
Confidential

The ideas contained in this publication are subject to use and disclosure restrictions as set forth in the license agreement.

Copyright

Copyright © 2003-2008, MuleSource, Inc. All rights reserved. No part of this publication may be copied or distributed,
transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or
by any means, electronic, mechanical, magnetic, manual, optical, chemical or otherwise; or disclosed to third parties
without the express written permission of MuleSource, Inc.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
MuleSource, Inc. The software described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the agreement.

In addition, MuleSource Inc makes no representation or warranties either express or implied, with respect to this manual
and accompanying software and specifically disclaim any implied warranties of merchantability or fitness for any
particular purpose. This manual and accompanying software are sold “as is” and MuleSource, Inc will in no event be liable
for direct, indirect, incidental or consequential damages resulting from any defect, error or failure to perform except as
expressly set forth in the license agreement.

Trademarks

All product names, other than Mule, are trademarks of their respective companies.

Part number: 16en_us2008.5.1

Mule Overview Guide 3

Table of Contents

 Preface . 5
Who Should Read This Guide? . 5
What’s the Fastest Way Through This Guide? . 5
Typographic Conventions . 6
Mule Technical Support . 6

Chapter 1
Introduction to Mule . 7

What is Mule? . 8
Understanding the Messaging Framework . 9
Understanding the Mule Architecture . 11

About SOA . 11
Processing the Data. 12
Routing Messages Between Service Components. 13
Separating Business Logic from Messaging 13
Wiring Everything Together . 15

Understanding the Logical Data Flow . 16
Integrating Mule into Your Environment . 19
Administering Mule . 21

Managing Your Deployments with Mule HQ 21
Controlling the Infrastructure with Mule Galaxy 22
Monitoring Mule Instances Using JMX . 23

Summary . 23

Chapter 2
Getting Started . 24

Installing Mule . 24
Distribution Types . 24
Installation Prerequisites . 25
Installing the Enterprise Edition . 26
Installing the Community Edition or Snapshot Release. 27

Setting Up Your Environment . 27

4 Mule Overview Guide

Table of Contents

Distribution Contents . 29
Running Mule . 30

Starting with the Examples . 30
Working with Configuration Files. 30
Using the Command Prompt . 30
Additional Setup for Community Edition Users 31
Testing the Installation . 32
Switching Between CXF and XFire . 32

Basic Usage . 33
Create a Service Component . 34
Configure the Service . 34
Configure the Mule Models . 35
Configure the Mule Manager . 35
Extend Mule . 35

Where Do I Go Next? . 36

Appendix A
What’s New in This Release. 37

New Features . 37
Premium JDBC Transport . 37
CXF Transport . 38
WebSphere MQ Transport . 38
Web Service Wrapper Component . 38

Changed Functionality. 39
Extended QA Certification . 39
Fixed Issues . 39

Known Issues . 40

Appendix B
Third-party Software. 41

 Glossary . 46

 Index . 52

Mule Overview Guide 5

Preface

The Mule Overview Guide introduces Mule and related products from MuleSource. It
provides the conceptual information and context that everyone from decision makers to
programmers need to get started with planning and implementing Mule.

Who Should Read This Guide?
This guide is intended for the following audiences:

Decision makers who need to evaluate and understand Mule
Architects who need to plan how they will implement Mule
Business analysts who will design the business processes supported by Mule
Developers who will customize and extend Mule
Integration developers who will integrate Mule with other applications
Administrators who will maintain and troubleshoot Mule

What’s the Fastest Way Through This Guide?
This section describes what you should read based on your role. Existing customers in all
roles should read Appendix A, “What’s New in This Release.”

Getting a Quick Start

If your role is... Read...

Decision maker such as CIO, Director of
Software Architecture, or IT manager

Chapter 1, “Introduction to Mule”
Appendix B, “Third-party Software”

Architect responsible for designing the
system

Chapter 1, “Introduction to Mule”
Chapter 2, “Getting Started”
Appendix B, “Third-party Software”

Typographic Conventions Preface

6 Mule Overview Guide

Typographic Conventions
The following table describes the typographic conventions used in the Mule
documentation:

Mule Technical Support
If you have a paid subscription to MuleSource, you can view the Mule knowledge base
and get assistance with Mule products at http://support.mulesource.com. For
information on purchasing a subscription, contact MuleSource by phone at
1-877-MULE-OSS or by email at info@mulesource.com.

Business analyst responsible for designing
the business processes

Chapter 1, “Introduction to Mule”
“Glossary” on page 46

Developer responsible for customizing or
extending Mule

Chapter 1, “Introduction to Mule”
Chapter 2, “Getting Started”

Integration developer responsible for
wiring everything together

Chapter 1, “Introduction to Mule”
Chapter 2, “Getting Started”

Administrator responsible for maintaining
Mule

“Administering Mule” on page 21

Getting a Quick Start (Continued)

If your role is... Read...

Typeface Meaning Example

AaBbCc123 Files and directory names, parameters,
command lines, and code examples.

Edit the information in
struts-config.xml

AaBbCc123 Placeholder text that you change. http://serverName/mule

AaBbCc123 A live link to a web site, email address,
or another section in the document

See page 6

AaBbCc123 The names of user interface controls,
menus, and menu items.

Choose File > Edit.

http://support.mulesource.com
mailto:info@mulesource.com

Mule Overview Guide 7

Chapter 1

Introduction to Mule

This chapter describes Mule, its architecture, and how it is useful to your enterprise. It
contains the following sections:

“What is Mule?” on page 8
“Understanding the Messaging Framework” on page 9
“Understanding the Mule Architecture” on page 11
“Understanding the Logical Data Flow” on page 16
“Integrating Mule into Your Environment” on page 19
“Administering Mule” on page 21
“Summary” on page 23

What is Mule? Chapter 1 Introduction to Mule

8 Mule Overview Guide

What is Mule?
Mule is a lightweight Java-based messaging framework that allows you to quickly and
easily connect your applications and enable them to exchange data. Mule uses a
service-oriented architecture (SOA), enabling easy integration of your existing systems.
Regardless of the different technologies the applications use, including JMS, Web
Services, JDBC, HTTP, and more, Mule seamlessly handles interactions among them all.

The Mule framework is highly scalable, allowing you to start small and connect more
applications over time. Mule manages all the interactions between applications and
components transparently, regardless of whether they exist in the same virtual machine or
over the Internet, and regardless of the underlying transport protocol used.

Mule is based on ideas from Enterprise Service Bus (ESB) architectures. The key advantage
of an ESB is that it allows different applications to communicate with each other by
acting as a transit system for carrying data between applications within your intranet or
across the Internet. There are currently several commercial ESB implementations on the
market. However, many of these provide limited functionality or are built on top of an
existing application server or messaging server, locking you into that specific vendor.
Mule is vendor-neutral, so different vendor implementations can plug in to it. You are
never locked in to a specific vendor when you use Mule.

Mule Overview Guide 9

Chapter 1 Introduction to Mule Understanding the Messaging Framework

Mule provides many advantages over competitors, including:

Mule components can be any type you want. You can easily integrate anything from a
“plain old Java object” (POJO) to a component from another framework.

Mule and the ESB model enable significant component reuse. Unlike other
frameworks, Mule allows you to use your existing components without any changes.
Components do not require any Mule-specific code to run in Mule, and there is no
programmatic API required. The business logic is kept completely separate from the
messaging logic.

Messages can be in any format from SOAP to binary image files. Mule does not force
any design constraints on the architect, such as XML messaging or WSDL service
contracts.

You can deploy Mule in a variety of topologies, not just ESB. Because it is lightweight
and embeddable, Mule can dramatically decrease time to market and increases
productivity for projects to provide secure, scalable applications that are adaptive to
change and can scale up or down as needed.

MuleSource also provides administration tools that allow you to manage your
deployments (Mule HQ), control your infrastructure (Mule Galaxy), and monitor Mule
instances using JMX. These tools are described in more detail in “Administering Mule”
on page 21.

