
SOAP Servers and Clients
with PHP SOAP Extension

The PHP 5's SOAP extension is implemented as a set of predefined PHP classes that
allow the developer to build SOAP servers and clients. In this chapter, you will learn
how to use the PHP SOAP extension when building Web services that might then be
utilized within SOA applications. In particular you will learn how to:

Expose application logic as a Web service
Build Web service providers and requestors
Encapsulate the underlying logic of a Web service in a PHP class
Use the XML Schemas specification with WSDL
Transmit XML documents containing attributes
Extend predefined classes of the PHP SOAP Extension
Build Web services supporting parameter-driven operations

Building Service Providers and Service
Requestors
Depending on the interaction scenario in which a Web service is involved, it can
either act as a service provider or a service requestor. In the following sections, you
will see how to build a Web service provider and a requestor that will consume the
service provider.

•

•

•

•

•

•

•

SOAP Servers and Clients with PHP SOAP Extension

[40]

To start with, let's look at a simple example. Suppose that you need to implement an
application based on Web services that performs the following sequence of steps:

1.	 Receives a purchase order (PO) document in XML format
2.	 Validates a PO against the appropriate XML schema
3.	 Stores a PO in the database
4.	 Sends a response message to the requestor

In a real-world situation, to build such an application, you would have to design
more than one service and pull these services together into a composite solution.
However, for simplicity's sake, the example discussed here uses the only service to
handle all of the above tasks.

Of course, the above service would be only a part of an entire real-world
solution. A service requestor sending a PO document for processing
to this service would act as a service provider itself towards another
requestor, or would be part of a composite service built, for example,
with WS-BPEL.

Diagrammatically, the scenario involving the PO Web service that performs the tasks
described above might look like the following figure:

<?xml >
<xs:schema...

</xs:schema>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?xml >
<purchaseOrder...>

</xs:purchaseOrder>

<?php
class... {

?>

010001101
010001101
010001101

Web service
requestor

Web service
provider

Request SOAP
message with a

PO attached Extracted
PO document

Validated
PO document

Response
SOAP message

Database

PO XML
schema

1

4

2

3

SOAP
message

processing

PHP SOAP
extension

PHP
handler class

Service
business

logic

Here is the detailed explanation of the steps in the figure:

Step 1: The service requestor sends a PO XML document wrapped in a
SOAP envelope to the service provider.

•

Chapter 2

[41]

Step 2: The service provider extracts the PO document received from the
SOAP envelope and validates the extracted PO against the appropriate
XML schema.
Step 3: The service provider stores the validated PO document in
the database.
Step 4: The service provider sends the response message to the service
requestor, informing it if the operations being performed have completed
successfully or not.

To build the PO Web service depicted in the previous figure, you need to accomplish
the following five general steps:

1.	 Set up a database to store incoming PO documents
2.	 Develop a PHP handler class implementing the PO Web service logic
3.	 Design an XML schema to validate incoming PO documents
4.	 Design a WSDL document describing the PO Web service to its requestors
5.	 Build a SOAP server to handle incoming messages carrying POs

The following sections take you through each of the above steps. First, you will see
how to create a simple PO Web service that actually performs no validation. Then,
you will learn how the XML Schema feature can be used with WSDL to define types
in messages being transmitted, making sure that transmitted data is valid with
respect to a specific XML schema.

Setting Up the Database
Before we go any further, let's take a moment to set up the database required for this
example. This example assumes that you are using Oracle Database Express Edition
(XE)—a free edition of Oracle Database, or any other edition of Oracle database.

You can download a copy of Oracle Database from the Download
page of the Oracle Technology Network (OTN) Website at
http://www.oracle.com/technology/software/index.html. In
Chapter 3, you will also see an example of using MySQL as the backend
database in a Web services application. As for this particular example,
Oracle is used because it provides native support for XML, which makes
it easier for you to get the job done, allowing you to concentrate on using
the PHP SOAP extension while building the application.

•

•

•

SOAP Servers and Clients with PHP SOAP Extension

[42]

To keep things simple, this section actually discusses how to create a minimal
set of the database objects required only to store incoming PO documents. When
continuing with this example in Chapter 3, you will learn how to leverage the Oracle
XML Schema, an Oracle XML feature, to validate incoming POs inside the database.

The Oracle XML Schema is part of the Oracle XML DB, which is a set
of Oracle XML features available in any edition of Oracle Database by
default. The Oracle XML DB is discussed in extensive detail in Chapter 3.

With Oracle database, you have several options when it comes to creating, accessing
and manipulating the database objects. You can use both the graphical and
command-line tools shipped with Oracle Database. As for Oracle Database XE, you
might use the Oracle Database XE graphical user interface, a browser-based tool that
allows you to administer the database.

However, to create the database objects required for this example, it is assumed that
you will make use of Oracle SQL*Plus, a command-line SQL tool, which is installed
by default with every Oracle database installation.

For information on Oracle database installation, see Appendix A, section
Installing Oracle Database Express Edition (XE).

With SQL*Plus, you interact with the database server by entering appropriate SQL
statements at the SQL> prompt.

Assuming that you have an Oracle database server installed and running, launch
SQL*Plus and then follow these steps:

Set up a database account that will be used as a container for the database objects by
issuing the following SQL statements:

 //connect to the database as sysdba to be able to create a new
 account
 CONN /as sysdba

 //create a user identified as xmlusr with the same password
 CREATE USER xmlusr IDENTIFIED BY xmlusr;

 //grant privileges required to connect and create resources
 GRANT connect, resource TO xmlusr;

Chapter 2

[43]

Issue the following SQL statements to create a table that will be used to store PO
XML documents:

 //connect to the database using the newly created account
 CONN xmlusr/xmlusr;

 //create a purchaseOrders table to be used for storing POs
 CREATE TABLE purchaseOrders(
 doc VARCHAR2(4000)
);

As you can see, the purchaseOrders table created by the above statement contains
only one column, namely doc of VARCHAR2. Using the VARCHAR2 Oracle data type is
the simplest option when it comes to storing XML documents in an Oracle database.
In fact, Oracle provides much more powerful options for storing XML data in the
database. These options will be discussed in detail in Chapter 3.

Developing the PHP Handler Class
Now that you have set up the database to store the incoming PO documents, it's
time to create the PHP code that will perform just that operation: storing incoming
POs into the database. Consider the purchaseOrder PHP class containing the PO
Web service underlying logic. It is assumed that you will save this class in the
purchaseOrder.php file in the WebServices\ch2 directory �������������������� within the document
directory of your Web server, so that it will be available at http://localhost/
WebServices/ch2/purchaseOrder.php.

<?php
 //File purchaseOrder.php
 class purchaseOrder {
 function placeOrder($po) {
 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/xe')){
 throw new SoapFault("Server","Failed to connect to
 database");
 };
 $sql = "INSERT INTO purchaseOrders VALUES(:po)";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':po', $po);
 if (!oci_execute($query)) {
 throw new SoapFault("Server","Failed to insert PO");
 };
 $msg='<rsltMsg>PO inserted!</rsltMsg>';
 return $msg;
 }
 }
?>

SOAP Servers and Clients with PHP SOAP Extension

[44]

Looking through the code, you may notice that the purchaseOrder class actually
contains the only method, namely placeOrder. As its name implies, the placeOrder
method is responsible for placing an incoming PO document. What this method
actually does is take a PO XML document as the parameter and then store it in the
purchaseOrders table created in the preceding section. Upon failure to connect
to the database or execute the INSERT statement, the placeOrder method stops
execution and throws a SOAP exception.

For now, you should not necessarily have to understand in detail how
the database-related code in the placeOrder method works. This will be
discussed in greater detail in Chapter 3.

Another important point to note here is that ����the placeOrder method������ ��� doesn't
contain any code required to validate an incoming PO document. For simplicity,
this example assumes no validation for the moment. However, when continuing
with the example in the next sections of this chapter, you will see how XML
schema-based validation can be used with WSDL, defining types for parts of the
messages described in WSDL definitions. Then, in Chapter 3, you will learn how the
incoming PO documents can be automatically validated against a PO XML schema
within the database, upon inserting them into the purchaseOrders table. As the
Using XML Schemas with Oracle XML DB section in Chapter 3 will explain, to reach
this goal, you need to create and register a PO XML schema against the database and
then create an INSERT trigger on the purchaseOrders table.

