
Developing, Deploying and Running a Hello World BPEL
Process with the Eclipse BPEL Designer and Apache

ODE

A click-by-click Instruction by Simon Moser and Tammo van Lessen

1 Introduction

In this Tutorial, we will show how to develop a Hello World Process with the Eclipse
BPEL Designer and subsequently deploy it to the Apache ODE runtime.

This tutorial consists of three parts: First, we will take a deep dive into installation and
configuration. We’ll show how to install and configure ODE, how to install and set up
the latest and greatest BPEL Designer in Eclipse, and how to bring them together.

Section 3 will then show how to model a Hello World BPEL Process and how to deploy
it to ODE using the setups we made in the first part.

Finally, Section 4 will show us how to run our newly developed and deployed Hello
World Process.

2 Installation and Configuration

2.1 Installing and Configuring ODE

1. Download an Apache Tomcat Server at http://tomcat.apache.org/. We used
version 5.5 for this tutorial – so to be on the safe side, stick with version 5.5.

2. Install Tomcat to a directory of your choice. We used C:\apache\tomcat-5.5.26.
This directory will be referred to as TOMCAT_INSTALL_DIR throughout the
remainder of this document.

3. Download a war deployable Apache ODE file from http://ode.apache.org/getting-
ode.html. Use the apache-ode-war-1.2.zip available at that site. Extract the zip file
to a temporary directory. In that temporary directory, you will find a file called
ode.war. Copy ode.war to the TOMCAT_INSTALL_DIR\webapps directory.

4. Open a command prompt and point it to TOMCAT_INSTALL_DIR\bin directory.
Type “catalina run” and hit return as shown in the screencap below. This will
configure and start the tomcat server.

5. In order to verify that ODE has been successfully installed, check the

TOMCAT_INSTALL_DIR\webapps directory. It should now have a subdirectory
“ode”

6. In your console Windows, hit CRTL-C to terminate the tomcat after you verified
that ODE got installed correctly.

2.2 Installing and Configuring Eclipse with the BPEL Designer

1. Get an Eclipse 3.3 (Europa) from
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/rel
ease/europa/winter/eclipse-rcp-europa-winter-win32.zip.
Note: The BPEL Designer is currently not tested with Eclipse 3.4
2. Extract it to your machine and start Eclipse.exe from the extract directory. Note:

Make sure that you use at least a JDK 1.5 as your java virtual machine.
3. Once started, go to the Help -> Software Updates -> Find and Install Menu

4. Select “Search for new Features to Install”, then click Next.

5. Define a new remote update site with the following location:
http://download.eclipse.org/technology/bpel/update-site/

6. In the list make sure “BPEL” is selected, click Finish. You maybe have to pick a

download mirror site of your choice. After a little time, the following Window
appears. Expand the BPEL Tree, selecting all entries, then click next until you can
click Finish, then finish.

Note: The update from this location will include all the necessary Eclipse components
that are needed to run the BPEL Designer. Things like EMF, GEF, JEM, and WST. If
you have these already installed then most likely nothing besides the BPEL designer
will be installed.

7. After the download and Install is finished, you get asked to restart your Eclipse.
Restart it.

8. To verify the installation has been successful, after the restart, click on File-
>New->Other. Verify that there is a BPEL 2.0 Entry in the Wizard

2.2.1 Getting the latest and greatest BPEL Designer code

9. In order to use the Apache ODE integration plugins, you need the latest and

greatest BPEL Designer plugins. Therefore, switch to the CVS perspective by
clicking Window->Open Perspective->Other->CVS Repository Exploring.

10. Right-click in the “CVS Repositories” View to add a new Repository Location.
11. Fill the dialog as follows and click Finish.

12. Expand “org.eclipse.bpel/plugins” under HEAD. Select the following plugins:

 * org.eclipse.bpel.apache.ode.deploy.model
 * org.eclipse.bpel.apache.ode.deploy.ui
 * org.eclipse.bpel.apache.ode.runtime
 * org.eclipse.bpel.common.model
 * org.eclipse.bpel.common.ui
 * org.eclipse.bpel.model
 * org.eclipse.bpel.runtimes
 * org.eclipse.bpel.ui
 * org.eclipse.bpel.wsil.model

Right-click on the selection and select “Check out”. Wait until the checkout operation
has been finished.

