORM_SYSTEM_DESCRIPTION</CATEGORY>
<ROOT-SOFTWARE-COMPOSITIONS>

<ROOT-SW-COMPOSITION-PROTOTYPE>
<SHORT-NAME>MyRootSwComposition</SHORT-NAME>
<SOFTWARE-COMPOSITION-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/

ARDesign/SystemDesign/MyTopLevelComposition</SOFTWARE-COMPOSITION-
TREF>

</ROOT-SW-COMPOSITION-PROTOTYPE>
</ROOT-SOFTWARE-COMPOSITIONS>
<SYSTEM-VERSION>0.1.0</SYSTEM-VERSION>

</SYSTEM>

A.2 Component hierarchy

The listing in A.2 illustrates the usage of CompositionSwComponentType to define
a hierarchy of components.

Listing A.2: Example ARXML for abstract software components
<AR-PACKAGE>
<SHORT-NAME>Components</SHORT-NAME>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>RadarFusionUnit</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>components</SHORT-NAME>
<ELEMENTS>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>Unit</SHORT-NAME>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>radar</SHORT-NAME>
<TYPE-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/ARDesign

/Components/RadarFusionUnit/components/UnitRadar</TYPE
-TREF>

41 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>camera</SHORT-NAME>
<TYPE-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/ARDesign

/Components/RadarFusionUnit/components/UnitCamera</
TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>

</COMPOSITION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>UnitRadar</SHORT-NAME>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>app</SHORT-NAME>
<TYPE-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/ARDesign

/Components/RadarFusionUnit/components/UnitRadarApp</
TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>

</COMPOSITION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>UnitCamera</SHORT-NAME>
<CATEGORY>XP_COMPONENT_APPLICATION</CATEGORY>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>app</SHORT-NAME>
<TYPE-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/ARDesign

/Components/RadarFusionUnit/components/UnitCameraApp</
TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>sensor</SHORT-NAME>
<TYPE-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/ARDesign

/Components/RadarFusionUnit/components/
UnitCameraSensor</TYPE-TREF>

</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>

</COMPOSITION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>UnitCameraSensor</SHORT-NAME>
<CATEGORY>XP_COMPONENT_APPLICATION</CATEGORY>

</COMPOSITION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>UnitCameraApp</SHORT-NAME>
<CATEGORY>XP_COMPONENT_APPLICATION</CATEGORY>

</COMPOSITION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>UnitRadarApp</SHORT-NAME>
<CATEGORY>XP_COMPONENT_APPLICATION</CATEGORY>

</COMPOSITION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AR-PACKAGE>
</AR-PACKAGES>

</AR-PACKAGE>

42 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

A.3 Data type tracing

The model example A.1 illustrates a meta-model view on tracing between an XP and a
CP/AP.

Classic Platform

Abstract Platform

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

DataTypeMap

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

Adaptive Platform

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

DataTypeMap

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

+applicationDataType

1
+applicationDataType

1

«trace»

+implementationDataType
1

+swDataDefProps

0..1

+swDataDefProps

0..1

«trace»

+swDataDefProps

0..1

+implementationDataType
1

Figure A.1: Data type tracing

43 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class AbstractImplementationDataType (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This meta-class represents an abstract base class for different flavors of ImplementationDataType.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ImplementationDataType

Attribute Type Mult. Kind Note

– – – – –

Table B.1: AbstractImplementationDataType

Class ApplicationArrayElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of the elements of an application array data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls how the information about the array
size shall be interpreted.

indexDataType ApplicationPrimitive
DataType

0..1 ref This reference can be taken to assign a CompuMethod of
category TEXTTABLE to the array. The texttable entries
associate a textual value to an index number such that
the element with that index number is represented by a
symbolic name.

maxNumberOf
Elements

PositiveInteger 0..1 attr The maximum number of elements that the array can
contain.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table B.2: ApplicationArrayElement

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

5

44 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class ApplicationRecordElement

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Table B.3: ApplicationRecordElement

Class AtomicSwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Attribute Type Mult. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is <<atpSplitable>>.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the AtomicSw
ComponentType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

Table B.4: AtomicSwComponentType

Class DataConstr
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to specify constraints on data.

