Agenda

e Case Study

* Unit & Module testing

* Integration Testing Strategies

* Regression & Smoke Testing

* High Level Testing

* Functional Regression Testing - Example
* Test Planning

* Oracle Problem

* Summary

Case studies
How to test it ?

"

JA IR BT AL T (R B
C s A e T) (R 3 TR)

S . GB 11614-1999 (% AHLIE)
GB/T 11416-2002 { [F {710 %5 FHI< TR | GB 1576372-2005 {7471 FH 224> P Fs AW Ak B 355)
QB/T 2332-1997 {NNFEWE T RIEE

GB 9684-1988 (NEFHN & H 2548 DAEFRED
GB/T11681-1989 { ANEHEHN & H 2548 DA FRAER) 70 T

PRV N AR SRR T A

M DIREREHREH I A

Case studies
How to test it ?

FURPS+/E MR R Gk 4EHEZS, A fEac 4!

-g@%%m%g,g@ﬁﬁ%ﬁﬁ%%ﬁﬁﬁﬁiﬁﬁ%%%ﬁ
BesrcmpEH T/ T B,
o PRV AINH; AN E S ﬁﬂ@%%ﬁm; AE. A, [of
)

)

¢
k

T Rk, RRIR mm%ii\immﬁ§¢g\z$@\x
B IR L Sk (B AR . JIE RO A DL bR R T

. ?i%&ﬂﬂ%ﬁﬁﬁz R EE. B FoKiR. P LR E
i
— PRIERLAE: ZoOfEbR. ThEedll (F/ P)
— RE: LA, FESORBERELARNGE. LA (W

— HoKHtt)E: /y&ﬁiﬁﬁﬁé il LEEEEEZN f‘ﬁ’]%%)u gzge ot R
(Safety)

— M ZIH KR A A dr. PSRRI (R)
— *T_[//\ .%*T{ﬁijbm }_L‘lillilﬁglﬁd\\ //‘g%\ D’f:l:\ %JLﬁ%%D}_‘iﬂ:\
KA WIbRAE S 7R A R v BV E S S IS R WA E . (S)

AR A, 8 75 BRI CRim Ah 72 i A R ey 1 2
http://zhidao.baidu.com/question/195136271.html, 2012.4

Case studies
How to test it ?

o VXA SCTITE R UGB RE g 2
— HE!
— fdi FHFURPS+(Safety & Security)HE 2 2= &
— VAA RS A P 8 A A WL a) A CFailures)
— AT e 5

How to test it ?

,

| ﬁﬁﬁ ﬁ'v/ff'uﬂ BRETFHL LR B Ry I 35
C it R T) CF= oA)

Case studies
How to test it ?

o [E Kbt

FEINH

- BEEWZE (F)
— M LR~ Wz (R T EEN) (F)

— TR (F)
(R/ U)

— Piif
« FHLHT.

FHLE

PR TR EER

— YR = RERN (BEEFITZ) (W

— i BB, @f<ﬁ%ﬁwia><mw>

—ﬁEﬂXﬂ“{ﬁfﬁ, JBRE (A, BEscEarn) U)
g (.

— FHLB I S 5155 (Safety)

— iR A S (S)

Ho—#mE) (U)

GB 15763.2-2005 NI{AL I ISR #E http://wenku.baidu.com/view/0527583d376baf1ffcAfadf4.html

Case studies
How to test it ?

1 S 0020

GER\F EEEEE

fies VR T T et 2

S |e

=: &= |

K& e~ [EEss [eahER

BB =
1047502973 - ||
1. A 7RV eI Fg vl B i 2 @)
Ao e
. e~ EEE BahEFR
2. WA ?
W 2 eeeee , Running -+-+-- BB VREER |~

Case studies

Mindmap — A power tools for exchanging ideas

Yy P IR SR

Yyt 2: 7 8 b R W

-
,’

-
-

— IR

EZUE N

Py 5 30IRA

[ERER TN

Efzi

Bk Qs it iz AT ECE PWZH & i

Yy A N ENE S WE . B R

P lml 545 25 HI 9137 5

[A }< RUI P RIR PR A A |
RE b 521 B hesey ™" FEQQ
e L FRLIVERG. BIX, 5j3%> R
> < RN =N AL]
e A b/ B EL R I o]
o — _< B E QQIHI B beeesl Zﬁig
O, \ LR S ok m e
R e HAth i LAl GRHE. Efrfh, Mt

Case studies
Planning — next jobs?