13. Switch Back to the Java Perspective by selecting Window->Open Perspective-

>Other->Java(default)
14. In case you’ll find some compile errors. Go to Window->Preferences->Java-

>Compiler-> Errors/Warnings. Expand the “Deprecated and restricted API”
section. Set the “Forbidden reference (access rules)” to “Warning” (instead of
Error). Click OK, click “Yes” on the rebuild dialog that appears.

15. Now your package Explorer View should show all the plug-ins, and no compile
errors should be there.

2.2.2 Configuring a launch configuration
16. Next, we will configure a launch configuration so that we run an eclipse out of

our eclipse. Therefore, click on the little arrow next to the run-button, and select
“Open Run Dialog”.

17. Select “Eclipse Application”, then click the “New launch configuration” button.

18. Fill in a Location (e.g. “C:\RuntimeWorkspace”), click “Apply” and “Run”

19. Shortly after you should see a new Eclipse Workbench coming up. Close the

Welcome Screen to you see a new, blank Eclipse workspace.

2.3 Setting up the Eclipse BPEL Designer with ODE

1. In this new, blank Eclipse workspace you first need to create an ODE server.
Therefore, open the Server view under Window->Show View->Other->Server-
>Servers.

2. In the servers View windows, right-click and select “New->Server”.
3. From the List, select “Apache->ODE v1.x Server”. Click Next.
4. Configure it as shown in the screencap below.

5. Click Finish. Your server view now should look like this:

6. Start the server to test. Right click on the Apache ODE entry and select “Start”.

After the server is started, your server view should look like this:

3 Modeling and Deploying a Hello World BPEL
1. Create a new BPEL Project called “ODE_Test”. Therefore, select File->New-

>Other->BPEL 2.0->BPEL Project. Fill in the first page like shown in the
screencap (Note: Make sure “Apache Ode 1.x Runtime” is selected as Target
Runtime). Then, click Next.

2. On the second server page, select “BPEL 2.0 Facet” as shown in the screencap.

Click Finish.

3. Create a new “Hello World” Process. Therefore, select File->New->Other-

>BPEL 2.0->New BPEL Process File. Click Next. Fill in the Details as shown in
the screencap below.

Click Next. On the second page, make sure that the Project “ODE_Test” is selected as
project. Click Finish.

4. The BPEL Editor will now open and show the newly created process. In order for

our Hello World process to work, we’ll add an Assign Activity between the
ReceiveInput and ReplyOutput activities. Note: You have to expand the Palette if
not shown in order to be able to pick the assign activity.

5. Right-click on the Assign activity, and select “Show in properties”.
6. At the bottom left of the Assign Details Page, select “New”.
7. Then, assign “input -> payload -> input” to “output -> payload -> result” as

shown in the screencap. Save the process.

8. An “initializer” popup dialog appears. Click Yes. Now we are finished modeling

the HelloWorld process.
9. In order to run the process, we must provide a Port and a Binding for the Process

Interface. Therefore, double-click on the file “HelloWorldArtifacts.wsdl” that got
created in the “ODE_Test” Project.

10. The WSDL Editor opens. Right click in the Canvas and select “Add Service”. A
New Service Appers on the screen. Name it “HelloWorldProcessService”. It also
has a Port called “NewPort”. Select it, right-click and select “Show properties”.
Rename it to “HelloWorldProcessPort”.

11. Specify a Binding. Right-click again somewhere in the whitespace of the WSDL
Editor and select “Add Binding”. A new Binding element appears on the screen.
Click on it and rename it “HelloWorldSOAPBinding”. In the PortType Box,
select “Hello World”. Finally, click on the “Generate Binding Content” Button. In
the Protocol, select “SOAP”, click Finish.