Tags:atp.recommendedPackage=DataConstrs

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

5

45 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class DataConstr
dataConstrRule DataConstrRule * aggr This is one particular rule within the data constraints.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table B.5: DataConstr

Class DataConstrRule
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to express one specific data constraint rule.

Base ARObject

Attribute Type Mult. Kind Note

constrLevel Integer 0..1 attr This attribute describes the category of a constraint. One
of its functions is in the area of constraint violation, where
it can be used from a certain level, to produce error
messages.

The lower the level, the more stringent the check.

Used to distinguish hard or soft limits.

Tags:xml.sequenceOffset=20

internalConstrs InternalConstrs 0..1 aggr Describes the limitations applicable on the internal
domain (as opposed to the physical domain).

Tags:xml.sequenceOffset=40

physConstrs PhysConstrs 0..1 aggr Describes the limitations applicable on the physical
domain (as opposed to the internal domain).

Tags:xml.sequenceOffset=30

Table B.6: DataConstrRule

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, Application
Endpoint, ApplicationError, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AutosarOperation
ArgumentInstance, AutosarVariableInstance, BlockState, BuildActionEntity , BuildActionEnvironment,
Chapter, ClassContentConditional, ClientIdDefinition, ClientServerOperation, Code, CollectableElement ,
ComManagementMapping, CommConnectorPort , CommunicationConnector , CommunicationController ,
Compiler, ConsistencyNeeds, ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement ,
CryptoServiceMapping, DataPrototypeGroup, DataTransformation, DependencyOnArtifact, DiagEvent
DebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticFunctionInhibit
Source, DiagnosticRoutineSubfunction, DltArgument, DltLogChannel, DltMessage, DoIpInterface, DoIp
LogicAddress, DoIpRoutingActivation, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig,
ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeature
MapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection,

5
5

46 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class Identifiable (abstract)

4
FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave, Heap
Usage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilter
List, ISignalToIPduMapping, ISignalTriggering, IdentCaption, InternalTriggeringPoint, Keyword, LifeCycle
State, Linker, MacMulticastGroup, McDataInstance, MemorySection, ModeDeclaration, ModeDeclaration
Mapping, ModeSwitchPoint, NetworkEndpoint, NmCluster , NmNode, PackageableElement , Parameter
Access, PduToFrameMapping, PduTriggering, PhysicalChannel , PortGroup, PortInterfaceMapping,
PossibleErrorReaction, ResourceConsumption, RootSwCompositionPrototype, RptComponent, Rpt
Container, RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptService
Point, SdgAttribute, SdgClass, SecureCommunicationAuthenticationProps, SecureCommunication
FreshnessProps, SecurityEventContextProps, ServiceNeeds, SignalServiceTranslationEventProps,
SignalServiceTranslationProps, SocketAddress, SomeipTpChannel, SpecElementReference, Stack
Usage, StaticSocketConnection, StructuredReq, SwGenericAxisParamType, SwServiceArg, SwcService
Dependency, SystemMapping, TimeBaseResource, TimingCondition, TimingConstraint , Timing
Description, TimingExtensionResource, TimingModeInstance, Topic1, TpAddress, TraceableTable,
TraceableText, TracedFailure, TransformationProps, TransformationTechnology, Trigger, VariableAccess,
VariationPointProxy, ViewMap, VlanConfig

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags:xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published

5
5

47 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class Identifiable (abstract)

4
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table B.7: Identifiable

Class MultilanguageReferrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders). They
also may have a longName. But they are not considered to contribute substantially to the overall
structure of an AUTOSAR description. In particular it does not contain other Referrables.