Automated & Manua

Supporting the Team

Agile Testing Quadrants

Business Facing

Technology Facing

Y e

1Npoid anbnu)

Test Strategy

Pyramid
Manual
tests ﬁjﬁ Rt 55 B
v RN /S R D
Z\Wﬁiﬁ:iA/EA
3. M TR: B3k
- 4. MRAVEAL: QRS 7E AR
S 5. BAT A FEF a7/
& Acceptance tests
/\Qg? (AP1 layer)
Unit tests/component tests

RTINS

SHE Nt Ky

Unit & Module testing

Unit Test

,

.

module
to be
tested

software

engineer

test cases

FrifE: 1008-1987 - IEEE Standard for Software Unit Testing

Unit & Module testing

Unit Test Process

o

,

.

software

1. AR R 5 R
2. W A S N (ROD

module
» to be
tested

results

test cases

3. it IR A 5
4. %5 H ool ey

engineer / .

5. gtit o irillli4s R
6. i as, HudklalH Bl

Unit & Module testing

Unit Test Criterion — Economic—based

o VIS R

— U7 GEEWERD module
_ K/ Mtk to be
P v e tested
— T 7€ ¥ (deterministic) BT/ ThBE
o AEEET U AT RN A YINERASE / SOE
o WEERE /AN Py 353 A A
— AN E [(non-deterministic) ‘ T B R
o IR BN 1 B e 4] 2L YA 7 R
o RS L g

o DT Bk %
— A FESEIEE)
— I FRSEES)
— FEHLI (BhEEPEE

. R, o test cases
2Lt HE R AR I T VA, T TR E R R

Unit & Module testing

Unit Test Environment

o IXZJj(driver)
— WAFE T
— hn#kPrefix value
— AR CaaxmDD
— AT I
— I B
— FTEIR

driver

/

Module

N\

e fH(stub)
— A M B A 1) 7 v
— @l =AERTHERE

stub

stub

o BE: =MAIRHIERE T
int tritype(int a, int b, int c)
{if (a<=0) return -1; else return 1}

RESULTS

test cases

BRI % Stub, Mock ¥ 4 2 5

SR

Unit & Module testing

Unit Test - example

« Fcontains /7 i 1 5 &M
Class Booklist implementation List {
Boolean add(Book book);

o HIT A IR
— PRI 5 (B 2 A 2)
* Boolean contains(list, book)
— MR
* Characteristics numbers of list (0,1,k)

» Characteristics book (null, book instance, shallow copy of the book, subclass
instance)

* Characteristics result (true, false)
* Characteristics found at (first, middle, last)

B A REHE In) R 2R S A g 1Y
MR E 2 B equals, instance of 2245k H. T,

Unit & Module testing

Module Test - example

* 2XBookDAOHZ AP
— Class BookDAO extends com.xxx.persistant.DAO {
» void Create(Book book);
* void Update(Book book);
» void Delete(Book book); // use id only
* Book FindBookbyID(string ISBN);
* Booklist FindBookbyQuery(string whereClause)

i M 41

—} book = new Book(“__XXX@__")
. i+ ‘T\ll) ‘_IJI:/EX Create(book)

*75‘ j%l:{ljjﬁtl‘/gﬁ AssertEqual(FindBookbylD(book.id), book) //ABUG
— /\ﬁ”fﬂ”lf‘xﬂ‘gjﬁ /& book
. BO‘OITDAO?; Update(book)
— it ESAEN AssertEqual(FindBookbyID(book.id), book)
« Happy/¥4l: &:Fh 51— K AssertEqual(FindBookbyQuery(“ID=id")[0], book)

o XIERENNTTIERIN / DhesE R gy, S EH AR, B A IHE N
- FHF%]: IDEK. Delete before Update «
IRt BERLIR
PP s/ I Gn B B ARG ?