12. Click again on the “HelloWorldProcessPort” and go to its properties. In the
Binding Combo, you can now select “HelloWorldSOAPBinding”. Finally, in the
address field, type http://localhost:8080/ode/processes/HelloWorld. Your WSDL
Editor now should look like this:

13. Save the WSDL Editor.
14. Create a new BPEL ODE Deployment Descriptor. Therefore, select File->New-

>Other->BPEL 2.0->Apache ODE Deployment Descriptor.

15. Click Next. Browse for “ODE_Test” as container, leave the name as

“deploy.xml”. Click Finish.
16. After click Finish, a new File “deploy.xml” got created. If it gets opened in an

XML Editor, then close that XML Editor, right click on “deploy.xml” and select
“Open With -> ODE Deployment Descriptor Editor”

17. Fill in the Deployment Descriptor: In the “Inbound Interfaces” section, click in

the “Associated Port” column for the “client” Partner link. A drop down box
appears. Select “HelloWorldProcessPort”. Click in the white space of the
Deployment Descriptor Editor. The “Related Service” and “Binding Used”
columns should automatically be filled in, and the Editor should become dirty.
Save the deploy.xml.

18. Now all the Modeling is complete: We have a BPEL Project (ODE_Test), a BPEL
Process (HelloWorld.bpel), the Web Service File (HelloWorldArtifacts.wsdl) is
fully specified and there is an ODE deployment descriptor (deploy.xml). It is time
to add the project to the Server.

19. Therefore, go back to the server view. Right click on the Apache ODE entry and
select “Add and Remove Project”. Note: If a popup appears, of if the dialog
appears and is empty on the left side, then close your runtime eclipse and start it
again using the “Run” button (see Configuring a launch configuration – step 16).

20. A Dialog appears that should look like the following:

21. Select the entry on the left, click “Add”, then click “Finish”

22. Start the server (if it is stopped), or publish the server (if it is already started).
Right-click on the server and select either “start” or “publish”.

23. Deployment was successful if your console has two lines similar to this:

24. You can also double-check in ODE’s administrative console. Point your browser

to http://localhost:8080/ode/. Select “Services”. A list of all installed services
appears. If it has a “HelloWorld” entry, deployment of the process went fine.

4 Running the Hello World BPEL Process with the
Eclipse Web Service Explorer

1. In Eclipse’s Project Explorer, right-click on the “HelloWorldArtifacts.wsdl” and

select “Web Services -> Test with Web Services Explorer”

2. The Web Service Explorer starts. In the Navigator on the left side, expand the tree

until you see “process” (see screenshot)