Base ARObject , Referrable

Subclasses Caption, DefItem, DocumentationContext, Identifiable, SdgCaption, TraceReferrable, Traceable

Attribute Type Mult. Kind Note

longName MultilanguageLong
Name

0..1 aggr This specifies the long name of the object. Long name is
targeted to human readers and acts like a headline.

Table B.8: MultilanguageReferrable

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mult. Kind Note

– – – – –

Table B.9: PortPrototype

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticDebounceAlgorithmProps, Diagnostic
EnvModeElement , EthernetPriorityRegeneration, EventHandler, ExclusiveAreaNestingOrder, Hw
DescriptionEntity , ImplementationProps, LinSlaveConfigIdent, ModeTransition, MultilanguageReferrable,
PduActivationRoutingGroup, PncMappingIdent, SingleLanguageReferrable, SoConIPduIdentifier, Socket
ConnectionBundle, TimeSyncServerConfiguration, TpConnectionIdent

5

48 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class Referrable (abstract)

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table B.10: Referrable

Class StructuredReq

Package M2::MSR::Documentation::BlockElements::RequirementsTracing

Note This represents a structured requirement. This is intended for a case where specific requirements for
features are collected.

Note that this can be rendered as a labeled list.
Base ARObject , DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable,

Traceable

Attribute Type Mult. Kind Note

appliesTo standardNameEnum * attr This attribute represents the platform the requirement is
assigned to.

Tags:
xml.namePlural=APPLIES-TO-DEPENDENCIES
xml.sequenceOffset=25

conflicts DocumentationBlock 0..1 aggr This represents an informal specification of conflicts.

Tags:xml.sequenceOffset=40

date DateTime 1 attr This represents the date when the requirement was
initiated.

Tags:xml.sequenceOffset=5

dependencies DocumentationBlock 0..1 aggr This represents an informal specifiaction of
dependencies. Note that upstream tracing should be
formalized in the property trace provided by the
superclass Traceable.

Tags:xml.sequenceOffset=30

description DocumentationBlock 0..1 aggr Ths represents the general description of the
requirement.

Tags:xml.sequenceOffset=10

importance String 1 attr This allows to represent the importance of the
requirement.

Tags:xml.sequenceOffset=8

issuedBy String 1 attr This represents the person, organization or authority
which issued the requirement.

Tags:xml.sequenceOffset=6

rationale DocumentationBlock 0..1 aggr This represents the rationale of the requirement.

Tags:xml.sequenceOffset=20

5

49 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Class StructuredReq

remark DocumentationBlock 0..1 aggr This represents an informal remark. Note that this is not
modeled as annotation, since these remark is still
essential part of the requirement.

Tags:xml.sequenceOffset=60

supporting
Material

DocumentationBlock 0..1 aggr This represents an informal specifiaction of the
supporting material.

Tags:xml.sequenceOffset=50

testedItem Traceable * ref This assocation represents the ability to trace on the
same specification level. This supports for example the of
acceptance tests.

Tags:xml.sequenceOffset=70

type String 1 attr This attribute allows to denote the type of requirement to
denote for example is it an "enhancement", "new feature"
etc.

Tags:xml.sequenceOffset=7

useCase DocumentationBlock 0..1 aggr This describes the relevant use cases. Note that formal
references to use cases should be done in the trace
relation.