Integration Testing Strategies
the “big bang” approach

Options:
e the “big bang” approach
e anincremental construction strategy

Integration Testing Strategies
Top-Down approach

top module is tested with

stubs

A

stubs are replaced one at

a time, "depth first"

/\ as new modules are integrated,
some subset of tests is re-run

Integration Testing Strategies
Bottom-Up approach

)

=

N
drivers are replaced one at a
time, "depth first"
worker modules are grouped into
builds and integrated

cluster

Integration Testing Strategies
Sandwich approach

A\
- Top modules are
tested with stubs

1
i i

cluster

Worker modules are grouped into
builds and integrated

Integration Testing Strategies

Summary of Integration Approach

| “BigBang’ Bottom-Up _| Sandwich __
A

M BR 5

“HE"RE T
Re-RuniX %\
el
KIE R
M E s

It

&I A5

High-level

P SMERFE
PRI H S

R &

N i

High-level

%
%

P SMERFE

HHH5Z stub R
1l Chappy)

(EQRENS-07/b=

()= T

it

Level Level
High Level

p/
&

AR RE S
SR RN
INE
BB
> i

R O
Fh

Level Level
High Level

&
&

SHe BT
SHE BT

i1
e

AT AT K

Regression Testing

Conception

The process of re-testing software that has been modified

Definition

* Most software today has very little new development

— Correcting, perfecting, adapting, or preventing problems with
existing software

— Composing new programs from existing components
— Applying existing software to new situations
 Because of the deep interconnections among software

components, changes in one method can cause problems
in methods that seem to be unrelated

* Not surprisingly, most of our testing effort is regression

testing

QE

YA

Regression Testing

Automation and Tool Support

tests to be run by hand
Tests must be run and evaluated
— often overnight, or more frequently for web applications
Testers do not have time to the results by inspection
Types of

— Capture / Replay — Capture values entered into a GUI and replay those
values on new versions

— Version control — Keeps track of collections of tests, expected results,
where the tests came from, the criterion used, and their past
effectiveness

— Scripting software — Manages the process of obtaining test inputs,
executing the software, obtaining the outputs, comparing the results,
and generating test reports

Tools are plentiful and inexpensive (often)
— Selenium, QTP, Rational Functional Test, Junit

EIVE MR WAS K0 S e aRE <o oS8 4111 R 7wy N R S 1=)

Regression Testing

Managing Tests in a Regression Suite

Test suites new tests over time
Test suites are usually runin a , , period of
— Often , sometimes more frequently, sometimes
less

At some point, the number of tests can become

— We cannot finish running the tests in the time allotted
We can always add hardware

But is it it?

How many of these tests really need to be run ?

Regression Testing
Policies for Updating Test Suites

 Which tests to keep can be based on several policies
— Add a new test for every

— Ensure that a is always satisfied
 Sometimes harder to choose tests
— Remove tests that to satisfying coverage
— Remove tests that have (risky !)
— Remove tests that have found the as other tests
(also risky !)
strategies

— If a suite of N tests satisfies a coverage criterion, the tests can
often be reordered so that the first N-x tests satisfies the
criterion — so the remaining tests can be removed

Regression Testing

When a Regression Test Fails

Regression tests are evaluated based on whether the
result on the new program P is the result
on the previous version P-1

— If they , the test is considered to have
Regression test failures represent

— The software has a fault — Must fix the fix

— The test values are no longer valid on the new version —
Must delete or modify the test

— The expected output is no longer valid — Must update the
test

Sometimes which !

Regression Testing

Change Impact Analysis

When a is made in the software, what
portions of the software can be by that change ?

More directly, which tests need to be re-run ?

— Conservative approach : Run all tests

— Cheap approach : Run only tests whose test requirements relate
to the statements that were changed

— Realistic approach : Consider how the changes propagate
through the software

Clearly, tests that the modified statements do
not need to be run

Lots of to perform CIA have been
invented

— Few if any available in commercial tools

Smoke Testing

Conception

 The term smoke testing originated in the hardware industry

 The term derived from this practice:

— After a piece of hardware or a hardware component was changed or
repaired, the equipment was simply powered up. If there was no
smoke, the component passed the test.