The next section provides more detail on the messaging framework and how Mule
exchanges data among applications.

Understanding the Messaging Framework
The advantage of networking your applications is that one application can send data to
another application. However, many applications don't have the ability to read or process
data coming from another application. Mule solves this problem by providing a

Understanding the Messaging Framework Chapter 1 Introduction to Mule

10 Mule Overview Guide

messaging framework that reads, transforms, and sends data as messages between
applications. A message is simply a packet of data that can be handled and sent between
applications on a specific channel (also called a queue).

At the simplest level, when you connect applications to Mule, it reads data from one
application, transforms it as needed so it can be read by the target application, and sends
it to that application. This allows you to integrate all types of applications, even those
that were not built to be integrated.

Mule is a messaging framework based on ideas from Enterprise Service Bus (ESB)
architectures. The key advantage of an ESB is that it allows different applications to
communicate with each other by acting as a transit system for carrying data between
applications within your intranet or across the Internet. The heart of the system is the
message bus, which routes messages between applications.

One difference between Mule and a traditional ESB is that Mule only converts data as
needed. With a typical ESB, you have to create an adapter for every application you
connect to the bus and convert the application’s data into a single common messaging
format. The development of these adapters and the time required to process every
message requires a lot of time and effort. Mule eliminates the need for a single message
format. The information is sent on any communication channel, such as HTTP or JMS,
and is translated only as needed along the way. Therefore, Mule increases performance
and reduces development time over a traditional ESB.

The Mule architecture and terminology use the principles described in the book
Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions by
Gregor Hohpe and Bobby Woolf. This book is highly recommended reading for anyone
involved in working with enterprise messaging solutions. For more information, see
http://www.enterpriseintegrationpatterns.com.

Message

Data
Application 1 Application 2

Channel

http://www.enterpriseintegrationpatterns.com

Mule Overview Guide 11

Chapter 1 Introduction to Mule Understanding the Mule Architecture

Understanding the Mule Architecture
This section describes the different parts of the Mule architecture and how they handle
messages and their data. For the sake of illustration, it uses the example of a company
that needs to generate invoices for customer orders, perform some processing on those
invoices, and then send them to the shipping department for order fulfillment.

About SOA

Mule is based on the concept of a service-oriented architecture (SOA). The SOA approach
to development allows IT organizations to create applications by bringing together
components of application functionality, or services. Services are discrete sets of
functionality that are completely separate from each other but can work together on the
same objects. For example, if you need to process invoices, you might have one service
that merges customer data from a database into the invoice and another service that
checks the inventory database to see if the items on the invoice are in stock.

Because each service stands alone, services can be used as building blocks for multiple
processes and do not have to be recreated for each type of process or message. For
example, the service that merges customer data onto the invoice could also be used to
merge customer data onto statements, letters, or other documents. This modular
approach allows you to create functionality once and re-use it as many times as needed,
streamlining development.

Using SOA, businesses can realize dramatic savings on development costs and can rapidly
adapt to changing business conditions by reusing and reconfiguring existing services in
developing new applications. SOA also enables better integration of enterprise IT
resources, including previously isolated application silos and legacy systems. Mule fully
supports the SOA approach and orchestrates communication among the services,
allowing you to easily tie all these applications together.

Message

Invoice

Message

Updated
Invoice

Order Entry
Application

Order
Fulfillment
Application

Process Invoice

Understanding the Mule Architecture Chapter 1 Introduction to Mule

12 Mule Overview Guide

Processing the Data

When a message is sent from an application (such as the invoice from an order entry
system), Mule picks up the message, sends it to a service that processes it using some
specific business logic (such as checking the customer and inventory databases), and then
routes it to the correct application (such as the order fulfillment system). Mule contains
many individual parts that handle the processing and routing of the message. The key
part of the service is the service component. The service component executes business logic
on messages, such as reading the invoice object, adding information to it from the
customer database, and then forwarding it to the order fulfillment application.

An important feature of the service component is that it doesn’t have to have any
Mule-specific code; it can simply be a POJO, Spring bean, Java bean, or web service
containing the business logic for processing data in a specific way. Mule manages the
service component, bundles it with configuration settings and exposes it as a service, and
ensures that the right information is passed to and from it based on the settings you
specified for the service in the Mule configuration file.

You can have many different service components that perform different business logic,
such as one that verifies whether the items on the invoice are in stock and one that
updates a separate customer database with the order history. The invoice, which is
encapsulated in a message, can flow from one service component to the next until all the
required processing is complete.

Customer Data
Service

Component

Message

Invoice

Customer Database

Message

Updated
Invoice

Service

Configuration
Settings

Order Entry
Application

Order
Fulfillment
Application

Mule Overview Guide 13

Chapter 1 Introduction to Mule Understanding the Mule Architecture

Routing Messages Between Service Components

As stated previously, the service component contains business logic for processing the
data in the message. It does not contain any information about how to receive or send
messages themselves. To ensure that the service component receives the right messages
and routes them properly after processing, you specify an inbound router and an outbound
router for the component’s wrapping service when you are configuring Mule.

Inbound routers specify which messages the service component will process. They can
filter incoming messages, aggregate them, and resequence them before routing them to a
service component. For example, if a service component subscribes to an RSS feed, the
inbound router could filter which messages it receives from that feed.

After a service component has processed a message, the outbound router specifies where
to dispatch the message. For example, it might route invoices for in-state addresses to one
shipping department and route all other invoices to another shipping department. You
can define multiple inbound and outbound routing constraints and even chain routers
together so that a service component receives and routes messages exactly as required.

Separating Business Logic from Messaging

One of the many advantages of Mule is that it can handle messages that are sent via a
variety of protocols. For example, an invoice might always be in XML format, but it
might arrive over HTTP in one situation and as a JMS message in another depending on

Domestic
Order

Fulfillment
Application

Message

Updated
Invoice

Message

Updated
Invoice

Inbound Router Outbound Router

Customer Data
Service

Component

Outbound Router

Inbound Router

International
Order

Fulfillment
Application

Inbound Router

Understanding the Mule Architecture Chapter 1 Introduction to Mule

14 Mule Overview Guide

which application created the invoice. If the service component handles only business
logic and works with the data, not the message itself, how does it know how to read the
various formats in which the message might arrive?

The answer is that service components don’t know how to read the messages, because by
default, service components are completely shielded from the message format.
Instead, a transport carries the message along, and transformers change the message’s
payload (such as the invoice) as needed to a format the service component can read
before the router passes the message to the service component. For example, if an XML
invoice is sent over HTTP, the HTTP transport carries the message along, routers direct
the message to each service component that needs to process it, and transformers change
the invoice along the way (such as from XML to a Java object) as required by each service
component. All the transporting, transforming, and routing of the message are
completely transparent to the service component.

Transformers are the key to exchanging data, as they allow Mule to convert the data to a
format that another component or application can understand. Most importantly, data is
transformed only as needed. Instead of converting every message to a single common
messaging format, messages and their data are transformed only as needed for the target
component or application where the message is being sent. Lastly, you can use multiple
types of transports to handle different channels, such as sending the message over HTTP
and then forwarding it as a JMS message after it has been processed by the Customer
Data service component.

HTTP Transport

Inbound Router Outbound Router

Message
JMS Transport

Service

XML to
Java Object
Transformer

Customer Data
Service

Component

Message

Mule Overview Guide 15

Chapter 1 Introduction to Mule Understanding the Mule Architecture

The separation of the business logic from the sending and transformation of messages
allows for great flexibility in how you set up your architecture and makes it much simpler
to customize the business logic without having to worry about the various formats in
which a message might arrive. Your service component can work with the raw data of the
message if desired, but it is not required.

Wiring Everything Together

Endpoints are configuration elements that are the key to wiring together all the services.
You specify endpoints in the inbound and outbound routers to tell Mule which transport
to use, where to send messages, and which messages a service component should receive.
The primary part of an endpoint is the address, expressed as a uniform resource indicator
(URI), which indicates the transport to use, the location (a transport-specific resource),
and any additional parameters.