Tags:xml.sequenceOffset=35

Table B.11: StructuredReq

C History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

C.1 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-11

C.1.1 Added Traceables in R19-11

Number Heading

[TPS_APSD_01000] Principle of an abstract platform system description

[TPS_APSD_01001] Modeling of vehicle communications in an abstract platform

[TPS_APSD_01002] Agnosticism of deployment modeling artifacts in an abstract platform

[TPS_APSD_01003] Exclusion of abstract platform artifacts to an AUTOSAR concrete platform

[TPS_APSD_01004] System category for a system description with Abstract Platform content

[TPS_APSD_01005] Identification of component types in an abstract platform
5

50 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Number Heading

[TPS_APSD_01006] Recursive component definition in an abstract platform

[TPS_APSD_01007] Prototyping of ports in an abstract platform

[TPS_APSD_01008] Generic typing of interfaces in an abstract platform

[TPS_APSD_01009] Grouping of ports in an abstract platform

[TPS_APSD_01010] Agnosticism of abstract platform interfaces to middleware deployments

[TPS_APSD_01011] Aggregation of interface elements in an abstract platform interface

[TPS_APSD_01012] Modeling of connectors in an abstract platform

[TPS_APSD_01013] Abstraction of implementation details of data types in an abstract platform

[TPS_APSD_01014] Allowed data types in an abstract platform

[TPS_APSD_01015] Deferral of the category of an ApplicationDataType typing in an ab-
stract platform

[TPS_APSD_01016] Concrete definition of a deferred type

[TPS_APSD_01017] The category of a deferred type in an abstract platform

[TPS_APSD_01018] Exclusion of type mapping in an abstract platform

[TPS_APSD_01100] Requirement annotation in an abstract platform

[TPS_APSD_01101] Requirements tracing in an abstract platform

[TPS_APSD_01102] Functional tracing in an abstract platform

Table C.1: Added Traceables in R19-11

C.1.2 Changed Traceables in R19-11

none

C.1.3 Deleted Traceables in R19-11

none

C.1.4 Added Constraints in R19-11

Number Heading

[constr_6800] Non-relevance of FibexElement and SystemMapping for a System description
with Abstract Platform content

[constr_6801] Non-relevance of the attributes System.pncVectorLength, System.pncVecto-
rOffset for a System description with Abstract Platform content

[constr_6802]
Restriction of the category of a CompositionSwComponentType which types a
RootSwCompositionPrototype in a System description with Abstract Platform
content

5

51 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Number Heading

[constr_6803]
Restriction of the category of a CompositionSwComponentType which refer-
ences a SwComponentPrototype in a System description with Abstract Platform
content

[constr_6804] Non-relevance of ConstantSpecificationMappingSet and DataTypeMap-
pingSet for a CompositionSwComponentType in an Abstract Platform

[constr_6805] Non-relevance of PRPortPrototype for a System with Abstract Platform content

[constr_6806] Restriction of the category of a PortInterface for a System description with
Abstract Platform content

[constr_6807] Exclusivity of an CompositeInterface to an Abstract Platform

[constr_6808] Non-relevance of the attribute ClientServerOperation.fireAndForget for a
ClientServerOperation used in a CompositeInterface

[constr_6809] Non-relevance of ApApplicationError and ApApplicationErrorSet for a
ClientServerOperation in the context of a CompositeInterface

[constr_6810] Applicable categories for data types in an abstract platform

[constr_6811] Exclusivity of ApplicationDataType.category DEFERRED to the abstract plat-
form

[constr_6812] SwDataDefProps applicable to ApplicationDataTypes exclusive to the abstract
platform

[constr_6813] Restriction of SwComponentTypes in an Abstract Platform

Table C.2: Added Constraints in R19-11

C.1.5 Changed Constraints in R19-11

none

C.1.6 Deleted Constraints in R19-11

none

C.2 Constraint and Specification Item History of this document
according to AUTOSAR Release R20-11

C.2.1 Added Traceables in R20-11

Number Heading

[TPS_APSD_01019] Typing of SwComponentPrototypes used in a CompositionSwCompo-
nentType in an abstract platform

5

52 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Number Heading

[TPS_APSD_01020] Semantics of a CompositionSwComponentType of category
XP_COMPONENT_APPLICATION