Designing the WSDL Document
To expose the functionality of the purchaseOrder PHP class discussed in the
preceding section as a Web service, you first need to create a WSDL document that
will describe that Web service. Here is the WSDL that might serve this purpose. It
is assumed that you will save this document as po.wsdl in the WebServices/wsdl
directory ��� within the document directory of your Web server.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace=
 "http://localhost/WebServices/wsdl/po.wsdl">
 <message name="getPlaceOrderInput">
 <part name="body" element="xsd:string"/>
 </message>

Chapter 2

[45]

 <message name="getPlaceOrderOutput">
 <part name="body" element="xsd:string"/>
 </message>
 <portType name="poServicePortType">
 <operation name="placeOrder">
 <input message="tns:getPlaceOrderInput"/>
 <output message="tns:getPlaceOrderOutput"/>
 </operation>
 </portType>
 <binding name="poServiceBinding" type="tns:poServicePortType">
 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeOrder">
 <soap:operation
 soapAction="http://localhost/WebServices/ch2/placeOrder"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="poService">
 <port name="poServicePort" binding="tns:poServiceBinding">
 <soap:address
 location="http://localhost/WebServices/ch2/SOAPserver.php"/>
 </port>
 </service>
</definitions>

As you may notice, the getPlaceOrderInput message described in this document
consists of a single part called body, which represents an element of xsd:string.
Actually, the body part used here represents the parameter being passed to the
placeOrder method of the purchaseOrder class discussed in the preceding section.
So, this WSDL document implies that an incoming PO XML document will be passed
from a service consumer to the PO Web service as a string.

As you no doubt have realized, the string XSD type is used in this
example for simplicity's sake. In the Using XML Schemas with WSDL
section later in this chapter, you will see an example of using the user-
defined XSD types when it comes to describing XML documents being
transmitted between a service provider and service requestor.

SOAP Servers and Clients with PHP SOAP Extension

[46]

Building the SOAP Server
Now that you have created the WSDL definition document describing the PO Web
service, the next step is to create a SOAP server that will be responsible for handling
and transmitting SOAP messages via HTTP. Save the following PHP script as
SoapServer.php in the WebServices/ch2 directory ������������������������������ within the document directory
of your Web server.

<?php
 //File: SoapServer.php
 require_once "purchaseOrder.php";
 $wsdl= "http://localhost/WebServices/wsdl/po.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

At the beginning of this script you add the contents of the purchaseOrder.php script
discussed in the Developing the PHP Handler Class section ������������������������������� earlier in this chapter. Then,
you create an instance of the SoapServer class.

The SoapServer class, as well as SoapClient and SoapFault classes
discussed in the next section, belongs to the PHP's SOAP extension
library, which is not enabled by default. To enable the SOAP extension on
a Unix-like platform, you need to recompile your PHP installation with
the configure option --enable-soap. If you are a Windows user, you
need to append the extension =php_soap.dll to the list of extensions in
the php.ini configuration file.

Once you have created an instance of SoapServer, you can export the methods of
the PHP handler class stored in the purchaseOrder.php script������������������������ . This is done���������� with the
help of the setClass method of the SoapServer instance.

Finally, you call the handle method of SoapServer, which is responsible for
handling and processing SOAP requests, calling methods of the handler class, and
sending responses back to service consumers.

Building the Service Requestor
Before you can test the PO Web service built as discussed in the preceding sections,
you need to build a service requestor that will interact with the service. Here is a
simple client to test the PO Web service. You may save this script in any directory.
However, for simplicity's sake you might save it in the same directory as all the other
scripts discussed previously.

Chapter 2

[47]

<?php
 //File: SoapClient.php
 $wsdl = "http://localhost/WebServices/wsdl/po.wsdl";
 $handle = fopen("purchaseOrder.xml", "r");
 $po= fread($handle, filesize("purchaseOrder.xml"));
 fclose($handle);
 $client = new SoapClient($wsdl);
 try {
 print $result=$client->placeOrder($po);
 }
 catch (SoapFault $exp) {
 print $exp->getMessage();
 �}
?>

As you can see, this script loads a PO document from the purchaseOrder.xml
file, which is supposed to be in the same directory as the script. Then, it creates an
instance of the SoapClient class, passing a URI of the WSDL document to be used,
as the parameter. Note that you use the same WSDL document you used for the
server discussed in the preceding section. Finally, the script calls the placeOrder
remote function as a method of the newly created SoapClient instance, surrounding
that call in a try block. If something goes wrong during the placeOrder execution
and a SoapFault exception is thrown, the catch block catches it.

A simplified version of a PO document stored in the purchaseOrder.xml file being
used in this example might look as follows:

<purchaseOrder >
 <pono>108128476</pono>
 <billTo>
 <name>Tony Jamison</name>
 <street>24 Johnson Road</street>
 <city>Big Valley</city>
 <state>VA</state>
 <zip>23032</zip>
 <country>US</country>
 </billTo>
 <shipTo>
 <name>Janet Thomson</name>
 <street>11 Maple Street</street>
 <city>Small Valley</city>
 <state>VA</state>
 <zip>23037</zip>
 <country>US</country>
 </shipTo>

SOAP Servers and Clients with PHP SOAP Extension

[48]

 <items>
 <item>
 <partId>743</partId>
 <quantity>4</quantity>
 <price>15.50</price>
 </item>
 <item>
 <partId>235</partId>
 <quantity>7</quantity>
 <price>15.75</price>
 </item>
 </items>
</purchaseOrder>

In a real-world situation, a PO XML document might be derived from different
sources, not necessarily from a file. For example, it might be created on the fly
(dynamically) by a PHP script, with the help of the DOM API that is part of the
PHP core.

You will see an example of building an XML document with the help of
the PHP DOM extension in the Converting SOAP Messages' Payloads to
XML section later in this chapter.

Testing the Service
Now you are ready to test the PO Web service. To do this, you simply need to point
your browser at the service requestor discussed in the preceding section. If you
saved the SoapClient.php script in the WebServices/ch2 directory ����������� within the
document directory of your Web server, enter the following URL in the address box
of your browser: http://localhost/WebServices/ch2/SoapClient.php.

If everything goes as planned, you will see a PO inserted! message in your browser.
Otherwise, a SOAP fault message appears. For example, if the placeOrder method
of the purchaseOrder class��� fails to connect to the database, you will see an error
message that will look as follows:

Failed to connect to database

Turning back to the placeOrder method of the purchaseOrder class discussed
in the Developing the PHP Handler Class section earlier, you may notice that it also
throws a SOAP exception upon failure to insert the received PO into the database.

Chapter 2

[49]

If the request was successful, the purchaseOrders table was created as discussed
in the Setting Up the Database section earlier should contain one more row. To make
sure it does so, you can issue the following query from Oracle SQL*Plus or any other
command-line tool you use to communicate with the database:

CONN xmlusr/xmlusr

SELECT * FROM purchaseOrders;

When executed, the above SELECT statement should output the string representing
the same PO XML document as the one shown in the Building the Service Requestor
section earlier. If so, this means the PO Web service has worked successfully.

Using XML Schemas with WSDL
The PO Web service discussed above represents a simplified example of a Web
service provider. As mentioned, it receives a PO XML document as a simple string
and saves it as it is in the database. In practice, of course, it is rarely as simple as this.
When receiving an XML document of a specific structure from a consumer, a Web
service wants to make sure that the received document has an appropriate structure,
that is, the document conforms to a specific schema.

To solve this problem, WSDL allows you to include XML Schema definitions
describing the data structures being transmitted between the service provider and
its consumers. In WSDL, you can either enclose XML Schema data type definitions
within the types element or import an XML schema stored in a separate file
using the import statement. In the following sections, you will look at both
these approaches.