For example, if a service’s inbound router specifies the endpoint
http://myfirm.com/mule, the HTTP transport will dispatch to that service any
messages that have been sent to that URL. If the inbound router specifies
file://myserver/files/, the File transport, which is watching that directory,
dispatches any new files created in that directory to the service. The endpoint you specify
on the outbound router indicates where the message will go next—it goes to the service
with the same inbound endpoint as the previous component’s outbound endpoint, as
shown in the following illustration.

HTTP Transport

Outbound Router

Message sent to http://
myfirm.com/mule

JMS messageJMS Transport

Inbound Router

Endpoint:
jms://myqueue

Endpoint:
jms://myqueue

Service Service

Customer Data
Service

Component

Order
Fulfillment

Service
Component

Inbound Router

Endpoint: http://
myfirm.com/mule

HTTP message

Understanding the Logical Data Flow Chapter 1 Introduction to Mule

16 Mule Overview Guide

A service can receive messages using different transports. For each type of transport that a
service will use, you must specify one or more separate endpoints. For example, if you
want one of your services to handle messages coming in on both the HTTP and JMS
channels, you would specify at least one HTTP endpoint and at least one JMS endpoint
in the inbound router for that service. Mule registers these endpoints with the service,
and the transport uses this registry information at runtime to configure itself and
determine where to send and receive messages.

The router or endpoint can include filters that further specify which messages to send or
receive. For example, you can specify that the service component only receives RSS
messages by a specific author. Specifying routers and endpoints for your services simply
requires editing an XML file. You do not have to write any Java code. As stated
previously, your service components code remains completely separate from messaging
and routing, which you handle through Mule configuration.

In summary, Mule provides a simple and lightweight way to write service components
that do something to data without needing to worry about the sender or recipient of the
data, the format of the data, or the technology being used to send/receive the data.
Although many brokering and integration technologies offer the ability to connect to
disparate data sources, they often require extra coding to get messages to behave the way
you want and to deliver the data where you want it to go. Mule allows you to quickly
develop service components and then change the way they behave through simple XML
configuration instead of writing Java code.

Understanding the Logical Data Flow
The previous sections introduced each of the parts of the Mule instance from a
conceptual view point. Now, using the invoice example again, let’s take a look at how
data flows logically through each part of a Mule instance. Throughout the process, Mule
uses the Mule configuration file to determine which components, routers, transports, and
transformers to use along the way. The diagram that follows illustrates these steps.

1 The customer places an order on the company web site, and an invoice is created as an
XML form and submitted to http://myfirm.com/orders.

2 The HTTP transport receives the message. The Customer Data service’s inbound
endpoint is set to http://myfirm.com/orders, and its inbound router specifies that
the message must contain a Java object, so the HTTP transport prepares to transform
and dispatch the message to the service.

3 The XML to Object transformer converts the XML invoice into a Java object.

Mule Overview Guide 17

Chapter 1 Introduction to Mule Understanding the Logical Data Flow

4 The transport passes the message to the Customer Data service .

5 The Customer Data service component queries the master customer database to pull
additional data about the customer and updates the invoice with the data.

6 The HTTP transport uses the outbound router configuration to determine that it
must now dispatch the message to http://myfirm.com/verify.

7 The HTTP transport uses the inbound router configuration of the Inventory
Verification service to receive the message and pass it to the service component.

8 The service component updates the invoice with an ID code of the warehouse that
has all the items on the invoice in stock.

9 The outbound endpoint specifies a JMS address, so the JMS transport dispatches the
message to the order fulfillment application, which picks up orders on that address.

Understanding the Logical Data Flow Chapter 1 Introduction to Mule

18 Mule Overview Guide

HTTP Transport

Inbound Router Outbound Router

Sends messages to
http://myfirm.com/orders JMS message

http://
myfirm.com/

orders

HTTP Transport

Outbound Router

jms://myqueue

http://
myfirm.com/

verify

Customer Data Service

Customer Data
Service

Component

Inventory
Verification

Service
Component

XML to
Java Object
Transformer

1 2

3

4

Data
5

XML

POJO

6

http://
myfirm.com/

verify

Inbound Router

Order Entry

Order Fulfillment

JMS Transport Inventory Verification Service

7

POJO includes
warehouse ID

8
9

Receives messages on
jms://myqueue

POJO w/customer data

Mule Overview Guide 19

Chapter 1 Introduction to Mule Integrating Mule into Your Environment

Integrating Mule into Your Environment
As mentioned at the beginning of this chapter, Mule is based on ideas from the ESB
architecture. The messaging backbone of the ESB is usually implemented using JMS, but
any other message server implementation could be used, such as MSMQ, IBM
WebSphere MQ (and earlier versions know as MQSeries), or TIBCO Rendezvous.
Additionally, there are no strict rules on how your integration service layer should behave
when using Mule. You can connect EJB, mainframe applications, messaging, web
services, sockets, and file systems and interact with them all in simple consistent way.

Mule also supports other topologies beyond ESB, including pipeline, peer network,
client/server, hub-and-spoke, and more. These topologies can be mixed and matched in
an enterprise service network to model complex enterprise messaging and service
requirements, as shown in the following illustration.

When integrating with Mule, you can start with just a few applications and connect more
applications to Mule over time. For example, one Mule customer started by integrating
six systems. Three years later, they had a total of 71 systems connected using Mule. Mule
allows you to start as small as needed and easily scale over time.

Integrating Mule into Your Environment Chapter 1 Introduction to Mule

20 Mule Overview Guide

You can have multiple instances of Mule distributed across your network, as shown in the
following illustration. This approach is useful for failover (if one Mule instance becomes
unavailable because the server stops, another Mule instance can take over its messages) as
well as for load-balancing (you can send some messages to one instance and other
messages to another instance to balance the load).

You can deploy each instance of Mule as a stand-alone application, in a web container
(such as Apache Tomcat), or in an application server. You can use proprietary J2EE
application servers such as BEA WebLogic, IBM WebSphere, Oracle Application Server,
and SunOne, as well as in open source products like Geronimo or JBoss.

Designing your system is both an art and a science. It must be done correctly to ensure
scalability. MuleSource Professional Services can help you by reviewing your architecture,
designing components, or doing the full implementation for you. For more information,
contact your MuleSource Professional Services representative.

Mule Overview Guide 21

Chapter 1 Introduction to Mule Administering Mule

Administering Mule
MuleSource provides additional tools for monitoring and managing your Mule
deployment, as shown in the following illustration. This section describes these tools and
how they can help you administer Mule.

Managing Your Deployments with Mule HQ

Mule HQ provides a centralized way to manage all of your Mule deployments as well as
all of the disparate systems and services in your SOA infrastructure. For example, a
typical stack that Mule HQ monitors might include Redhat Enterprise Linux, MySQL,
JBoss Application Server, OpenMQ, and Mule. Mule HQ provides integrated log,
configuration, and server event tracking. It can detect Mule servers and associated
software and hardware, and report real-time and historical details of events. If you need

Administering Mule Chapter 1 Introduction to Mule

22 Mule Overview Guide

to debug a problem with your deployment, you can turn on the Profiler and view the
details of memory consumption at the message level. Mule HQ is available with Mule
Enterprise Edition.

Controlling the Infrastructure with Mule Galaxy

Mule Galaxy helps you get control over your infrastructure by providing the following
features:

Governance: provides a centralized control point for policy management and
compliance, ensuring that your SOA adheres to your firm’s policies.

Registry: automatically detects and displays dependencies among services and
manages service lifecycles.

Mule Overview Guide 23

Chapter 1 Introduction to Mule Summary

Repository: stores and manages artifacts (including Mule configuration files, web
services frameworks, and any other artifact), providing version management and
collaborative comments, and allows you to publish the artifacts in a web browser
using the Atom Publishing Protocol.

Mule Galaxy can be deployed either alongside Mule or as a standalone component in an
enterprise’s SOA infrastructure. Mule Galaxy is available with Mule Enterprise Edition.