« A common approach for creating “daily builds” for product
software

* Smoke testing steps:

— Software components that have been translated into code are
integrated into a “build.”

— A series of tests is designed to expose errors that will keep the build
from properly performing its function.

— The build is integrated with other builds and the entire product (in its
current form) is smoke tested daily.

Smoke Testing
VS. Regression Testing

 JL[FEA
— #¥Zbug fixed J5 T & M

— BRI B AR 5, BB T ASEE H
T AH 2 Bl 481

« AE A

— [H] Uél{)”' WA RGN TIRE, BB S0 5 AFr i
BU

— B R Oy 2 DO B BT B A R i SEER

— [l A R) 78 5 2ok, AR E B AN B B

—WMMﬁﬁé SRAK, Tﬁh%@%%ﬁ@ﬂ 7T K
B 1% A ﬁﬁﬁ@]ﬁfﬁ{}m RES

- @%an%ﬁ B AR RAT [0 3K

— MR AL A daily build, MBS & BHTARAD A a)

Test Strategy BRI 5 B
. 1o SRR / H e

Pyramid 2. MRKEE: AR

3. AR TH: FT/Hak

A, PP R

Manual 5. $AT AR WK/ H P

tests

Acceptance tests

>
~
/\Qg? (AP layer)

Unit tests/component tests

SRIYEIYS/ B
SHE Nt Ky

K R eBETR

uml.org.cn+

High Level Testing

Overview

e Validation testing
— Focus is on software requirements

* Alpha/Beta testing
— Focus is on customer usage
* System testing
— Focus is on system integration
* Recovery testing
— forces the software to fail in a variety of ways and verifies that recovery is properly performed
* Security testing

— verifies that protection mechanisms built into a system will, in fact, protect it from improper
penetration

* Stress testing

— executes a system in a manner that demands resources in abnormal quantity, frequency, or
volume

* Performance Testing
— test the run-time performance of software within the context of an integrated system
* Compatibility Testing , Localization... ...

Functional Regression Testing
practical example -process

¢ SRR B
o RN R GRS

o PAT MBI
— MRS
— HATH I, B
— PAT T REM
— oy HH 0
« TH
— H3IME T H (buildbot)
— FICIER T A Qunit)
— IheeEshiX T B (Selenium, QTP, Rational Functional Tester)
— Fhia

Functional Regression Testing
practical example - AuT

o WAAXFG, Al FLUT R L

ke) i 4a s B R R Tk
K
/L R iy B ERERAFTDN
Y EE R R T It
Yo i 2

e ID: 00001—99999 []; HIAIDHZIE/REM . D)iE A
o Hrs: 0—99207]; F O, MY 4 b MR Z TR s W R = A x HE
o IWWIZERKEAT: 999.99

Functional Regression Testing
practical example — test case design

o METVE CRED

- Fhkilon
- W5
— KRG g
o FBIBAR Ay 1A
— IFBOT B
— R fE
B

2. HlEwEtE
3. IRAIThRENE
SEFM B3 5
4, HEITENH
5. FiE R F 5)

http://my.ss.sysu.edu.cn/courses/sga/pages/kechengxuexi/jiaoxueanli.ntm FME %< 2 I 5k

A%

BN fE

YIihID

Hos

LS

Yl B4

WP N 7%

ALY KNS Yy

Functional Regression Testing

practical example — Interface-based approach
1. (%, FREmMA, (DaEE, AMEE))

//\\" 2. (%%, JEEE (<0, 0, 1.99, >99))

#5 ID // /%é%maﬂﬁﬂamﬁ\\\

$o

- —{ 75 0 JE R R 2
<

t}%iam T

| \
\ \ A4 L4 b
5. ZN{E EZ4 NG R
4. B A%W%A@AB?

KA

Functional Regression Testing

practical example — Functionality-based approach

1,

CRNIE . AEW)D

J

2, GHHEIE#. AEFD

Vi ID / My e B o T
e /
{
A 5 BN AT E BN ZED
AL E A E AT e
Y& A

3. (0, 1, KIji)
/4\ (FEHER, ANAE)

5. (HEIEH. FEH)

” W3 2 ‘ 6. (0,0.01—999.99, >)

KJ/l

.