Including XML Schema Data Type Definitions
in WSDL
In the PO Web service, you might want to modify its WSDL document so that it
includes an XSD data type definition for the PO XML document received with the
input message. Assuming that the PO Web service expects to receive a PO XML
document having the same structure as the one shown in the Building the Service
Requestor section earlier, the WSDL document describing the PO Web service might
look now as follows. It is assumed that you save this document as po_typed.wsdl in
the WebServices/wsdl directory in which you saved po.wsdl document discussed
in the Designing the WSDL Document section previously.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"

SOAP Servers and Clients with PHP SOAP Extension

[50]

 targetNamespace="http://localhost/WebServices/wsdl/po/"
 xmlns:tns="http://localhost/WebServices/wsdl/po/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://localhost/WebServices/schema/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>

 <schema targetNamespace="http://localhost/WebServices/schema/"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="purchaseOrder">

 <complexType>

 <sequence>

 <element name="pono" type="xsd:string" />

 <element name="shipTo" type="xsd1:AddressType" />

 <element name="billTo" type="xsd1:AddressType"/>

 <element name="items" type="xsd1:LineItemsType"/>

 </sequence>

 </complexType>

 </element>

 <complexType name="AddressType">

 <sequence>

 <element name="name" type="xsd:string"/>

 <element name="street" type="xsd:string"/>

 <element name="city" type="xsd:string"/>

 <element name="state" type="xsd:string"/>

 <element name="zip" type="xsd:int"/>

 <element name="country" type="xsd:NMTOKEN" />

 </sequence>

 </complexType>

 <complexType name="LineItemsType">

 <sequence>

 <element minOccurs="1" maxOccurs="unbounded" name="item"

 type="xsd1:LineItemType" />

 </sequence>

 </complexType>

 <complexType name="LineItemType">

 <sequence>

 <element name="partId" type="xsd:int"/>

 <element name="quantity" type="xsd:decimal"/>

 <element name="price" type="xsd:decimal"/>

Chapter 2

[51]

 </sequence>

 </complexType>

 </schema >

 </types>

 <message name="getPlaceOrderInput">
 <part name="body" element="xsd1:purchaseOrder"/>

 </message>
 <message name="getPlaceOrderOutput">
 <part name="body" element="xsd:string"/>
 </message>
 <portType name="poServicePortType">
 <operation name="placeOrder">
 <input message="tns:getPlaceOrderInput"/>
 <output message="tns:getPlaceOrderOutput"/>
 </operation>
 </portType>
 <binding name="poServiceBinding" type="tns:poServicePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeOrder">
 <soap:operation
 soapAction="http://localhost/WebServices/ch2/placeOrder"/>
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="poService">
 <port name="poServicePort" binding="tns:poServiceBinding">
 <soap:address
 location="http://localhost/WebServices/ch2/SOAPServer_typed.php"/>
 </port>
 </service>
</definitions>

As you can see, the getPlaceOrderInput message described in this document
includes a body part representing an element of a complex XSD type, namely xsd1:
purchaseOrder. This type is described in the XML schema defined within the types
construct of the WSDL document. What this means is that a PO XML document
passed to the placeOrder method as�� the input argument������������������������� must now conform to the
xsd1:purchaseOrder type definition.

SOAP Servers and Clients with PHP SOAP Extension

[52]

Importing XML Schemas into WSDL
Documents
In the preceding section you saw how an XML schema containing data type
definitions used for typing messages' contents can be added to a WSDL document.
However, to achieve better reusability you might save that XML schema in a single
file and then import it into the WSDL document. In this case, you won't have to
modify your WSDL document when you modify a type definition in the imported
XML schema. Instead, you will modify the document containing the schema, while
leaving the WSDL document representing the contract between the service provider
and its consumers untouched.

Returning to the WSDL document discussed in the preceding section, you first need
to separate the XML schema enclosed within the types element. It is assumed that
you save the following schema document as po.xsd in the WebServices/schema
directory ��� within the document directory of your Web server.

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:types1="http://localhost/WebServices/schema/po/">

 <element name="purchaseOrder">
 <complexType>
 <sequence>
 <element name="pono" type="string" />
 <element name="shipTo" type="types1:AddressType" />
 <element name="billTo" type="types1:AddressType"/>
 <element name="items" type="types1:LineItemsType"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="AddressType">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="int"/>
 <element name="country" type="NMTOKEN" />
 </sequence>
 </complexType>
 <complexType name="LineItemsType">
 <sequence>
 <element minOccurs="0" maxOccurs="unbounded" name="item"

Chapter 2

[53]

 type="types1:LineItemType" />
 </sequence>
 </complexType>
 <complexType name="LineItemType">
 <sequence>
 <element name="partId" type="int"/>
 <element name="quantity" type="decimal"/>
 <element name="price" type="decimal"/>
 </sequence>
 </complexType>
</schema >

Now you can import the entire XML schema shown above into the WSDL document
describing the PO Web service, rather than enclosing that schema in the types
element in the WSDL document. To achieve this, you use the import WSDL element,
modifying the po_types.wsdl document discussed in the previous section as
shown below. It is assumed that you save this document as po_imp.wsdl in the
WebServices/wsdl directory.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
 targetNamespace="http://localhost/WebServices/wsdl/po/"
 xmlns:tns="http://localhost/WebServices/wsdl/po/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://localhost/WebServices/schema/po/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import namespace="http://localhost/WebServices/schema/po/"

 location="http://localhost/WebServices/schema/po.xsd" />

...

</definitions>

In this example, you associate the xsd1 namespace defined in the WSDL document
with the PO XML schema stored in a separate file, using the namespace and
location attributes of the import statement.

Looking through the XML schema and WSDL documents discussed here,
you may notice that each of these documents uses a different prefix for
the namespace whose URI is http://localhost/WebServices/
schema/po/. In fact, you might use the same prefix here. However, it
doesn't matter as long as the URI is the same.

SOAP Servers and Clients with PHP SOAP Extension

[54]

Getting Data Types Defined in the XML
Schema
With a great number of XSD data types defined in the XML schema document or
documents used by the WSDL definition, there is often a need to be able to look into
those types from within the client code at run time.

In the design stage, the above is not a problem. Regardless of whether the
WSDL document describing the service incorporates the XML schema
in the way you saw in the Including XML Schema Data Type Definitions in
WSDL section or imports one or more XML schemas as discussed in the
Importing XML Schemas into WSDL Documents section, you can examine
the XSD types used by looking either through the types section of
the WSDL document or the imported XML schema documents. This is
possible because service providers share their WSDL definitions with
their consumers.

To meet this challenge, the PHP SOAP extension introduces the __getTypes method
of the SoapClient class. To simply output the information about actual XSD data
types, you might use __getTypes as follows:

<?php
 ...
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $client = new SoapClient($wsdl);
 print_r($client->__getTypes());

 ...
?>

The highlighted line in the above code will output the following array of structures
that are representations of the XSD types defined in the po.xsd XML schema
document imported into the po_imp.wsdl WSDL definition document:

Array
(
 [0] => struct purchaseOrder {
 string pono;
 AddressType shipTo;
 AddressType billTo;
 LineItemsType items;
}
 [1] => struct AddressType {
 string name;
 string street;
 string city;

Chapter 2

[55]

 string state;
 int zip;
 NMTOKEN country;
}
 [2] => struct LineItemsType {
 LineItemType item;
}
 [3] => struct LineItemType {
 int partId;
 decimal quantity;
 decimal price;
}
)

While the above example simply outputs the array of structures returned by the
__getTypes method, in a real-world application you might make practical use of
this information. For example, you might dynamically build an input form based on
these structures, so that a user could manually input data to be sent to the service.
While constructing such a form, you might use information about the types of the
fields of the returned structures when defining validation rules.

To quickly build such a form, you might take advantage of the PEAR::
HTML_QuickForm package. The discussion of this package, though, is
outside the scope of this book. To find out more about PEAR::HTML_
QuickForm, you can visit http://pear.php.net/HTML_QuickForm.

Transmitting Complex Type Data
In the preceding example, you simply send a string representing a PO XML
document as the input argument of the placeOrder method exposed by the PO Web
service. Now that you have modified the WSDL document describing the PO Web
service so that the PO Web service receives a PO XML document conforming to a
specific structure, you cannot send that document as a simple string any more.

The following sections explain in detail how the complex type data structures are
transmitted between SOAP nodes built with the PHP SOAP extension.

SOAP Servers and Clients with PHP SOAP Extension

[56]

Exchanging Complex Data Structures with
PHP SOAP Extension
Like any other SOAP-based interfaces, service providers and service consumers
built with the PHP SOAP extension use XML format when it comes to exchanging
structured and typed data. However, in the case of the PHP SOAP extension you
are not supposed to provide an XML document ready for transmitting. Instead, you
provide an array having an appropriate structure and containing all the data to be
sent. The SOAP software transforms this array to an XML document conforming to
the specified type definition defined in the XML schema employed, and then sends
that XML document wrapped in a SOAP envelope to the receiver. The receiver
extracts the document from the SOAP envelope assuming that the receiver uses the
PHP SOAP extension and converts it to an instance of the stdClass built-in
PHP class.

In practice, a service requestor built with the PHP SOAP extension
may send requests to a service provider built with other software, and
also a PHP SOAP extension-based service provider may be consumed
by a requestor built with a non-PHP tool. In either case, the requestor
and provider will exchange the data organized as specified in the
corresponding WSDL and XML schema documents. The details of
manipulating the data structures being exchanged, though, will vary
depending on the SOAP software specifics. In Chapter 5, for example,
you will learn how a WS-BPEL process service handles complex type data
arriving with request messages sent by consumers of that service. You
also will learn how a WS-BPEL process handles complex data being sent
to its partners.