Monitoring Mule Instances Using JMX

JMX is a simple and standard way to manage applications, devices, services, and other
resources. JMX is dynamic, so you can use it to monitor and manage resources as they are
created, installed, and implemented. You can also use JMX to monitor and manage the
Java Virtual Machine (JVM). The JMX agent is useful for integrating Tivoli or HP
OpenView with Mule.

The Mule JMX agent is available with both Mule Community Edition and Mule
Enterprise Edition.

Summary
Mule provides a messaging framework that enables exchange of data among applications.
The application functionality is wrapped as a service, which includes a service
component (the business logic that processes the data), routers (which use endpoints to
specify where to send the message), and other configuration settings. Transports carry the
messages on different channels from service to service, and transformers convert the
messages and data as needed along the way.

Mule is not a replacement for existing application frameworks. Instead, Mule leverages
many open source projects such as Apache CXF, Spring, and ActiveMQ and fills a void in
enterprise Java development where an application requires complex interactions with a
variety of systems on a variety of platforms. Mule makes light work of wiring systems
together in a robust, decoupled environment with little to no code and provides the
necessary support to route, transport, and transform data to and from these systems.

This chapter provided an introduction to the Mule architecture. Now, read Chapter
2, “Getting Started,” for more detailed information on how to download, install, and
get started using Mule.

Mule Overview Guide 24

Chapter 2

Getting Started

This chapter describes how to get started using Mule. For full details, see the Mule User
Guide at: http://mule.mulesource.org/display/MULEUSER/Home

This chapter contains the following sections:

“Installing Mule” on page 24
“Setting Up Your Environment” on page 27
“Distribution Contents” on page 29
“Running Mule” on page 30
“Basic Usage” on page 33
“Where Do I Go Next?” on page 36

Installing Mule
This section describes how to download and install the three types of Mule distributions.

Distribution Types

There are three types of Mule distributions. The distribution you choose depends on
your business needs and current phase of development.

MuleSource supported release (Enterprise Edition): the latest, fully tested release of
Mule created by MuleSource that includes premium features not found in the
Community Edition. The Enterprise Edition provides access to technical support,
maintenance patches, and the MuleSource knowledge base and is suitable for
development, pre-production, and production environments alike. To download the
Enterprise Edition, go to http://www.mulesource.com/download/ee/

http://mule.mulesource.org/display/MULEUSER/Home
http://www.mulesource.com/download/ee/

Mule Overview Guide 25

Chapter 2 Getting Started Installing Mule

Latest stable community release: the latest stable release of the Community Edition
of Mule. This distribution is best for development or pre-production environments.
(The Enterprise Edition is the best choice for production environments.) To
download the community release, go to
http://mule.mulesource.org/display/MULE/Download

Snapshot release: the latest Mule distribution built against the very latest code base
(“the bleeding edge”). Snapshot releases may be unstable, so they are intended for
development environments only, not for production environments. Additionally,
snapshot releases do not include any documentation. To download a snapshot release,
go to http://mule.mulesource.org/display/MULE/Download

For the Community Edition and snapshot releases, you can also download the source
code and build Mule yourself. For complete information, go to
http://mule.mulesource.org/display/MULECDEV/Developers+Guide, which
explains how to check out the Mule source code from Subversion and build Mule.

Installation Prerequisites

Following are the prerequisites you must meet before you can install Mule.

Supported Operating Systems

Mule will run on any platform that supports Java, including:

Windows XP SP2 and Windows 2000
Linux, Solaris, AIX, and HP-UX
Mac OSX

For Mule Enterprise Edition, MuleSource Quality Assurance has certified the following
platforms for Version 1.6:

Operating Systems Red Hat Enterprise Linux 4.0 and Windows 2003 Server

Messaging ActiveMQ 4.1 and WebSphere MQ Series 6.0.1

Databases Derby and Oracle 10g 10.2.2.1.0

http://mule.mulesource.org/display/MULE/Download
http://mule.mulesource.org/display/MULECDEV/Developers+Guide
http://mule.mulesource.org/display/MULE/Download

Installing Mule Chapter 2 Getting Started

26 Mule Overview Guide

Software and Environment Setup

Before you can install Mule, you must have the following software installed and
environment settings configured:

Java Developer Kit (JDK) 1.5 or later. Note that JDK 1.4.x will work if you are not
using CXF or building Mule from the source code, but JDK 1.5.x is highly
recommended.

The JAVA_HOME environment variable must be set to the directory where the JDK
is installed.

Your PATH environment variable must contain the path to the JDK bin directory.

Ant is required if you will run any of the Ant configuration scripts.

Maven 2.0 is required for building from the source code and running some of the
examples. To download Maven, go to http://maven.apache.org/download.html

If you download one of the compressed distributions, you will need a compression
tool such as WinZip (Windows) or GZip (Linux/Unix) to decompress the ZIP or
TAR file.

Installing the Enterprise Edition

This section describes installation of the Enterprise Edition release on Windows or
Linux/Unix. The Enterprise Edition includes a graphical installer that walks you through
the installation process.

1 If you are running Unix, double-click the JAR file to start the installer. If you are
running Windows and do not have Java associated with JAR files by default, open a
command prompt, navigate to the directory where you downloaded the JAR file, and
then enter the following command:

java -jar mule-1.6.1-ee-installer.jar

2 Follow the instructions in the installer to install Mule.

Note If you are running Windows, the target installation path you specify during the
installation must not contain any spaces (for example, you cannot use
C:\Program Files). A good workaround is to create a root directory called Mule (for
example, C:\Mule).

Note These
instructions are for
the Enterprise
Edition only. For the
Community Edition
or snapshot releases,
skip to the next
section.

http://maven.apache.org/download.html

Mule Overview Guide 27

Chapter 2 Getting Started Setting Up Your Environment

Installing the Community Edition or Snapshot Release

This section describes installation of the Community Edition or snapshot release on
Windows or Linux/Unix.

1 If you have a previous release already installed, you should delete the directory where
it is installed before installing the later release.

2 Go to the Mule download page at:
http://mule.mulesource.org/display/MULE/Download

3 Click the link next to the release you want to download. Use the .zip links for
installing on Windows and the .tar.gz links for installing on Linux/Unix. The latest
releases are at the top of the page.

4 On Linux/Unix, if you prefer to download through a shell instead of a browser or
need to download to a remote computer without X-Windows, you can download the
distribution using your download tool. For example to download the Mule 2.0.1
snapshot using wget, you would enter the following command all on one line:

wget http://snapshots.dist.codehaus.org/mule/org/mule/distributions
/mule-full/2.0.1-SNAPSHOT/mule-full-2.0.1-SNAPSHOT.tar.gz

5 After the distribution is downloaded, extract the files from it into a directory of your
choice, such as c:\java on Windows or /usr/local on Linux/Unix. For example, on
Linux/Unix, you would switch to the /usr/local directory, and then enter a
command like this to extract the files:

tar -xvzf mule-full-2.0.1-SNAPSHOT.tar.gz

Setting Up Your Environment
Before you can use Mule, you must create the MULE_HOME environment variable and set it
to the location of your Mule installation. (Throughout the Mule documentation, this
directory is referred to as MULE_HOME). You must also add the location of your
MULE_HOME/bin directory to your path. If you are using Windows, you can use the
System utility in the Control Panel to add the MULE_HOME variable and edit your path.
Alternatively, you can use the export or set commands (depending on your operating
system) at the command prompt, as shown in the following examples:

http://mule.mulesource.org/display/MULE/Download

Setting Up Your Environment Chapter 2 Getting Started

28 Mule Overview Guide

Linux / Unix

export MULE_HOME=/opt/mule
export PATH=$PATH:$MULE_HOME/bin

Windows

set MULE_HOME=C:\Mule
set PATH=%PATH%;%MULE_HOME%\bin

Mule Overview Guide 29

Chapter 2 Getting Started Distribution Contents

Distribution Contents
The Mule distribution contains the following directories and files:

/bin Shell and batch scripts for controlling Mule from the command
line

/conf Configuration files

/docs API documentation (Javadoc) for Mule and its sub-projects

/examples Example applications you can run and try building yourself

/lib/boot Libraries used by the Java Service Wrapper to boot the server

/lib/cxf_undeployed (Mule Enterprise Edition only) CXF JAR files. This directory is
renamed to /lib/cxf when you use CXF instead of XFire (see
“Switching Between CXF and XFire” on page 32)

/lib/endorsed Endorsed Java libraries used by Mule

/lib/mule Mule libraries

/lib/native/visualizer Libraries for the visualizer tool

/lib/opt Third-party libraries

/lib/user Your custom classes and libraries. This directory comes before
/lib/mule on the classpath and can therefore be used to patch
the distributed Mule classes if necessary.