7

(ANEB, 153D

8+

(NS, 55D

Mt 2 H & RIS 77

Functional Regression Testing
practical example — Test Sequence and Data(1)

* Happy path
— HIEFR=HIEIRAS?
— P1: MIAAFAENE MR T=1,
— P2: #m=1, A
— P3: fudkzE, fWaE?
— P4: FZEGIK,
— EEXM=?

)ik ID) g B R
i 1+

B AR IZA) i B4 <999.99 / 100

A) R B BN T
Spop 1R AP
Y ZEE I Bos Tt

s A 1M

{

LY X iy 2M

oV 2V ___O0M 3™

&

Functional Regression Testing
practical example — Test Sequence and Data(2)

. Testhapass (FT28)
A B 2= UEIR S 2
— P1: BIAMFIERIR W T =1, $E=5, #&4ks:, KE?
— P2: BAANFAENIE Mg 5=1, $E=99, f&4ks:, KME?
— P3: A NTELERITE g 5=999, FE=2, fH4ks:, KA
— P4: By ANAFTERIRS fhd5=99999, HE=99, f&4ks:, K ? NV AGEIN ALY
— P5: B ATIE=1, &7
— P6: EYREE, B AAITIENITE fhYw 5 =888, Z4kS:, KEx?
— P7: BEUMAEE=0, &7 &Lk

— FEFM="
Yk ID) s 1 B T
i
9.5 8 2 75 0 T A 2
. e 2 I 5 7 F
2 HFT AR, R T SR A S Y 4 1

Functional Regression Testing
practical example — Test Sequence and Data(3)

e Testto fail (FT.5ZHL)
— HTE R =PI IR ?
— Pl: ¥IANMAEME Mmdw5=1, B==5, L4, KA
— P2: WiAFE= (%, 100, KT100) , K#?
— P3: By N E=5, BXEMLmS (-1, &, 0, 100000, &IFEFESRF, 1R
KHID) , faer?
— P4: BINAFEWI mdmT=1, =, ks, KE?
— EEXMEF=2

2 HET 1R, WRe a7 SR A S i 1D 0 5 2 P T
V2 N ~ 5 NS N x' it

1. W24 VA 3 5 A I ek o R ——

2. VI AE G, HE=o0! 080411 SRR P

TE R B s n 7 0 e 2 - WA FEPRTTH

FHINLIBOBG, SHNReE | (D e

Functional Regression Testing
practical example — Automatic

o ZWIBMIjAEMIAIE AR OB
o B3RS T T XA
— T
o RATREAD B S], SLIE B H bR
o FAFEOIE E I CEERERBEANR
— BB
o JRT]BERUERE NG AL, AR E A b wmEE! D
o FANZEHIHT R —ME—2EBUG, llllHk s 2 T 2
o B BIE—MHR TR
— Happy path test

— Test to pass
o MY ETH MDA ARELE K (IR 5 H LRI R R
o WYEDH AT LLESRERINE Z A, BL S A1 S
o WPZETH A LLIESE S WBR, DL @A) s S
— Test to fail
o FANTRISr IEAZMNA, A AR AL Ab PR S e R A

Test Plans
documentation?

The most common question about testing is

“How do | write a test plan?”

This question usually comes up when the focus is on the
, hot the

* |t's the contents that are important, not the structure
— Good testing is more important than proper documentation
— However — documentation of testing can be very helpful

 Most organizations have a list of topics, outlines, or
templates

Test Plans

Standard Test Plan

ANSI / IEEE Standard 829-1983 is ancient but still used

Test Plan

A document describing the scope, approach,
resources, and schedule of intended testing activities.
It identifies test items, the features to be tested, the
testing tasks, who will do each task, and any risks
requiring contingency planning.