Diagrammatically, the process of transmitting a complex data structure between
two SOAP nodes built with the PHP SOAP extension might look like the
following figure:

Custom PHP
script PHP array PHP stdObject

PHP handler
class

SOAP
client
logic

SOAP
server
logic

SOAP message
carries data in
XML format

Service requestor Service provider

<?php

?>

<?php

class...{

...

}

?>

<?xml ?>

<Envelope...>

<purchaseOrder>

...

...

</purchaseOrder>

</Envelope>

array(6){

[”pono”]=>

string(9)”108128476”

[”billTo”]=>

array(6){

[”name”]=>

string(12)”Tony...

...

}

}

stdClass(6){

[”pono”]=>

string(9)”108128476”

[”billTo”]=>

stdClass(6){

[”name”]=>

string(12)”Tony...

...

}

}

Chapter 2

[57]

Generally, when you call a function exposed by the service, in the way you did in the
SoapClient.php script discussed in the Building the Service Requestor section earlier,
the instance of the SoapClient class assumes that you pass arrays as the arguments
of that function.

However, in the case of the SoapClient.php mentioned here you don't
have to worry about this, since you send a simple string as the parameter
of the exposed function.

For example, the following PHP array might be used as the argument of the
placeOrder function exposed by the PO Web server described by the po_imp.wsdl
document shown in the Importing XML Schemas into WSDL Documents section earlier:

array(4) {
 ["pono"]=> string(9) "108128476"
 ["billTo"]=> array(6) {
 ["name"]=> string(12) "Tony Jamison"
 ["street"]=> string(15) "24 Johnson Road"
 ["city"]=> string(10) "Big Valley"
 ["state"]=> string(2) "VA"
 ["zip"]=> string(5) "23032"
 ["country"]=> string(2) "US"
 }
 ["shipTo"]=> array(6) {
 ["name"]=> string(13) "Janet Thomson"
 ["street"]=> string(15) "11 Maple Street"
 ["city"]=> string(12) "Small Valley"
 ["state"]=> string(2) "VA"
 ["zip"]=> string(5) "23037"
 ["country"]=> string(2) "US"
 }
 ["items"]=> array(1) {
 ["item"]=> array(2) {
 [0]=> array(3) {
 ["partId"]=> string(3) "743"
 ["quantity"]=> string(1) "4"
 ["price"]=> string(7) "10.5"
 }
 [1]=> array(3) {
 ["partId"]=> string(3) "235"
 ["quantity"]=> string(1) "7"
 ["price"]=> string(2) "15.75"
 }
 }
 }
}

SOAP Servers and Clients with PHP SOAP Extension

[58]

We could pass the variable containing this array to the placeOrder function as the
parameter like the following:

<?php
 ...
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $client = new SoapClient($wsdl);
 ...
 $result=$client->placeOrder($poarray);
 ...
?>

The SOAP software operating on the client side will transform this array into an
XML document conforming to the purchaseOrder data type definition described in
the po.xsd XML schema document shown in the Importing XML Schemas into WSDL
Documents section, thus generating a PO XML document like that you saw in the
Building the Service Requestor section earlier. This XML document is then wrapped in
an SOAP envelope and sent to the server.

On the server side, the posted document is extracted from the SOAP envelope and
by default is transformed to an instance of the stdClass built-in PHP class. You may
look into that instance with the help of the var_dump standard PHP function and
output the instance structure and data to a file as shown:

<?php

 class purchaseOrder {
 function placeOrder($po) {
 ...
 ob_start();
 var_dump($po);
 $buffer = ob_get_flush();
 file_put_contents('buffer.txt', $buffer);
 ob_end_clean();
 ...
 }
 }
?>

On inspecting the buffer.txt file you see that the instance of stdClass containing
the data received by the server is similar in structure to the array processed and
posted by the client, and contains the same actual data as that array. In this particular
example, the instance of stdClass would look as follows:

object(stdClass)#2 (4) {
 ["pono"]=> string(9) "108128476"
 ["shipTo"]=> object(stdClass)#3 (6) {
 ["name"]=> string(13) "Janet Thomson"

Chapter 2

[59]

 ["street"]=> string(15) "11 Maple Street"
 ["city"]=> string(12) "Small Valley"
 ["state"]=> string(2) "VA"
 ["zip"]=> int(23037)
 ["country"]=> string(2) "US"
 }
 ["billTo"]=> object(stdClass)#4 (6) {
 ["name"]=> string(12) "Tony Jamison"
 ["street"]=> string(15) "24 Johnson Road"
 ["city"]=> string(10) "Big Valley"
 ["state"]=> string(2) "VA"
 ["zip"]=> int(23032)
 ["country"]=> string(2) "US"
 }
 ["items"]=> object(stdClass)#5 (1) {
 ["item"]=> array(2) {
 [0]=> object(stdClass)#6 (3) {
 ["partId"]=> int(743)
 ["quantity"]=> string(1) "4"
 ["price"]=> string(7) "10.5"
 }
 [1]=> object(stdClass)#7 (3) {
 ["partId"]=> int(235)
 ["quantity"]=> string(1) "7"
 ["price"]=> string(2) "15.75"
 }
 }
 }
}

Examining the difference between the array and stdClass object discussed here,
you may notice that the latter contains fields in an order that is different from that
used in the former. Specifically, the first upper element called pono is followed by the
shipTo element in the stdClass object but by the billTo element in the array. To
understand why the order of the elements has changed, you need to come back to the
po.xsd XML schema discussed in the Importing XML Schemas into WSDL Documents
section. Looking through the schema, you may notice that the purchaseOrder XSD
type assumes that the order of the upper-level elements in its type representations
must be as follows:

1.	 pono

2.	 shipTo

3.	 billTo

4.	 items

SOAP Servers and Clients with PHP SOAP Extension

[60]

As you no doubt have guessed, the SOAP client, while processing the input array
containing the data being sent, applied the required changes to the input structure,
changing the order of the elements so that the XML document being transmitted
conforms to the purchaseOrder XSD type definition described in the po.xsd XML
schema document.

It's interesting to note that if the input array discussed here contained
some extra fields that did not have corresponding elements defined
within the purchaseOrder XSD type, the stdClass object on the server
side actually would not change. The fact is that the SOAP client not only
makes sure that the elements in the XML document being sent are in the
correct order, but also prevent unnecessary elements presented in the
input array from being included in that document.

Structuring Complex Data for Sending
Now that you know the basics of how the service requestors and services providers
based on the PHP SOAP extension handle the data being exchanged, it's a good time
to see how all this works in practice.

In this section, you will see an example of how you can prepare a complex type data
structure being sent as the argument of the function exposed by a Web service. In
the following section, you will see how to handle the received data on the service
provider side.

Suppose you are building a service requestor that will take the information to be sent
from a file holding the data in XML format. In this case, you need to create the code
that will first read an XML document from the file, and then convert the uploaded
XML document to a PHP array being specified as the argument of the function
exposed by the service provider. To read a well-formed XML document from a file
into a PHP structure that might be easily converted to an array, you might take
advantage of the simplexml_load_file PHP function that reads the XML document
from the file specified as the argument to an object of the SimpleXMLElement class.
Once you have the XML document as an instance of SimpleXMLElement, you can
convert it to an array with the help of the function as follows:

<?php
 //File: obj2Arr.php
 function obj2Arr($obj)
 {
 $result = NULL;
 if(!is_array($obj))
 {
 if($var = get_object_vars($obj))

Chapter 2

[61]

 {
 foreach($var as $key => $value)
 $result[$key] = obj2Arr($value);
 }
 else
 return $obj;
 }
 else
 {
 foreach($obj as $key => $value)
 $result[$key] = obj2Arr($value);
 }
 return $result;
 }
?>

As you can see, the obj2Arr custom function takes the object to be converted as the
argument, and may perform a number of recursive calls (calling itself), depending on
the complexity of the structure being converted.

Please note that the obj2Arr function shown above assumes that the
SimpleXMLElement object passed in as the argument represents an
XML document containing no attributes. Processing XML documents
containing attributes will be discussed in the Dealing with Attributes
section later.

With the simplexml_load_file and obj2Arr functions, the client script calling the
placeOrder function might now look as follows. It is assumed that you save this
script as SoapClient_typed.php in the WebServices/ch2 directory.

<?php
 //File: SoapClient_typed.php
 require_once "obj2Arr.php";
 $wsdl = "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $xmldoc = simplexml_load_file('purchaseOrder.xml');

 $xmlarr = obj2Arr($xmldoc);

 $client = new SoapClient($wsdl);
 try {
 print $result=$client->placeOrder($xmlarr);

 }
 catch (SoapFault $exp) {
 print $exp->getMessage();
 }
?>

SOAP Servers and Clients with PHP SOAP Extension

[62]

However, before you can test this client code you need to create the SOAP server and
the PHP handler class to handle requests coming from the client. Both are discussed
in the next section.