/licences License information for all libraries shipped with Mule

/logs Log file output when running in background mode

/sbin Internal scripts (not to be run by the user)

/src The source code for all Mule modules. You can import this into
your IDE

LICENSE.txt License agreement for Mule

README.txt or
README.pdf

The Getting Started document

Running Mule Chapter 2 Getting Started

30 Mule Overview Guide

Running Mule
Now that you have installed and configured Mule, you are ready to get started! This
section describes the basics of how to run Mule.

Starting with the Examples

To run Mule, you must specify a configuration file to use. Typically, this is an XML file
called mule-config.xml. The examples directory provides you with several examples of
Mule applications including their configuration files, which you can use as the starting
point for creating your configuration file. For more information, see
http://mule.mulesource.org/display/MULEINTRO/Examples.

Working with Configuration Files

If needed, you can specify more than one configuration file in a comma-separated list.
This approach is useful for splitting up your Mule configuration to make it more
manageable. All configuration files must be on the classpath prior to startup. A
convenient way to achieve this is by placing them in the /conf or /lib/user directory.

Alternatively, you can specify an explicit path to their location on the file system. If you
make changes to a configuration file, you must restart Mule for the changes to take effect.

Using the Command Prompt

To run Mule, you enter the following command at the command prompt:

mule [-config your-config.xml]

where your-config.xml is the Mule configuration file you want to use. This command
runs Mule in the foreground. To stop Mule, enter: Ctrl-C.

To run Mule in the background as a daemon, enter the following command instead,
using start, stop, or restart as the first parameter as needed:

mule start|stop|restart [-config <your-config.xml>]

For more information on running Mule, see
http://www.mulesource.org/display/MULEINTRO/Starting+the+Server.

http://mule.mulesource.org/display/MULEINTRO/Examples
http://www.mulesource.org/display/MULEINTRO/Starting+the+Server

Mule Overview Guide 31

Chapter 2 Getting Started Running Mule

Additional Setup for Community Edition Users

If you are running Mule Community Edition, you take a few extra steps before you can
use Mule.

License Display and Acceptance

When you start Mule for the first time, the MuleSource Public License is displayed page
by page. To advance a page, press Enter. At the end of the license display, type y to accept
the license file and proceed with startup.

Third-party JAR Download

When you start Mule, it will download some additional third-party JAR files required for
various components. This step occurs because of distribution restrictions on these JARs.
If you are behind a firewall, you may need to configure your HTTP proxy settings in the
file MULE_HOME/conf/wrapper.conf for this download to work.

Currently, Mule downloads the following libraries:

These JARs are downloaded to the MULE_HOME/lib/user or MULE_BASE/lib/user
directory. You can also download these files manually and copy them to this directory,
but be sure to place them there before starting Mule. If Mule is already running, you
must restart Mule after adding any classes and libraries to this directory.

Switching Between CXF and XFire

By default, Mule installs XFire, but the Enterprise Edition of Mule also includes CXF.
When you run the installer, you can select to install CXF instead of XFire. After installing
CXF, if you want to switch to XFire, you must run the following command at the
commmand line:

ant -f <MULE_HOME>/bin/build_cxf.xml cxf_undeploy

Downloaded JAR: Renamed To:

activation-1.1.jar activation.jar

mail-1.4.jar mail.jar

Basic Usage Chapter 2 Getting Started

32 Mule Overview Guide

If you installed XFire but want to switch to CXF, use the following command:

ant -f <MULE_HOME>/bin/build_cxf.xml cxf_deploy

Basic Usage
When you look at how a message flows through Mule, you can see that there are three
layers in the architecture: the application layer, the integration layer, and the transport
layer.

Likewise, there are three general types of tasks you can perform to configure and
customize your Mule deployment:

Service component development: developing POJOs, services, or beans that contain
the business logic and will be used as service components in a Mule deployment.

Integration: developing routers, transformers, and filters, and configuring everything
in the Mule configuration file.

Extending Mule: developing new transports, connectors, and other modules used by
Mule.

HTTP Transport

Inbound Router Outbound Router

Message Message

JMS Transport

Service

HTTP Channel JMS Channel

XML to
Java Object
Transformer

Customer Data
Service

Component
Application
Layer

Integration
Layer

Transport
Layer

Mule Overview Guide 33

Chapter 2 Getting Started Basic Usage

This section provides a high-level overview of the steps you take to perform these tasks.

Create a Service Component

A service component is a class, web service, or other application that contains the
business logic you want to plug in to the Mule framework. You can use any existing
application, or create a new one. Your service component does not need to contain any
Mule-specific code. All the Mule-specific instructions will be configured for the service
that wraps the service component.

To assist development, you can use the Mule IDE, an Eclipse plug-in that provides an
integrated development environment for developing Mule applications. You can
download the Mule IDE from the MuleForge at:
http://www.mulesource.org/display/IDE/Home

If you want more advanced information on writing service components, see:
http://mule.mulesource.org/display/MULEUSER/Writing+Components

Configure the Service

You create a service definition in the Mule configuration file that points to the service
component, routers, filters, and transformers. It also specifies the endpoint on which this
service will receive messages and the outbound endpoint where messages will go next. For
more information, see:
http://mule.mulesource.org/display/MULEUSER/Configuring+Components

Following is more information on configuring routers, filters, and transformers for the
service.

Routers

Inbound routers specify how messages are routed to a service, and outbound routers
specify how messages are routed after the service has finished processing them. There are
several default routers that come with Mule that you can use, or you can create your own
routers. For more information, see:
http://mule.mulesource.org/display/MULEUSER/Message+Routers

http://www.mulesource.org/display/IDE/Home
http://mule.mulesource.org/display/MULEUSER/Writing+Components
http://mule.mulesource.org/display/MULEUSER/Configuring+Components
http://mule.mulesource.org/display/MULEUSER/Message+Routers

Basic Usage Chapter 2 Getting Started

34 Mule Overview Guide

Filters

Filters specify conditions that must be met for a message to be routed to a service. There
are several default filters that come with Mule that you can use, or you can create your
own filters. For more information, see:
http://mule.mulesource.org/display/MULEUSER/Filters

Transformers

Transformers convert incoming payload data to the type required by the service
component. After the service has finished processing the message, they can also convert
the message to a different type as needed by the outbound transport. There are several
default transformers you can use, or create your own. For more information, see:
http://mule.mulesource.org/display/MULEUSER/Transformers

Configure the Mule Models

Each Mule instance has one ore more Mule models. A Mule model acts as a container for
a set of services and applies the same configuration defaults to them at runtime. You
configure options like threading, pooling, and the exception strategy at the model level,
which then applies those settings to all the services in the model. For more information,
see: http://mule.mulesource.org/display/MULEUSER/Models

Configure the Mule Manager

Each Mule instance has one Mule Manager. The Mule Manager acts as a runtime registry
of all the Mule components, including models, agents, connectors, endpoints, and
transformers. You configure the server URL for the Mule instance, the working directory
where it writes temporary files, and more. For more information, see:
http://mule.mulesource.org/display/MULEUSER/Configuration+Options

Extend Mule

Mule provides transports for many different channels, including File, FTP, HTTP, JMS,
JDBC, Quartz, and many more. There are also community-created transports on
MuleForge (http://muleforge.org/). If you need to send messages on a channel other
than those provided, you can create a new transport. You can also create a custom

http://mule.mulesource.org/display/MULEUSER/Models
http://mule.mulesource.org/display/MULEUSER/Configuration+Options
http://mule.mulesource.org/display/MULEUSER/Filters
http://mule.mulesource.org/display/MULEUSER/Transformers
http://muleforge.org/

Mule Overview Guide 35

Chapter 2 Getting Started Where Do I Go Next?

connector for a transport. A connector is the Java class in the transport that contains the
actual logic for sending and receiving messages on that channel. For more information,
see: http://mule.mulesource.org/display/MULEUSER/Transports+Guide

For information on using the Mule project wizard to create new Mule projects
(transports and other types of modules), see:
http://mule.mulesource.org/display/MULEUSER/Mule+Project+Wizard

Where Do I Go Next?
This document has provided a brief overview of getting started with Mule. Following is
information about where to go next.