[TPS_APSD_01022] Semantics of a CompositeInterface

[TPS_APSD_01023] Elements of a CompositeInterface

[TPS_APSD_01024] Semantics of a CompositeInterface.command

[TPS_APSD_01025] Semantics of a CompositeInterface.indication

[TPS_APSD_01026] Semantics of a CompositeInterface of category
XP_PORT_CTRL_SECURITY

[TPS_APSD_01027] Semantics of a CompositeInterface of category
XP_PORT_CTRL_TIMESYNC

[TPS_APSD_01028] Semantics of a CompositeInterface of category
XP_PORT_DATA_STORAGE

[TPS_APSD_01029] Semantics of a CompositeInterface of category
XP_PORT_DATA_APPLICATION

[TPS_APSD_01030] Exclusion of implementation level data types

[TPS_APSD_01031] Sub-classes of ApplicationDataType

[TPS_APSD_01032] Semantics of an ApplicationDeferredDataType

[TPS_APSD_01033] Traceability of an ApplicationDeferredDataType

[TPS_APSD_01034] Requirement annotation and in an abstract platform

[TPS_APSD_01035] Placement of an abstract platform model

[TPS_APSD_01036] Data type tracing between abstract and concrete platform models

[TPS_APSD_01037] Compatibility of an ApplicationDeferredDataType

Table C.3: Added Traceables in R20-11

C.2.2 Changed Traceables in R20-11

Number Heading

[TPS_APSD_01000] Principle of an abstract platform system description

[TPS_APSD_01001] VFB level modeling of an abstract platform

[TPS_APSD_01002] Agnosticism of deployment aspects

[TPS_APSD_01003] Exclusion of abstract platform artifacts to an AUTOSAR concrete platform

[TPS_APSD_01005] Identification of component types in an abstract platform

[TPS_APSD_01008] Generic typing of interfaces in an abstract platform

[TPS_APSD_01012] Modeling of connectors in an abstract platform

[TPS_APSD_01013] Usage of application level data types

[TPS_APSD_01014] Allowed data types in an abstract platform

[TPS_APSD_01015] Deferral of the category of data type in an abstract platform

[TPS_APSD_01016] Concrete data type resolution of an ApplicationDeferredDataType

Table C.4: Changed Traceables in R20-11

53 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

C.2.3 Deleted Traceables in R20-11

Number Heading

[TPS_APSD_01011] Aggregation of interface elements in an abstract platform interface

[TPS_APSD_01017] The category of a deferred type in an abstract platform

[TPS_APSD_01018] Exclusion of type mapping in an abstract platform

[TPS_APSD_01100] Requirement annotation in an abstract platform

[TPS_APSD_01101] Requirements tracing in an abstract platform

[TPS_APSD_01102] Functional tracing in an abstract platform

Table C.5: Deleted Traceables in R20-11

C.2.4 Added Constraints in R20-11

Number Heading

[constr_6814] Restriction of ApplicationDeferredDataType.category

Table C.6: Added Constraints in R20-11

C.2.5 Changed Constraints in R20-11

Number Heading

[constr_6803] Standarized values of CompositionSwComponentType.category
[constr_6806] Standarized values of CompositeInterface.category

Table C.7: Changed Constraints in R20-11

C.2.6 Deleted Constraints in R20-11

Number Heading

[constr_6800] Non-relevance of FibexElement and SystemMapping for a System description
with Abstract Platform content

[constr_6801] Non-relevance of the attributes System.pncVectorLength, System.pncVecto-
rOffset for a System description with Abstract Platform content

[constr_6802]
Restriction of the category of a CompositionSwComponentType which types a
RootSwCompositionPrototype in a System description with Abstract Platform
content

[constr_6804] Non-relevance of ConstantSpecificationMappingSet and DataTypeMap-
pingSet for a CompositionSwComponentType in an Abstract Platform

[constr_6805] Non-relevance of PRPortPrototype for a System with Abstract Platform content

[constr_6808] Non-relevance of the attribute ClientServerOperation.fireAndForget for a
ClientServerOperation used in a CompositeInterface