Converting SOAP Messages' Payloads to XML
As discussed previously, on the server side, assuming that the server is built with the
PHP SOAP extension, the exposed methods of the PHP handler class receive their
arguments carrying complex type data as instances of the stdClass class. So, in this
particular example, the placeOrder method of the purchaseOrder PHP handler
class will receive its argument as a stdClass object.

Suppose you want to convert the stdClass object received by the placeOrder
method back to XML. To handle this task, you might want to create a custom class.
Here is the code for the obj2Dom class that takes care of converting a stdClass
to XML:

<?php
class obj2Dom {
 private $dom;
 private $rootNode;
 private $arrayName;

 public function __construct($rootElmName='root')
 {
 $this->dom = new DomDocument('1.0');
 $root = $this->dom->createElement($rootElmName);
 $this->rootNode = $this->dom->appendChild($root);
 }

 private function buildDom($result, $node) {
 $attrFlag=0;
 foreach($result as $key => $value) {
 if (!is_int($key)){
 $nodeName=$key;
 }
 else {
 $nodeName=$this->arrayName;
 }
 if (!is_object($value)){
 if (is_array($value)) {
 $this->arrayName=$key;
 $this->buildDom($value,$node);
 }

Chapter 2

[63]

 else {
 $elm = $this->dom->createElement($nodeName);
 $elm = $node->appendChild($elm);
 $txt = $this->dom->createTextNode($value);
 $txt = $elm->appendChild($txt);
 }
 }
 else {
 $elm = $this->dom->createElement($nodeName);
 $elm = $node->appendChild($elm);
 $this->buildDom($value,$elm);
 }
 }
 }
 public function trans2Dom($result)
 {
 $this->buildDom($result, $this->rootNode);
 }
 public function printDomTree()
 {
 return $this->dom->saveXML();
 }
}
?>

Like the obj2Arr function discussed in the preceding section, the
obj2Dom class shown here assumes that the stdClass objects being
converted represent XML documents that do not contain attributes. In the
Dealing with Attributes section, though, you will see a modified version of
obj2Dom that can handle XML documents containing attributes.

Once you have created the obj2Dom class, you can include the file containing it in the
PHP handler script, and then use this class as follows. It is assumed that you save the
following PHP handler class in the puchaseOrder_typed.php file.

<?php
 //File purchaseOrder_typed.php
 require_once 'obj2Dom.php';

 class purchaseOrder {
 function placeOrder($po) {
 $obj = new obj2Dom('purchaseOrder');

 $obj->trans2Dom($po);

 $po=$obj->printDomTree();

 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
 throw new SoapFault("Server","Failed to connect to database");

SOAP Servers and Clients with PHP SOAP Extension

[64]

 };
 $sql = "INSERT INTO purchaseOrders VALUES(:po)";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':po', $po);
 if (!oci_execute($query)) {
 throw new SoapFault("Server","Failed to insert PO");
 };
 $msg='<rsltMsg>PO inserted!</rsltMsg>';
 return $msg;
 }
 }
?>

In the placeOrder method shown above, you first create an instance of the obj2Dom
custom class, passing 'purhaseOrder' as the argument in order to explicitly set
up the name of the root element in the XML document being built. Then, you
call the trans2Dom method of the newly created instance, passing in the value
of the argument received by the placeOrder method. As discussed previously,
placeOrder is supposed to receive the stdClass object representing the PO
document posted by a service consumer. The trans2Dom method will translate
the stdClass object received as the argument into an instance of the DomDocument
class. By calling the printDomTree method of the obj2Dom class in the next step,
you obtain the generated XML document as a string, which then is inserted into
purchaseOrders table in the database.

Now that you have created the PHP handler class that will translate an incoming
structure representing a PO XML document back into XML format, you have to
build a SOAP server that will receive and process requests coming from the client.
It is assumed that you save the following server as SoapServer_typed.php in the
WebServices/ch2 directory.

<?php
 //File: SoapServer_typed.php
 require_once "purchaseOrder_typed.php";
 $wsdl= "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $srv= new SoapServer($wsdl);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

Now you can test the client shown in the preceding section. To do this, you need to
point your browser at� http://localhost/WebServices/ch2/SoapClient_typed.
php. If everything goes as planned, you will see a PO inserted! message in your
browser. Otherwise, a SOAP fault message appears.

Chapter 2

[65]

Using PHP SOAP Extension Tracing
Capabilities
In the development and testing stage, there's often a need to look at the
incoming and outgoing SOAP messages. To look through the headers of the last
SOAP request and response, you can use the __getLastRequestHeaders and
__getLastResponseHeaders methods of a SoapClient instance respectively. To
look through the entire messages representing the last SOAP request and response,
you can use the __getLastRequest and __getLastResponse methods respectively,
as shown in the following example:

<?php
 //File: SoapClient_trace.php
 require_once 'obj2Arr.php';
 $wsdl = "http://localhost/WebServices/wsdl/po_imp.wsdl";
 $xml = simplexml_load_file('purchaseOrder.xml');
 $arr = obj2Arr($xml);
 $client = new SoapClient($wsdl, array('trace' => 1));

 try {
 print "RESULT:\n".$result=$client->placeOrder($arr)."\n";
 }
 catch (SoapFault $exp) {
 print $exp->getMessage();
 }
 print "REQUEST:\n".htmlspecialchars

 ($client->__getLastRequest())."\n";

 print "RESPONSE:\n" .htmlspecialchars

 ($client->__getLastResponse())."\n";

?>

To test the above script, you don't have to write another SOAP server or PHP
handler class—those discussed in the preceding sections will do. So, you specify the
same WSDL document as you did in the SoapClient_typed.php script discussed in
the Structuring Complex Data for Sending section earlier.

If you recall, t�� he physical part of the WSDL document describes the
concrete characteristics of the Web service, including information about
the concrete network address of the service provider.

If you execute the SoapClient_trace.php script as shown previously, it should
return the following output (��� the output has been formatted for clarity and the PO
XML document in the request has been cut down to save space):

SOAP Servers and Clients with PHP SOAP Extension

[66]

RESULT:

PO inserted!

REQUEST:

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:
 SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1=
 "http://localhost/WebServices/schema/po/">
 <SOAP-ENV:Body>
 <ns1:purchaseOrder>
 <pono>108128476</pono>

 ...

 </ns1:purchaseOrder>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

RESPONSE:

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:
 SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <body><rsltMsg>PO inserted!</rsltMsg></body>
 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Dealing with Attributes
In the preceding sections, you learned how an XML document can be transmitted via
SOAP as a complex data structure, and then converted back to an XML format
on the receiver side. It was assumed, though, that the document being transmitted
contains no attributes. This section discusses how to deal with documents
containing attributes.

On the client side, perhaps the safest way to go when it comes to dealing with an
XML document containing attributes is to first convert the attributes to elements and
then transform the document into an array, as discussed in the Structuring Complex
Data for Sending section earlier. The SOAP software converting this array to XML to
be transmitted as the payload of a SOAP message will generate an XML document
conforming to a certain XSD type, as defined in the WSDL definition for this
particular part of the message.

Chapter 2

[67]

Turning back to the po.xsd XML schema document discussed in the Importing XML
Schemas into WSDL Documents section, you might now use it as the basis for another
XML schema document, changing it a bit by adding the id attribute to the item
element. The highlighted line in the po_attr.xsd XML schema document shown
below is the only difference between this document and the po.xsd document
discussed previously (the po_attr.xsd document shown here has been cut down to
save space):

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:types1="http://localhost/WebServices/schema/po/">
 <element name="purchaseOrder">

 ...

 <complexType name="LineItemType">
 <sequence>
 <element name="partId" type="int"/>
 <element name="quantity" type="decimal"/>
 <element name="price" type="decimal"/>
 </sequence>
 <attribute name="id" type="int"/>

 </complexType>
</schema >

The full versions of the PHP scripts, WSDL definitions, XML schemas,
and other documents discussed here can be found in the downloadable
archive on the book's Web page.

Now you can call the placeOrder SOAP function, passing as the argument the
following array, which is the same as the one shown in the Exchanging Complex Data
Structures with PHP SOAP Extension section, except for the id fields added:

array(4) {
 ["pono"]=> string(9) "108128476"

 ...