For complete information on using Mule, go to the Mule User Guide at:
http://www.mulesource.org/display/MULEUSER/Home

If you need assistance and are a Mule Enterprise customer, see the support page at:
http://www.mulesource.org/display/MULE/Support

If you are evaluating Mule and want to find out about subscription options, you can
submit a request for MuleSource to contact you by going to
http://www.mulesource.com/buynow/, or call us at 877-MULE-OSS.

All Mule users can subscribe to the Mule mailing lists. You can find these lists at:
http://mule.mulesource.org/display/MULE/Mailing+Lists

If you experience problems with the Mule software or documentation, please log an
issue in the MuleSource issue-tracking system, located at:
http://mule.mulesource.org/jira/browse/MULE

http://mule.mulesource.org/display/MULEUSER/Transports+Guide
http://mule.mulesource.org/display/MULEUSER/Mule+Project+Wizard
http://www.mulesource.org/display/MULEUSER/Home
http://www.mulesource.org/display/MULE/Support
http://www.mulesource.com/buynow/
http://mule.mulesource.org/display/MULE/Mailing+Lists
http://mule.mulesource.org/jira/browse/MULE

Mule Overview Guide 37

Appendix A

What’s New in This Release

Mule Enterprise Version 1.6 includes Mule 1.6.2 and Mule HQ 3.1.2.1. This chapter
describes the new and changed functionality in this release, as well as any known issues.

New Features
This section describes the new features in this release.

Premium JDBC Transport

The Mule Enterprise JDBC Transport provides key functionality, performance
improvements, transformers, and examples that are not available in the Mule
Community edition, including the following:

Large dataset retrieval: Support for retrieving large datasets in smaller batches

Batch insert/update/delete statements: support for JDBC batch
inserts/updates/deletes, so that many statements can be executed together

Advanced JDBC-related transformers: easily convert to and from datasets in XML
and CSV formats

Inbound and outbound SELECT queries: retrieve records using a SQL SELECT
statement configured on inbound and outbound endpoints. Supports synchronous
queries with dynamic runtime parameters.

Stored procedure support: invoke stored procedures, including IN and OUT
parameter support

For more information, see
http://www.mulesource.org/display/MULEUSER/Mule+Enterprise+JDBC+Trans
port.

http://www.mulesource.org/display/MULEUSER/Mule+Enterprise+JDBC+Transport
http://www.mulesource.org/display/MULEUSER/Mule+Enterprise+JDBC+Transport

New Features Appendix A What’s New in This Release

38 Mule Overview Guide

CXF Transport

The Mule CXF transport has been incorporated from the Community edition of Mule
and includes the following enhancements:

Support for MTOM binary attachments

Updated the Mule examples with CXF, and added a book store example that
demonstrates how to send and receive complex objects in Mule using CXF

Updated documentation

Support for multiple non-synchronous requests

This version of the CXF transport is also available on the MuleForge as CXF transport
Version 1.0. For more information on the CXF transport, see:
http://www.mulesource.org/display/MULEUSER/Mule+CXF+Transport.

WebSphere MQ Transport

The Mule® Transport for IBM® WebSphere® MQ (Mule WMQ transport) provides
bi-directional asynchronous request-reply messaging between IBM WebSphere MQ and
Mule JMS using native MQ. It includes the following features:

Support for mapping JMS messages onto WebSphere MQ messages

Support for WebSphere MQ local and remote point-to-point queue connections

Support for the WebSphere MQ request/reply message relationship

Default Mule channel exit

For more information, see:
http://www.mulesource.org/display/MULEUSER/Mule+WMQ+Transport

Web Service Wrapper Component

The new class org.mule.providers.soap.components.WebServiceWrapperComponent
allows you to send the result of a web service call to another endpoint. The web service
call is performed within the WebServiceWrapperComponent, providing the following
advantages:

You can set any type of router on inbound and outbound.

Unlike the chaining router, it can send more than one HTTP request at a time

http://www.muleforge.org/
http://www.mulesource.org/display/MULEUSER/Mule+CXF+Transport
http://www.mulesource.org/display/MULEUSER/Mule+WMQ+Transport

Mule Overview Guide 39

Appendix A What’s New in This Release Changed Functionality

The URL for the web service call can be changed at run-time by sending the URL
with the message

For more information, see
http://www.mulesource.org/display/MULEUSER/Web+Service+Wrapper

Changed Functionality
This section describes the functionality in this release that has changed from a previous
version.

Extended QA Certification

The MuleSource Quality Assurance team has extended its certification of Mule, ensuring
that the product is of greater quality than ever before.

Fixed Issues

Mule Enterprise Version 1.6 includes over 200 new features and fixes developed on Mule
Community Edition Version 1.4.4. Following is a list of the important issues that have
been fixed in Version 1.6:

MuleHQ did not recognize Mule entries in versions later than 1.4

With the WebSphere MQ JMS connector, if the queue manager stopped and
restarted, the message receiver would not see the messages in the queue

The previous JMS message receiver left some messages uncommitted on the source
JMS server during high traffic. Mule 1.6 now provides
MultiConsumerJmsMessageReceiver, a faster, multi-threaded JMS message receiver
for non-transacted and single-resource transacted connections.

Some messages were getting stuck in queues

Persistent queues did not work. When queues were persisted and global endpoints
were used, the connector parameter had to be specified or an error occurred.

The default JMS transformer did not transform stream messages

MuleWorkManager would stop after JMS reconnection

http://www.mulesource.org/display/MULEUSER/Web+Service+Wrapper

Known Issues Appendix A What’s New in This Release

40 Mule Overview Guide

Mule 1.6 includes several improvements and fixes for XA transactions, including a fix
for session leaks when closing XA transactions

No moveTo or fileAge properties were available in the FTP transport

During WSDL lookups for web services using the WSProxyService, Mule was
replacing the location/URL references with the local endpoint using localhost

The REST and WSDL versions of some of the examples did not work properly

For a complete list of the fixes in this release, click here, and then click the Fixed Issues
tab.

Known Issues
This section describes the known issues in this release and how to work around them.

Because of JAR conflicts, CXF and XFire cannot exist simultaneously in the same
Mule deployment. By default, XFire is installed, but if you want to use CXF, you can
select the CXF option from the installer. If you want to switch between CXF and
XFire after installation or without using the installer, you can run Ant commands to
perform the switch for you. For complete information, see the readme file included
with your Mule distribution.

http://www.mulesource.org/display/MULEINTRO/What%27s+New+in+This+Release

Mule Overview Guide 41

Appendix B

Third-party Software

Mule products include the following third-party software as part of the source code,
examples, or as dependencies. The license type for each third-party software product is
indicated in parentheses.