[constr_6809] Non-relevance of ApApplicationError and ApApplicationErrorSet for a
ClientServerOperation in the context of a CompositeInterface

[constr_6811] Exclusivity of ApplicationDataType.category DEFERRED to the abstract plat-
form

5

54 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

4
Number Heading

[constr_6813] Restriction of SwComponentTypes in an Abstract Platform

Table C.8: Deleted Constraints in R20-11

55 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

D Splitable Elements in the Scope of this Document

This chapter contains a table of all model elements stereotyped �atpSplitable�
in the scope of this document.

Each entry in the table consists of the identification of the specific model element itself
and the applicable value of the tagged value atp.Splitkey.

For more information about the concept of splitable model elements and how these
shall be treated please refer to [4].

56 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

Specification of Abstract Platform
AUTOSAR FO R20-11

E Variation Points in the Scope of this Document

This chapter contains a table of all model elements stereotyped �atpVariation�
in the scope of this document.

Each entry in the table consists of the identification of the model element itself and the
applicable value of the tagged value vh.latestBindingTime.

For more information about the concept of variation points and how model elements
that contain variation points shall be treated please refer to [4].

Variation Point Latest Binding Time

CompositeInterface.command blueprintDerivationTime

CompositeInterface.indication blueprintDerivationTime

Table E.1: Usage of variation points

57 of 57 Document ID 947: AUTOSAR_TPS_AbstractPlatformSpecification

	1 Introduction
	1.1 Document Structure
	1.2 Terms and Abbreviations
	1.3 Document Conventions
	1.4 Scope and Limitations

	2 Concept
	2.1 Background
	2.2 Usage
	2.2.1 General
	2.2.2 AUTOSAR Specific

	2.3 Modeling Approach
	2.3.1 Meta-Model Choice
	2.3.2 Bottom-up vs Top-down
	2.3.2.1 Top-down
	2.3.2.2 Bottom-up

	2.3.3 Meta-class selection

	3 Abstract Platform
	3.1 Methodology
	3.1.1 Overview

	3.2 System Model
	3.2.1 Overview
	3.2.2 Root Composition

	3.3 Software Component Model
	3.3.1 Overview
	3.3.2 Component Compositions
	3.3.2.1 SwComponentPrototypes

	3.3.3 Component Types
	3.3.4 Connectors
	3.3.5 Port Groups

	3.4 Port Interfaces
	3.4.1 Overview
	3.4.2 Composite Interface
	3.4.2.1 Elements of Composite Interface

	3.5 Data Types
	3.5.1 Overview
	3.5.2 Properties of Data Definitions
	3.5.3 Data Type Categories
	3.5.4 Application Data Types
	3.5.5 Sub-classes of ApplicationDataType
	3.5.5.1 Deferred Data Type

	3.5.6 Type Tracing
	3.5.6.1 Deferred Data Type

	4 Requirements
	4.1 Overview

	A Examples
	A.1 System
	A.2 Component hierarchy
	A.3 Data type tracing

	B Mentioned Class Tables
	C History of Constraints and Specification Items
	C.1 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11
	C.1.1 Added Traceables in R19-11
	C.1.2 Changed Traceables in R19-11
	C.1.3 Deleted Traceables in R19-11
	C.1.4 Added Constraints in R19-11
	C.1.5 Changed Constraints in R19-11
	C.1.6 Deleted Constraints in R19-11

	C.2 Constraint and Specification Item History of this document according to AUTOSAR Release R20-11
	C.2.1 Added Traceables in R20-11
	C.2.2 Changed Traceables in R20-11
	C.2.3 Deleted Traceables in R20-11
	C.2.4 Added Constraints in R20-11
	C.2.5 Changed Constraints in R20-11
	C.2.6 Deleted Constraints in R20-11

	D Splitable Elements in the Scope of this Document
	E Variation Points in the Scope of this Document