 ["items"]=> array(1) {
 ["item"]=> array(2) {
 [0]=> array(3) {
 ["id"]=> string(2) "24"

 ["partId"]=> string(3) "743"

SOAP Servers and Clients with PHP SOAP Extension

[68]

 ["quantity"]=> string(1) "4"
 ["price"]=> string(7) "10.5"
 }
 [1]=> array(3) {
 ["id"]=> string(2) "25"

 ["partId"]=> string(3) "235"
 ["quantity"]=> string(1) "7"
 ["price"]=> string(2) "15.75"
 }
 }
 }
}

The following section explains how to convert attributes to elements
in the XML documents to be transmitted, so that you can generate an
array, like the one shown above, with the help of the obj2Arr function
discussed in the Structuring Complex Data for sending section previously.

When generating the payload of the message to be sent, the SOAP software will
automatically recognize the attributes in the input array and produce the appropriate
XML document. In this particular example, you will have the following document as
the payload (it has been cut down to save space):

 <ns1:purchaseOrder>

 ...

 <items>
 <item id="24">

 <partId>743</partId>
 <quantity>4</quantity>
 <price>15.5</price>
 </item>
 <item id="25">

 <partId>235</partId>
 <quantity>7</quantity>
 <price>15.75</price>
 </item>
 </items>
 </ns1:purchaseOrder>

As you can see, the SOAP software correctly generated item elements, according to
the LineItemType complex type definition described in the XML schema document.

Chapter 2

[69]

However, the most interesting thing about documents containing attributes is how
these documents are handled on the receiver side, assuming the receiver of the
message is built with the PHP SOAP extension.

When the message carrying this payload reaches the receiver (in this example, it's
the PO Web service provider), the SOAP software operating on the receiver side
will convert the payload to the following stdClass object before sending it to the
placeOrder method of the purchaseOrder PHP handler class (the object has been
cut down to save space):

object(stdClass)#2 (4) {
 ["pono"]=> string(9) "108128476"

 ...

 ["items"]=>
 object(stdClass)#5 (1) {
 ["item"]=>
 array(2) {
 [0]=>
 object(stdClass)#6 (4) {
 ["partId"]=> int(743)
 ["quantity"]=> string(1) "4"
 ["price"]=> string(7) "15.5"
 ["id"]=> int(24)

 }
 [1]=>
 object(stdClass)#7 (4) {
 ["partId"]=> int(235)
 ["quantity"]=> string(1) "7"
 ["price"]=> string(2) "15.75"
 ["id"]=> int(25)

 }
 }
 }
}

As you can see, the SOAP software operating on the SOAP server side treats
attributes like elements when processing a payload representing an XML document.
Obviously, if you now try to transform the above stdClass object back to XML,
using methods of the obj2Dom class as discussed in the Converting SOAP Messages'
Payloads to XML section earlier, you will have an XML document in which all
attributes have been converted to elements.

SOAP Servers and Clients with PHP SOAP Extension

[70]

In the following section, you will learn how to handle this problem by
applying XSLT transformations to the XML documents derived from
stdClass objects.

It's important to note that the above example shows only the case when the element
containing the attributes also contains nested elements. But, what if the element
containing the attributes represents a text node? For example, you might use the
currency name as the attribute of the price element in the purchaseOrder document
discussed here, as shown below:

 <purchaseOrder>

 ...

 <items>
 <item id="24">
 <partId>743</partId>
 <quantity>4</quantity>
 <price currency = "USD">15.5</price>

 </item>
 <item id="25">
 <partId>235</partId>
 <quantity>7</quantity>
 <price currency = "USD">15.75</price>

 </item>
 </items>
 </purchaseOrder>

The price element in the above snippet might be described by the highlighted type
definition in the po_attr_price.xsd XML schema document shown below. It is
assumed that you save this document in the WebServices/schema directory.

<?xml version='1.0'?>
<schema targetNamespace="http://localhost/WebServices/schema/po/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:types1="http://localhost/WebServices/schema/po/">
 <element name="purchaseOrder">
 <element name="purchaseOrder">
 <complexType>
 <sequence>
 <element name="pono" type="string" />
 <element name="shipTo" type="types1:AddressType" />
 <element name="billTo" type="types1:AddressType"/>
 <element name="items" type="types1:LineItemsType"/>

Chapter 2

[71]

 </sequence>
 </complexType>
 </element>
 <complexType name="AddressType">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="int"/>
 <element name="country" type="NMTOKEN" />
 </sequence>
 </complexType>
 <complexType name="LineItemsType">
 <sequence>
 <element minOccurs="0" maxOccurs="unbounded" name="item"
 type="types1:LineItemType" />
 </sequence>
 </complexType>
 <complexType name="LineItemType">
 <sequence>
 <element name="partId" type="int"/>
 <element name="quantity" type="decimal"/>
 <element name="price">

 <complexType>

 <simpleContent>

 <extension base="decimal">

 <attribute name="currency" type="string"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </sequence>
 <attribute name="id" type="int"/>
 </complexType>
</schema >

As you can see, the above document is the same as the po_attr.xsd discussed
previously, except for the highlighted definition describing the price element.

Now, if you call the placeOrder function to transmit the purchaseOrder document
shown prior to the above XML schema document, you should pass the following
array as the argument (it has been cut down to save space):

SOAP Servers and Clients with PHP SOAP Extension

[72]

object(stdClass)#2 (4) {
 ["pono"]=> string(9) "108128476"

 ...

 ["items"]=>
 array(1) {
 ["item"]=>
 array(2) {
 [0]=>
 array(4) {
 ["id"]=> string(2) "24"
 ["partId"]=> string(3) "743"
 ["quantity"]=> string(1) "4"
 ["price"]=>

 array(2) {

 ["_"]=> string(4) "15.5"

 ["currency"]=> string(3) "USD"

 }

 }
 [1]=>
 array(4) {
 ["id"]=> string(2) "25"
 ["partId"]=> string(3) "235"
 ["quantity"]=> string(1) "7"
 ["price"]=>

 array(2) {

 ["_"]=> string(5) "15.75"

 ["currency"]=> string(3) "USD"

 }

 }
 }
 }
}

Note that each price element is represented as a two-field array in which the
value of the price element is mapped to an _ (underscore) field, and the currency
attribute is mapped to the currency field.

In this example, the stdClass object generated by the SOAP server and then sent to
the placeOrder method of the purchaseOrder PHP handler class as the argument
is as follows (again, fields of the object that are unimportant to this discussion have
been omitted to save space):

Chapter 2

[73]

object(stdClass)#2 (4) {
 ["pono"]=> string(9) "108128476"

 ...

 ["items"]=>
 object(stdClass)#5 (1) {
 ["item"]=>
 array(2) {
 [0]=>
 object(stdClass)#6 (4) {
 ["partId"]=> int(743)
 ["quantity"]=> string(1) "4"
 ["price"]=>
 object(stdClass)#7 (2) {

 ["_"]=> string(4) "15.5"

 ["currency"]=> string(3) "USD"

 }

 ["id"]=> int(24)
 }
 [1]=>
 object(stdClass)#8 (4) {
 ["partId"]=> int(235)
 ["quantity"]=> string(1) "7"
 ["price"]=>
 object(stdClass)#9 (2) {

 ["_"]=> string(5) "15.75"

 ["currency"]=> string(3) "USD"

 }

 ["id"]=> int(25)
 }
 }
 }
}

You might want to convert the above stdClass object back to XML. To do this, you
might make use of the obj2Dom class discussed in the Converting SOAP Messages'
Payloads to XML section. However, before you can do that you should modify the
buildDom method of obj2Dom by adding some lines of code as shown below (the
added code is highlighted):

private function buildDom($result, $node) {
 $attrFlag=0;

 foreach($result as $key => $value) {

SOAP Servers and Clients with PHP SOAP Extension

[74]

 if (!is_int($key)){
 $nodeName=$key;
 }
 else {
 $nodeName=$this->arrayName;
 }
 if ($attrFlag==1) {

 $node->setAttribute($nodeName,$value);

 continue;

 }

 if ($nodeName=='_') {

 $txt = $this->dom->createTextNode($value);

 $txt = $node->appendChild($txt);

 $attrFlag = 1;

 continue;

 }

 if (!is_object($value)){
 if (is_array($value)) {
 $this->arrayName=$key;
 $this->buildDom($value,$node);
 }
 else {
 $elm = $this->dom->createElement($nodeName);
 $elm = $node->appendChild($elm);
 $txt = $this->dom->createTextNode($value);
 $txt = $elm->appendChild($txt);
 }
 }
 else {
 $elm = $this->dom->createElement($nodeName);
 $elm = $node->appendChild($elm);
 $this->buildDom($value,$elm);
 }
 }
 }

Now, when invoked, the buildDom method shown above will correctly handle
the _ fields in the input stdClass object, creating attributes in the appropriate
text-node elements of the resultant DOM document.