Many organizations are required to adhere to this standard

Unfortunately, this standard emphasizes documentation, not actual
testing — often resulting in a well

Test Plans
Types of Test Plans

”

* Mission plan —tells “
— Usually one mission plan per organization or group
— Least detailed type of test plan

e Strategic plan —tells “ ”and “ "
— Usually one per organization, or perhaps for each type of project
— General requirements for coverage criteria to use
e Tactical plan —tells “ ”and “ "
— One per product
— More detailed

— Living document, containing test requirements, tools, results and
issues such as integration order

Test Plans
Test Plan Contents — Strategic Testing

* Purpose

* Target audience and application
* Deliverables

* Information included

— Introduction — Hardware and software requirements
— Test items — Responsibilities for severity ratings
— Features tested — Staffing & training needs

— Features not tested — Test schedules

— Test criteria — Risks and contingencies

— Pass / fail standards — Approvals

— Criteria for starting testing
— Criteria for suspending testing
— Requirements for testing restart

Test Plans

Test Plan Contents — Tactical Testing

Purpose

Outline

Test-plan ID

Introduction

Test reference items

Features that will be tested
Features that will not be tested
Approach to testing (criteria)
Criteria for pass / fail

Criteria for suspending testing
Criteria for restarting testing
Test deliverables

XN WD =

—_— e \O
DD = o

13.
14.
15.
16.
17.
18.
19.

Testing tasks
Environmental needs
Responsibilities

Staffing & training needs
Schedule

Risks and contingencies
Approvals

Test Planning
Example

PO (01 x
L Qo208

HXEF £ EEER
= |®

fies VR T T et 2

v [iEmws

Q2011
=8 = | B BLEY SEEEY
#a @ - [[enss QQ201T 1
- - | s = :)
. BB L Bx |

1047502973 - | iEfd

E3A Gl
@~ B SR BehEF

BE | UREER |~

Test Planning

Example - Strategic plan - “what” and “when”

M. Hir o
hREM X v
ZH A4, v

1Z A %
A2 A v
Al (GUDV
PERES 1A o
BN %
AP v
ESlTR AR %
HE L HANH v
fEHAEMS v

i H &3l
Ui H 3 3h
BN IEA
(SFN
FEANIEAR
(SIN
RANIER
2—31ER G
2—3%R)E
KA BT
2—31ER G
2—3%)E
KA BT

feg b o H bR

M 2H 2R
EISMIERY
B M X
EoRlR7N
ERUMERY
EIRSMIERY
REEFE PR
Ry e A
80% 5 ik
ZRKe 58 BT
Ry sE A
80% 5 ik

)

Test Planning

Example - Strategic plan - “

o B DhEeIl A g

I o R

UUNEWARES

A
WA T B R
=]l

£ € FUEARE T,

i Hbr: DIRE7E 75100%
MR HAr: B sh{bx70%

AR IEAIN 20 B 5

BURFPE s 7= i A
ZEPEas, (R IEXXE)
mE CHeEGEN, H3EE
e CIRES R SR v G
s EN] L AR
H 2 e H T A

Ui E i 60%; iy Pl
])) i 4 W U HE 42
M5B, A ARSI

14 and o

”

BT R
BRI

IR A AN [
W A 2 LA
PR A

i B A S A

FMg Chigh LeveD CREZEAZ . BB i THR. 43725

Test Planning
Example — Tactical Plan- “

o MR AR TR E A
— %I H B 5
— RIS E X

* Iﬂl/lf 1+jZ'J 7H 2

— 1.2: fERAPTBRRE EE, SL AR R

V24 and o ”

T B BRI 5577 %
S ENCES RPN AR

s A 7%

— 3: Project-XXX-Test-YYY. XXX H#w 55, YYYITKitXI4

ﬁﬁ%ﬁﬁﬁ
— 4.15: il

— 16: ARUrE KEIHZ, RlR AR 5T
— 17: REANFE ISR, 5 H A B R Il E55 I

B et SEit. S ARG S BT A

— 17,18: XUSR A5 T T it ;

Uil

TN

7R S B N 2R

ks

Kp SR e TR

uml.org.cn

Test Planning

Example — Tactical Plan- “how” and “who”
© ATMIFR R — UGEARTT &

* Purpose

— XFATMZERRMY 5512 45 58 ik Happy path 570 5 22 il it
e PlanID: P-2012-03-Test-001

v
xUnit Test Driver (?ﬂﬂiﬁﬁ?%‘iﬁ@

v
BB | | 0B | | Bukiglg || |ASRIE

System under Test

e

L L

\\

B

\\

. L ————sn
Transaction AP] Blockg i
.