Third-party Software

Software License

Acegi Apache 2.0

Antlr BSD Style

Apache Axis Apache 2.0

Apache Axis Jaxrpc Apache2.0

Apache Catalina Apache 2.0

Apache Cocoon Project Apache 2.0

Apache Commons Attributes Apache 2.0

Apache Commons Beanutils Apache 2.0

Apache Commons Codec Apache 2.0

Apache Commons Collections Apache 2.0

Apache Commons DBUtils Apache 2.0

Apache Commons Digester Apache 2.0

Apache Commons Discovery Apache 2.0

Apache Commons-lang Apache 2.0

Apache Commons-logging Apache 2.0

Apache Commons IO Apache 2.0

Apache Commons Net Apache 2.0

Appendix B Third-party Software

42 Mule Overview Guide

Apache Derby Apache 2.0

Apache FtpServer Apache 2.0

Apache Geronimo Apache 2.0

Apache Jakarta Commons Transaction Source Apache 2.0

Apache Maven Apache 2.0

Apache Tomcat Utility Apache 2.0

Apache Xalan Apache 2.0

Apache XML Security Apache 2.0

Apache Velocity Apache 2.0

Apache WebServices Commons Apache 2.0

Apache Web Services Axis Apache 2.0

Apache Web Services Project (Wss4j) Apache 2.0

Apache Xerces Apache 2.0

Apache XML Commons XML APIs Apache 2.0

Apache Xpath Apache 2.0

ASM – Bundled with CGLIB BSD

Axis-Saaj Project Apache 2.0

Axis/Web Services Apache 2.0

Backport-util-concurrent Creative Commons Public Domain

Bouncy Castle Java Cryptography APIs Bouncy Castle License

c3p0: JDBC DataSources/Resource Pools LGPL 2.1

CAROL: Common Architecture for ObjectWeb LGPL 2.1

Codehaus XFire Envoi Solutions Permissive License

Commons-cli-1.0 Apache 1.1

Third-party Software (Continued)

Software License

Mule Overview Guide 43

Appendix B Third-party Software

Cryptix OpenPGP Cryptix General License

Commons-pool Apache 2.0

CGLIB Apache 2.0

Cryptix Cryptix General License

Dom4j-1.4 BSD

DTDParser referenced by Linguine Maps Apache Style

Expat Parser MIT

FreeType Project, bundled with GraphViz FreeType License

Graphviz CPL 1.0

GreenMail LGPL 2.1

Groovy Apache 2.0

Hibernate 3.2.2 LGPL 2.1

Hivemind-1.1.1 Apache 2.0

Howl-logger-0.1.11 BSD

Http-Client Apache 2.0

iHarder Base64 Public Domain/Permissive

IzPack Apache 2.0

Jakarta Oro Apache 1.1

Java Scripting API Sun BCLA

Java Service Wrapper Tanuki Software/Silver Egg
Technology

Java UUID Generator Apache 2.0

Javaassist MPL 1.1

JavaDoc for JNDI Container Implementation BSD Style

Jaxen-1.1.1 BSD style

Third-party Software (Continued)

Software License

Appendix B Third-party Software

44 Mule Overview Guide

JBoss Business Process Management – JBPM LGPL 2.1

JBoss Transactions LGPL 2.1

JDOM BSD style license

Jetty 5.1.12 Apache 1.1

Jotm-JRMP-Stubs BSD Style License

JPEG Library (bundled with GraphViz) IJG/JPEG Permissive license

JUnit CPL 1.0

Libpng (bundled with GraphViz) Libpng OSI license

Linguine Maps LGPL 2.1

Log4j Apache 2.0

Mockobjects Apache 2.0

Mx4j 1.2 MX4J License 1.0

Mx4j-tools MX4J License 1.0

Nanocontainer BSD Style

OGNL Attribution

OpenSAML Apache 1.1

Picocontainer BSD

Quartz 1.6 Apache 2.0

Retrotranslator BSD style

Simple Logging Facade for Java (SLF4J) MIT Style

Smack Apache 2.0

Spring Framework / Modules JBPM Apache 2.0

StaX Apache 2.0

Sun JNDI Sun BCLA

Third-party Software (Continued)

Software License

Mule Overview Guide 45

Appendix B Third-party Software

TrueType Font Library (bundled with GraphViz) GPL/LGPL

Truststore files Unknown

Web Services Description Language for Java
(wsdl4j)

CPL 1.0

Woodstox Apache 2.0

xapool LGPL 2.1

XMLUnit BSD style

XPP3 Indiana University Extreme! Lab
Software License

XStream BSD

YourKit Java Profiler Commercial

ZLIB (bundled with GraphViz) Zlib license

Third-party Software (Continued)

Software License

Mule Overview Guide 46

Glossary

Following are the terms you’ll see as you work with Mule. Because of the dynamic
open-source history of Mule, there are sometimes multiple terms used to describe the
same thing. This glossary lists all terms but refers to the preferred term when there are
synonyms.

agent

A service such as the Mule JMX agent that is used by or associated with Mule but is not a
Mule-managed service component. An agent is registered with the Mule Manager and
has the same lifecycle as the Mule instance, so you can initialize and destroy resources
when the Mule instance starts or stops.

CE

See Mule Community Edition (CE)

channel

A logical pathway on which messages are sent on a messaging framework.

component

See service component

configuration builder

A class that knows how to parse a given configuration file. The default configuration
builder is the org.mule.config.MuleXmlConfigurationBuilder class that knows how
to parse a Mule XML configuration file.

connector

The heart of a transport that maintains the configuration and state for the transport.

Mule Overview Guide 47

 Glossary

EE

See Mule Enterprise Edition (EE)

endpoint

A configuration entity specifying how and where a message should be routed. The
endpoint is configured in an inbound or outbound router and specifies where the
message should be sent or from where it should be received, using which transport (and
optionally which connector in that transport), and which filters should be applied before
routing the message. Endpoints can also be defined globally instead of in a specific
router,.

Enterprise Service Bus (ESB)

An architecture that allows different applications to communicate with each other by
acting as a transit system for carrying data between applications within or outside your
intranet. An ESB provides transaction management, routing, security, and other
functionality for the messages.

event

See message

filter

Specifies logic for determining which messages are routed to a component. You can set
filters on an inbound router to filter which messages that service component can receive,
or you can set filters on an outbound router to indicate how you want to route messages
after they have been processed by the service component.

Galaxy

See Mule Galaxy

HQ

See Mule HQ

 Glossary

48 Mule Overview Guide

inbound router

A Java class that you configure in the Mule configuration file to determine how a service
component will receive messages. The inbound router includes an endpoint that
indicates where the messages will come from.

interceptor

A Java class that is used to intercept message flow into a service component. An
interceptor can be used to trigger or monitor events or interrupt the flow of the message.

message

A packet of data that can be handled and sent between applications on a specific
channel. Data is always wrapped in a message before it is transported by Mule. A
message has a header, which contains metadata about the message (such as the sender
information), and the body, which contains the actual data.

message receiver

A Java class used by a connector to read the incoming data, package it as a message, and
passes it to a service component’s inbound router. The message receiver can use a
transformer if necessary to convert the data.

message dispatcher

A Java class used by a connector to receive the messages and routing instructions from
an outbound router and send the message to the next service component.

Mule Community Edition (CE)

The open-source version of Mule, available for free download at
http://mule.mulesource.org/display/MULE/Download. As its name suggest, the
Community Edition is developed, tested, and maintained by the community.

Mule Enterprise Edition (EE)

The enterprise version of Mule, available for 30-day trial download from
http://www.mulesource.com/download. The Enterprise Edition includes full
development cycles, testing, technical support, maintenance releases and hot fixes, and

http://mule.mulesource.org/display/MULE/Download
http://www.mulesource.com/download

Mule Overview Guide 49

 Glossary

management and monitoring tools from MuleSource. If you are deploying Mule in a
mission-critical environment, want to ensure that you always have a stable, high-quality
release, and want additional tools for managing and monitoring your deployment, you
should purchase a subscription of Mule Enterprise Edition.

Mule Galaxy

A service-oriented architecture governance platform that allows you to control your
infrastructure with SOA governance, registry, and repository features including lifecycle,
dependency, and artifact management, as well as auto-discovery or services and reporting.