However, note that the updated obj2Dom class still doesn't provide you a mechanism
to create attributes in the resultant document when it comes to dealing with
attributes of elements containing nested elements. To handle this problem, you
might add the following method to the obj2Dom class:

Chapter 2

[75]

public function elmToAttr($nodeName)
{
 $items = $this->dom->getElementsByTagName($nodeName);
 $count= $items->length;
 for ($i = 0; $i < $count; $i++) {
 $node = $items->item(0);
 $parent = $node->parentNode;
 $parent->setAttribute($node->nodeName, $node->nodeValue);
 $parent->removeChild(
 $parent->getElementsByTagName($nodeName)->item(0));
 }
}

The above method takes the name of the element to be processed as the parameter. If
the DOM tree contains more than one element with the name specified, this method
will process each of these elements, converting such an element to an attribute of its
parent element. You will see this method in action in the following section, when
converting id elements in the item constructs to id attributes.

Transforming XML Documents with XSLT
As you learned in the preceding section, if you need to send an XML document
containing attributes from a SOAP node built with the PHP SOAP extension, then
you first have to convert that document into an array in which both the attributes
and elements of the document are represented as fields. To build such an array on
an attribute‑containing XML document, you might find it useful first to transform
that document into the one containing no attributes but only elements. This is where
XSLT (eXtensible Stylesheet Language Transformations) may come in very handy.

To learn more about XSLT, you can visit the following resource:
http://www.w3.org/TR/xslt.

Suppose you need to transform the following PO XML document, say, saved as
po.xml, so that the result document can be easily translated into an array to be
passed as the argument to the placeOrder function exposed by the PO Web service.

<?xml version="1.0" ?>
<purchaseOrder>
 <pono>108128476</pono>

 ...

 <items>
 <item id="24">

SOAP Servers and Clients with PHP SOAP Extension

[76]

 <partId>743</partId>
 <quantity>4</quantity>
 <price currency="USD">15.5</price>

 </item>
 <item id="25">

 <partId>235</partId>
 <quantity>7</quantity>
 <price currency="USD">15.75</price>

 </item>
 </items>
 </purchaseOrder>

Now, to transform this document into another one that in turn can be easily
converted into an array to be passed to the placeOrder function as the argument,
you can create an XSL stylesheet that might look as follows. It is assumed that you
save this XSL stylesheet as AttrsToElms.xsl in the WebServices/ch2 directory.

<?xml version='1.0' encoding='utf-8' ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:output method="xml"/>
 <xsl:template match="purchaseOrder">
 <purchaseOrder>
 <xsl:apply-templates/>
 </purchaseOrder>
 </xsl:template>
 <xsl:template match="@*|*|text()">
 <xsl:copy>
 <xsl:apply-templates select="@*|*|text()"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="items">
 <items>
 <xsl:for-each select="item">
 <xsl:element name="{name()}">
 <xsl:for-each select="@*">

 <xsl:element name="{name()}">

 <xsl:value-of select="."/>

 </xsl:element>

 </xsl:for-each>

 <xsl:for-each select="*">
 <xsl:choose>

 <xsl:when test="name()='price'">

 <price>

Chapter 2

[77]

 <_>
 <xsl:value-of select="."/>
 </_>
 <xsl:for-each select="@*">
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 </price>
 </xsl:when>
 <xsl:otherwise>
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </xsl:element>
 </xsl:for-each>
 </items>
 </xsl:template>
</xsl:stylesheet>

In the first highlighted block you transform all the attributes of the item element
being processed into nested elements of this item element.

In the second highlighted block you process the elements nested in the item
elements, performing conditional processing with the xsl:choose construct.
Specifically, when the nested element being processed is price, all its attributes
are transformed into elements nested in price, and its value is wrapped in
the _ element. Otherwise, the item's nested element being processed remains the
same as before.

To test the XSL stylesheet, create the following script:

<?php
 //File: XSLTest.php
 $xml = new DOMDocument();
 $xml->load('po.xml');
 $xsl = new DOMDocument();
 $xsl->load('AttrsToElms.xsl');
 $proc = new XSLTProcessor;
 $proc->importStyleSheet($xsl);
 print $proc->transformToXML($xml);
?>

SOAP Servers and Clients with PHP SOAP Extension

[78]

If you execute this script, it should produce the following document:

<?xml version="1.0" ?>
<purchaseOrder>
 <pono>108128476</pono>

 ...

 <items>
 <item>
 <id>24</id>

 <partId>743</partId>
 <quantity>4</quantity>
 <price>

 <_>15.5</_>

 <currency>USD</currency>

 </price>

 </item>
 <item>
 <id>25</id>

 <partId>235</partId>
 <quantity>7</quantity>
 <price>

 <_>15.75</_>

 <currency>USD</currency>

 </price>

 </item>
 </items>
 </purchaseOrder>

If you see the above document in your browser, it means the XSL transformation
performed within the XSLtest.php script has been successfully applied, and
everything works as expected. If so, you can move on and use this mechanism in a
SOAP client script to transform the po.xml document shown at the beginning of this
section to the above XML document, the one that is then translated into the array to
be passed to the placeOrder function as the argument.

For example, you might create the following script and save it as
SoapClient_attr_price.php in the WebServices/ch2 directory.

<?php
 //File: SoapClient_attr_price.php
 require_once "obj2Arr.php";
 $wsdl = "http://localhost/WebServices/wsdl/po_attr_price.wsdl";

Chapter 2

[79]

 $xml = new DOMDocument();

 $xml->load('po.xml');

 $xsl = new DOMDocument();

 $xsl->load('AttrsToElms.xsl');

 $proc = new XSLTProcessor;

 $proc->importStyleSheet($xsl);

 $poxml = $proc->transformToXML($xml);

 $xmldoc = simplexml_load_string($poxml);

 $xmlarr = obj2Arr($xmldoc);
 $client = new SoapClient($wsdl);
 try {
 print $result=$client->placeOrder($xmlarr);
 }
 catch (SoapFault $exp) {
 print $exp->getMessage();
 }
?>

As you can see, the above script starts by performing the XSL transformation,
the same as the one you saw in the XSLTest.php script earlier. Next, it loads the
resultant document into a SimpleXML object, which is then transformed into an
array being passed to the placeOrder function as the argument.

However, before you can execute the above SOAP client script you need to create a
SOAP server and PHP handle class to handler responses from the client.

When creating the SoapServer_attr_price.php SOAP server script, you can use the
SoapServer.php script discussed in the Building the SOAP Server section as the basis,
changing the included PHP handler class to purchaseOrder_attr_price.php and
the WSDL document location to http://localhost/WebServices/wsdl/po_attr_
price.wsdl.

If you don't have the po_attr_price.wsdl created, you should build
it now. As the base, you can use the po_imp.wsdl document discussed
in the Importing XML Schemas into WSDL Documents section, importing
the po_attr_price.xsd XML schema discussed in the Dealing with
Attributes section and pointing the soap:address location attribute
to http://localhost/WebServices/ch2/SOAPServer_attr_
price.php.

SOAP Servers and Clients with PHP SOAP Extension

[80]

The purchaseOrder_attr_price.php script containing the handler class should
look as follows:

<?php
 //File purchaseOrder_attr_price.php
 require_once 'obj2Dom.php';
 class purchaseOrder {
 function placeOrder($po) {
 $obj = new obj2Dom('purchaseOrder');

 $obj->trans2Dom($po);

 $obj->elmToAttr('id');

 $po=$obj->printDomTree();

 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
 throw new SoapFault("Server","Failed to connect to database");
 };
 $sql = "INSERT INTO purchaseOrders VALUES(:po)";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':po', $po);
 if (!oci_execute($query)) {
 throw new SoapFault("Server","Failed to insert PO");
 };
 $msg='<rsltMsg>PO inserted!</rsltMsg>';
 return $msg;
 }
 }
?>

As you can see, the placeOrder function is similar to the one in the
purchaseOrder_typed.php script discussed in the Converting SOAP Messages'
Payloads to XML section earlier. The only difference is that you utilize the elmToAttr
method of the obj2Dom instance here, passing 'id' as the argument.

As an alternative to the elmToAttr method here, you might apply an
XSL transformation to the resultant XML document returned by the
printDomTree method, converting id elements into attributes, as they
were in the original document.

Now, if you execute the SoapClient_attr_price.php script, the placeOrder
function should insert into the purchaseOrders table the po.xml document shown
at the beginning of this section.