\\\

e

\\

I ————————n
T Tt T Tt Tt

B

\\

ATMAE Bt S58B4/ 1, W.PPTOS

Test Planning

Example — Tactical Plan- “

W =
e

SCHR
MR
AN
s
A I HE
FEEC]
M

TP

LS

” and o

FLAtb S5 A B B e 5 AR Rl
A7 BV 25 T AP T 14 BH
AT 5y APIZ2 25 A5 FH i B
bk P AF DG happy 1 E
EEp R ATl

Jivk: B&, Happysh{ERF
T.E.: JUNIT

RILE = %60%; Frfa FHmE
AT 5 APIIA L 22385 I T

it
HEIFEF, Junitik &5
ISIFMock Xt 4t; POSTT K ML IR 55 2%

ABIsTHRTS 2/ B

’”

B O HAR R

111 001-01

W SRR AT BE R A
doc . B A 1%

it 2 A HE 2L 1

Test Planning
PR I 1R — DRI S 5 T 5 Rl e HE

= 902010 ,

% 0020e

GER\F EEEEE

S |e

;[| A

v | kS

K& e~ [EEss [eahER

BE_ == ||

1047502973 - | iEfd

E3A Gl
@~ B SR BehEF

- RE UREEF |~

ldentifying Correct Outputs

Oracle Problem

* Oracle (f#141)
* Test Oracle Problem
— MR

 With methods, we have a very clear idea whether
outputs are correct or not

e But for most programs it’s
* This section presents for checking outputs:
1. Direct verification
2. Redundant computation
3. Consistency checks
4. Dataredundancy

ldentifying Correct Outputs
Direct Verification with Automatic (1)

* Appealing because it eliminates some

* Fairly — requiring more programming
* Verifying outputs is deceptively
— One difficulty is getting the right

— we do not always know the
correct answer

— Flow calculations in a stream — the solution is an
approximation based on models and guesses; we don’t
know the correct answers !

— Probability of being in a particular state in a Petri net —
again, we don’t know the correct answer

ldentifying Correct Outputs
Direct Verification with Automatic (2)

* Consider a simple sort method
* Post-condition : Array is in sorted order

nput ENEIRAET
output [ENERENE
output ENEXAENIE

* Post-condition : Array sorted from lowest to highest and contains
all the elements from the input array

Input w

output EENETAETNE

* Post-condition : Array sorted from lowest to highest and is a
permutation of the input array

ldentifying Correct Outputs
Direct Verification with Automatic (3)

Input : Array A
Make copy B of A
Sort A
// Verify A is a permutation of B
Check A and B are of the same size
For each object in A
Check if object appears in A and B the same number of times
// Verify A is ordered
for each index i except the last in A
Check if A [i] <= A [i+1]

* Thisis almost as as the sort method under test !
* We can easily make in the verification methods

ldentifying Correct Outputs
Other Methods

 Redundant Computation
— Write — check that they produce the same answer

— Very !
* Consistency Checks

— Check part of the answer
— Check if a probability is negative

e Data redundancy

— Check for
— Testing sin (x) : sin(a+b) = sin(a)cos(b) + cos(a)sin(b)

* Choose a at random

e Set b=x-a

* Note failure independence of sin(x), sin(a)

* Repeat process as often as desired; choose different values for a

n”

ldentifying Correct Outputs

Consistency Checks

* Check part of the answer to see if it makes sense

 Checkifa is negative or larger than one

* Check assertions or invariants

— No duplicates
— Cost is greater than zero
— Internal consistency constraints in databases or objects

 These are only partial solutions

* Consistency Checks do not always apply, but are very
useful within those limits

Systematic-Approach Testing

Summary

e Give a testing object or system
— If has standards, choose some for your goal
— Build usage scenarios with FURPS + Safety + Security

* Give a testing software system
— Plan test it High level and Low level

* Test Strategic
— Unit Test & Module Test

— Integration Approach: bottom-up, Top-down, Sandwich
* Functional test (GUI based)

— If you have activity or state diagram, design with graph test
* Smoke Testing vs. Regression Testing