3. On the right side, enter “Hello ODE!” in the input field.

4. Hit the “Go” Button. In the Eclipse Console View, you’ll see a run trace similar to
the one on the next page:

DEBUG - GeronimoLog.debug(66) | Received request message for
HelloWorld.{http://helloWorld}process
DEBUG - GeronimoLog.debug(66) | Starting transaction.
DEBUG - GeronimoLog.debug(66) | Routed: svcQname
{http://helloWorld}HelloWorldProcessService -->
BpelProcess[{http://helloWorld}HelloWorld-5]
DEBUG - GeronimoLog.debug(66) | ODE routed to operation Operation:
name=process
style=REQUEST_RESPONSE,1
Input: name=null
Message: name={http://helloWorld}HelloWorldRequestMessage
Part: name=payload
elementName={http://helloWorld}HelloWorldRequest
Output: name=null
Message: name={http://helloWorld}HelloWorldResponseMessage
Part: name=payload
elementName={http://helloWorld}HelloWorldResponse from service
{http://helloWorld}HelloWorldProcessService
DEBUG - GeronimoLog.debug(66) | Invoking ODE using MEX
{MyRoleMex#hqejbhcnphr3i550cwxlrl [Client hqejbhcnphr3i550cwxlrk]
calling {http://helloWorld}HelloWorldProcessService.process(...)}
DEBUG - GeronimoLog.debug(66) | Message content: <?xml version="1.0"
encoding="UTF-8"?>
<message><payload><HelloWorldRequest xmlns="http://helloWorld"
xmlns:q0="http://helloWorld"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <input>Hello ODE!</input>
 </HelloWorldRequest></payload></message>
DEBUG - GeronimoLog.debug(66) | Routed: svcQname
{http://helloWorld}HelloWorldProcessService -->
BpelProcess[{http://helloWorld}HelloWorld-5]
DEBUG - GeronimoLog.debug(66) | invoke() EPR= null ==>
BpelProcess[{http://helloWorld}HelloWorld-5]
DEBUG - GeronimoLog.debug(66) | Commiting ODE MEX
{MyRoleMex#hqejbhcnphr3i550cwxlrl [Client hqejbhcnphr3i550cwxlrk]
calling {http://helloWorld}HelloWorldProcessService.process(...)}
DEBUG - GeronimoLog.debug(66) | Commiting transaction.
DEBUG - GeronimoLog.debug(66) | >>
handleWorkEvent(jobData={mexid=hqejbhcnphr3i550cwxlrl,
pid={http://helloWorld}HelloWorld-5, type=INVOKE_INTERNAL})
DEBUG - GeronimoLog.debug(66) | InvokeInternal event for mexid
hqejbhcnphr3i550cwxlrl
DEBUG - GeronimoLog.debug(66) | GET MEX property
org.apache.ode.bpel.myRoleSessionId = null
DEBUG - GeronimoLog.debug(66) | GET MEX property
org.apache.ode.bpel.myRoleSessionId = null
DEBUG - GeronimoLog.debug(66) | GET MEX property
org.apache.ode.bpel.partnerRoleSessionId = null
DEBUG - GeronimoLog.debug(66) | INPUTMSG: 12.process: MSG RCVD keys=[]
mySessionId=null partnerSessionId=null
DEBUG - GeronimoLog.debug(66) | INPUTMSG: 12.process: routing failed,
CREATING NEW INSTANCE
DEBUG - GeronimoLog.debug(66) | BpelRuntimeContextImpl created for
instance 501. INDEXED STATE={}

DEBUG - GeronimoLog.debug(66) | SELECT: PickResponseChannel#9: USING
CORRELATOR 12.process
DEBUG - GeronimoLog.debug(66) | SELECT: PickResponseChannel#9: CHECKING
for NEW INSTANCE match
DEBUG - GeronimoLog.debug(66) | INPUTMSGMATCH: Changing process
instance state from ready to active
DEBUG - GeronimoLog.debug(66) | SELECT: PickResponseChannel#9: FOUND
match for NEW instance mexRef={MyRoleMex#hqejbhcnphr3i550cwxlrl [Client
hqejbhcnphr3i550cwxlrk] calling
{http://helloWorld}HelloWorldProcessService.process(...)}
DEBUG - GeronimoLog.debug(66) | Processing an async reply from service
{http://helloWorld}HelloWorldProcessService
DEBUG - GeronimoLog.debug(66) | ProcessImpl
{http://helloWorld}HelloWorld-5 completed OK.
DEBUG - GeronimoLog.debug(66) | Received myrole mex response callback
DEBUG - GeronimoLog.debug(66) | Handling response for MEX
{MyRoleMex#hqejbhcnphr3i550cwxlrl [Client hqejbhcnphr3i550cwxlrk]
calling {http://helloWorld}HelloWorldProcessService.process(...)}
DEBUG - GeronimoLog.debug(66) | Starting transaction.
DEBUG - GeronimoLog.debug(66) | Response message <?xml version='1.0'
encoding='utf-8'?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"><soapenv:Body
><HelloWorldResponse xmlns="http://helloWorld">
 <result>Hello ODE!</result>
</HelloWorldResponse></soapenv:Body></soapenv:Envelope>
DEBUG - GeronimoLog.debug(66) | Releasing mex hqejbhcnphr3i550cwxlrl
DEBUG - GeronimoLog.debug(66) | Comitting transaction.
DEBUG - GeronimoLog.debug(66) | Reply for
HelloWorld.{http://helloWorld}process
DEBUG - GeronimoLog.debug(66) | Reply message <?xml version='1.0'
encoding='utf-8'?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"><soapenv:Body
><HelloWorldResponse xmlns="http://helloWorld">
 <result>Hello ODE!</result>
</HelloWorldResponse></soapenv:Body></soapenv:Envelope>