Mule HQ

A monitoring and management system that provides information about the hardware,
services, and applications in your entire enterprise, including CPU usage and
information about disks and network devices. Mule HQ provides remote management,
monitoring, patching, and alerts for all the assets in your infrastructure. You can integrate
the YourKit profiler with Mule HQ to provide a more detailed level of information,
showing memory usage all the way to the object level. The YourKit profiler is included
with Mule Enterprise.

Mule Manager

Manages the Mule objects, including connectors, endpoints, and transformers. The Mule
Manager constructs these objects and provides them to the service components in the
Mule Model. Each Mule instance has one Mule Manager and one or more Mule Models.

Mule Model

A service container that hosts the service components and manages their runtime
behavior.

outbound router

A Java class that you configure in the Mule configuration file to determine how a service
component will dispatch messages. The outbound router can include an endpoint to
indicate where the messages should go next, or if no endpoint is configured, it returns the
completed message back to the sender.

 Glossary

50 Mule Overview Guide

POJO

An acronym for “plain old Java object,” a POJO is a simple Java object, not an enterprise
JavaBean. One advantage of Mule is that your service components can be simple
POJOs, which Mule then wraps and exposes as services.

provider

See transport

queue

See channel

router

A Java class that determines where and how messages are transported between
applications. See also inbound router and outbound router

SEDA

See Staged Event-driven Architecture (SEDA)

service component

A POJO, Spring bean, Java bean, or web service containing the business logic for
processing data in a specific way. Mule simply manages the service component, bundles it
with configuration settings and exposes it as a service, and ensures that the right
information is passed to and from it based on the settings you specified for the service in
the Mule configuration file. In early versions of Mule, service components were called
Universal Message Objects, and “UMO” is still part of the nomenclature in the Mule
APIs today.

Staged Event-driven Architecture (SEDA)

An architecture model where applications consist of a network of event-driven stages
connected by explicit queues. This architecture allows services to be well-conditioned to
load, preventing resources from being overcommitted when demand exceeds service
capacity. As a result, SEDA provides an efficient event-based queuing model that
maximizes performance and throughput. SEDA is the default processing model in Mule.

Mule Overview Guide 51

 Glossary

transformer

A Java class that transforms message payloads (data) to and from different types.

transport

A construct that handles and carries messages on a specific messaging protocol, such as
HTTP, moving the message from one service component to another and transforming
the data as needed along the way

transport provider

See transport

universal message object (UMO)

See service component

UMO

See service component

Wire Tap

A router that makes copies of messages and forwards them to another endpoint. It can
either forward a copy of all messages that it receives or it can be configured to use a filter
and send a sub-set of these messages only. This router will not prevent messages from
being delivered to service components. See also Interceptor

Mule Overview Guide 52

A
ActiveMQ 23
adapters 10
administrator

what to read in this guide 6
aggregating messages 13
AIX 25
Apache CXF 23
application developer

what to read in this guide 6
application layer 33
architect

what to read in this guide 5
architecture

about 11
audience for this guide 5

B
basic usage 33
building Mule 25
business analyst

what to read in this guide 6
business logic

in the Mule architecture 12

C
chaining routers 13
channels

about 10
CIO

what to read in this guide 5
client/server topology 19

Community Edition
about 25
installing 27

compression tools 26
configuring endpoints 16
configuring routers 16
CXF 23

D
data 14

logical flow in Mule 16
processing 12

decision makers
what to read in this guide 5

destinations
see endpoints

developer
what to read in this guide 6

developer release 25
director of Software Architecture

what to read in this guide 5
dispatching messages 13
distributed topology 20
documentation

typographic conventions 6
downloading Mule

about 24

E
EJB 19
endpoints

about 15
configuring 16

Index

Mule Overview Guide 53

 Index

Enterprise Edition
about 24
installing 26

Enterprise Integration Patterns
about 10

Enterprise Service Bus (ESB) 8, 10
enterprise service network 19
ESB

see Enterprise Service Bus

F
failover

distributing Mule for 20
file systems 19
filtering messages 13

in endpoints 16

G
GZip 26

H
HP-UX 25
hub-and-spoke topology 19

I
IBM WebSphere MQ 19
implementing Mule 19
inbound routers

about 13
Installing Mule

prerequisites 25
installing Mule

about 24
Community Edition 27
Enterprise Edition 26
snapshot release 27

integrating applications
with endpoints 15

integration developer
what to read in this guide 6

integration layer, transport layer 33

introduction to Mule 7
issues

fixed in this release 39
IT manager

what to read in this guide 5

J
Java beans

creating service components from 12
Java Developer Kit (JDK) 26
JAVA_HOME environment variable 26
JDK 26
JMS

in ESBs 19

K
knowledge base 6

L
Linux 25
load-balancing

distributing Mule for 20
logical data flow in Mule 16

M
Mac OSX 25
mainframe applications 19
Maven 26
messages

about 10
aggregating 13
dispatching 13
filtering 13
payload 14
protocols 13
receiving 13
resequencing 13
routing 13

messaging framework
about 9

MSMQ 19

54 Mule Overview Guide

 Index

Mule architecture
about 11

Mule Community Edition 25
Mule Enterprise Edition 24
Mule snapshot release 25
Mule User Guide 24
MuleSource Technical Support 6
multiple instances of Mule 20

O
operating systems 25
outbound router

about 13

P
PATH environment variable 26
payload 14
peer network topology 19
pipeline topology 19
plain old Java object (POJO)

about 9
platforms 25
POJO

about 9
prerequisites to installation 25
programmer

what to read in this guide 6
protocols 13

Q
queues

about 10
quick start 5

R
receiving messages 13
resequencing messages 13
routers

about 13
chaining 13
configuring 16

routing messages 13
RSS feed

service components and 13

S
scalability of mule 19
sending messages 13
service components

about 12
routing messages between 13

service-oriented architecture
about 11

services
about 11

snapshot release 25
installing 27

SOA
see service-oriented architecture

sockets 19
Solaris 25
source code 25
spaces

in the target path 26
Spring beans

creating service components from 12
support 6

T
technical support 6
TIBCO Rendezvous 19
topologies 19
transformers

about 14
transports

about 14
configuring endpoints for 16

typographic conventions 6

U
uniform resource indicators (URI)

in endpoints 15

Mule Overview Guide 55

 Index

URIs
in endpoints 15

W
web services

creating service components from 12
Windows

supported versions 25
WinZip 26

X
X-Windows

downloading without 27

201 Mission Street
Suite 1380
San Francisco, CA 94105
Phone: 877-MULE-OSS (877-685-3677)
Fax: 415-358-8573
www.mulesource.com

http://www.northstar.com

	Preface
	Who Should Read This Guide?
	What’s the Fastest Way Through This Guide?
	Typographic Conventions
	Mule Technical Support

	Chapter 1 Introduction to Mule
	What is Mule?
	Understanding the Messaging Framework
	Understanding the Mule Architecture
	About SOA
	Processing the Data
	Routing Messages Between Service Components
	Separating Business Logic from Messaging
	Wiring Everything Together

	Understanding the Logical Data Flow
	Integrating Mule into Your Environment
	Administering Mule
	Managing Your Deployments with Mule HQ
	Controlling the Infrastructure with Mule Galaxy
	Monitoring Mule Instances Using JMX

	Summary

	Chapter 2 Getting Started
	Installing Mule
	Distribution Types
	Installation Prerequisites
	Installing the Enterprise Edition
	Installing the Community Edition or Snapshot Release

	Setting Up Your Environment
	Distribution Contents
	Running Mule
	Starting with the Examples
	Working with Configuration Files
	Using the Command Prompt
	Additional Setup for Community Edition Users
	Switching Between CXF and XFire

	Basic Usage
	Create a Service Component
	Configure the Service
	Configure the Mule Models
	Configure the Mule Manager
	Extend Mule

	Where Do I Go Next?

	Appendix A What’s New in This Release
	New Features
	Premium JDBC Transport
	CXF Transport
	WebSphere MQ Transport
	Web Service Wrapper Component

	Changed Functionality
	Extended QA Certification
	Fixed Issues

	Known Issues

	Appendix B Third-party Software
	Glossary
	Index