Chapter 2

[81]

Extending PHP SOAP Extension
Predefined Classes
You can extend predefined classes of t�� he PHP SOAP extension as needed. Here is an
example of how you might extend the SoapServer class. It is assumed that you save
this script as SoapServer_ext.php in the in the WebServices\ch2:

<?php
 //File: SoapServer_ext.php
 require_once "purchaseOrder.php";
 class MySoapServer extends SoapServer {
 var $client;
 function __construct($wsdl1, $wsdl2) {
 parent::__construct($wsdl1);
 $this->client = new SoapClient($wsdl2);
 }
 function handle() {
 ob_start();
 parent::handle();
 $buf=ob_get_contents();
 ob_get_flush();
 $buf=html_entity_decode($buf);
 $env = simplexml_load_string($buf);
 $rslt= $env->xpath('//rsltMsg');
 if ($rslt==null) {
 $rslt= $env->xpath('//faultstring');
 }
 $this->client->regOrder(htmlentities((string) $rslt[0]));
 }
 }
 $wsdl1= "http://localhost/WebServices/wsdl/po_ext.wsdl";
 $wsdl2= "http://localhost/WebServices/wsdl/reg.wsdl";
 $srv= new MySoapServer($wsdl1, $wsdl2);
 $srv->setClass("purchaseOrder");
 $srv->handle();
?>

The MySoapServer class extending the SoapServer predefined class overrides the
constructor and the handle method of the parent class. The overridden constructor
takes links to the two WSDL documents as the parameters, and creates a SoapClient
instance that is then used in the overridden handle method to invoke the regOrder
SOAP function.

SOAP Servers and Clients with PHP SOAP Extension

[82]

Before you put this SOAP server script into action, you have to create a few other
scripts and documents. First of all, make sure to create the po_ext.wsdl and reg.
wsdl documents used here.

To create the po_ext.wsdl document, you can use the po.wsdl file discussed in the
Designing the WSDL Document section as the base. The only thing you have to change
is the value of the location attribute in the soap:address element within the
service definition of the document. In particular, you should specify the following
URL: http://localhost/WebServices/ch2/SOAPServer_ext.php. In the case of
reg.wsdl, you should specify the following value for the soap:address location
attribute: http://localhost/WebServices/ch2/SOAPServer_reg.php.

The next step is to create the SOAPServer_reg.php SOAP server script that will be
automatically invoked each time the overridden handle method of MySoapServer is
called. The SOAPServer_reg.php should look like the following:

<?php
 //File: SoapServer_reg.php
 $wsdl= "http://localhost/WebServices/wsdl/reg.wsdl";
 require_once "reg.php";
 $srv = new SoapServer($wsdl);
 $srv->setClass("reg");
 $srv->handle();
?>

As you can see, the above SOAP server exposes methods of the reg custom class. So,
make sure to create the reg class. It might look like the following:

<?php
 //File reg.php
 class reg {
 function regOrder($reginfo) {
 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
 throw new SoapFault("Server","Failed to connect to
 database");
 };
 $sql="INSERT INTO regDocs VALUES(SYSDATE, :reginfo)";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':reginfo', $reginfo);
 if (!oci_execute($query)) {
 throw new SoapFault("Server","Failed to execute query");
 };
 $msg='Ok!';
 return $msg;
 }
 }
?>

Chapter 2

[83]

Looking through this code, you may notice that the regOrder method takes one
parameter and inserts it into the regDocs database table. So you need to create the
regDocs table before you can use regOrder. This can be done from SQL*Plus by
issuing the following statements:

CONN xmlusr/xmlusr;

CREATE TABLE regDocs(
 dateTime DATE,
 msg VARCHAR2(100)
);

Finally, you have to create the SoapClient_ext.php script that will call the
placeOrder method of the purchaseOrder class exposed by the SoapServer_ext.
php SOAP server script. The SoapClient_ext.php is almost the same as the
SoapClient.php script discussed in the Building the Service Requestor section, except
for the WSDL document specified. In the case of SoapClient_ext.php, you should
specify http://localhost/WebServices/wsdl/reg.wsdl as the WSDL document.

Now, if you execute the SoapClient_ext.php script, you should see a PO inserted!
message. Then, you can check out the regDocs table by issuing the following
statements from SQL*Plus:

CONN xmlusr/xmlusr;

SELECT * FROM regDocs;

The above should return output that might look as follows:

DATETIME MSG

02-APR-07 PO inserted!

Defining Parameter-Driven Operations
As mentioned in Chapter 1, u��� sing parameter-driven service operations allows you to
invoke the required piece of underlying logic depending on the arguments passed in.
So, you can expose a single operation—passing parameters identifying what actually
has to be done. This section shows a simple example of using this technique. You'll
build a Web service that exposes a single function, namely getOrder. This function
takes two parameters: the ID of a purchaseOrder and the parameter identifying
what you want to receive: the document itself or its status.

SOAP Servers and Clients with PHP SOAP Extension

[84]

To start with, you need to create a database table to store the orders' status
information. Here are the statements you should issue from SQL*Plus:

CONN xmlusr/xmlusr;

CREATE TABLE poStatusInfo(
 pono VARCHAR2(9),
 status VARCHAR2(15)
);

INSERT INTO poStatusInfo VALUES(

 '108128476',

 'shipped'

);

COMMIT;

The next step is to create the underlying service logic. To achieve this, create the
following class and save it in the orderInfo.php file:

<?php
 //File orderInfo.php
 class orderInfo {
 function getOrder($pono, $par) {
 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/XE')){
 throw new SoapFault("Server","Failed to connect to
 database");
 };
 switch ($par) {

 case 'doc':

 $sql="SELECT doc FROM purchaseOrders WHERE

 extractValue(XMLType(doc), '/purchaseOrder/pono')=:pono

 AND rownum=1";

 break;

 case 'status':

 $sql="SELECT status FROM poStatusInfo WHERE pono=:pono";

 break;

 }

 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':pono', $pono);

Chapter 2

[85]

 if (!oci_execute($query)) {
 throw new SoapFault("Server","Failed to execute query");
 };
 oci_fetch($query);
 $rslt = oci_result($query, strtoupper($par));
 return $rslt;
 }
 }
?>

As you can see, orderInfo uses a different SQL statement querying the database,
depending on the value passed in with the second parameter.

Next, you need to create the WSDL document describing the Web service discussed
here. Here is the WSDL document being used in this example. It is assumed that you
save it as po_params.wsdl in the WebServices/wsdl directory:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poInfoService"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace=
 "http://localhost/WebServices/wsdl/poInfo">
 <message name="getOrderInfoInput">
 <part name="pono" element="xsd:string"/>

 <part name="par" element="xsd:string"/>

 </message>
 <message name="getOrderInfoOutput">
 <part name="body" element="xsd:string"/>
 </message>
 <portType name="poInfoServicePortType">
 <operation name="getOrder">
 <input message="tns:getOrderInfoInput"/>
 <output message="tns:getOrderInfoOutput"/>
 </operation>
 </portType>
 <binding name="poInfoServiceBinding"
 type="tns:poInfoServicePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getOrder">
 <soap:operation
 soapAction="http://localhost/WebServices/ch2/getOrder"/>

SOAP Servers and Clients with PHP SOAP Extension

[86]

 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="poInfoService">
 <port name="poInfoServicePort"
 binding="tns:poInfoServiceBinding">
 <soap:address
 location="http://localhost/WebServices/ch2/SOAPServer_params.php"/>
 </port>
 </service>
</definitions>

Note that the getOrderInfoInput message in the above document consists of
two parts that represent parameters of the getOrder operation described in
the document.

To expose the getOrder method of the orderInfo class, you use the following SOAP
server script, saved as SOAPServer_params.php:

<?php
//File: SoapServer_params.php
require_once "orderInfo.php";
$wsdl= "http://localhost/WebServices/wsdl/po_params.wsdl";
$srv= new SoapServer($wsdl);
$srv->setClass("orderInfo");
$srv->handle();
?>

Once you've done all that, you can test the Web service. To do this, you might build
and then execute the following SOAP client.

<?php
 //File: SoapClient_params.php
 $wsdl = "http://localhost/WebServices/wsdl/po_params.wsdl";
 $client = new SoapClient($wsdl);
 $pono='108128476';
 $par='doc';
 try {
 print $result=$client->getOrder($pono, $par);
 }
 catch (SoapFault $exp) {
 print $exp->getMessage();
 }
?>

Chapter 2

[87]

When executed, this script should output the entire PO XML document whose pono
is 108128476. However, if you specify $par='status' in the above code, you will
get only the message saying shipped.

Summary
As you have learned in this chapter, creating service providers and service
requestors with the PHP SOAP extension is quite easy in most cases—you simply
manipulate predefined SOAP classes. Things become a bit more complicated when
it comes to transmitting complex type data—especially if you are dealing with
XML documents whose elements contain attributes. This is where intermediate
transformations are required. We looked at how to employ a custom PHP class to
perform such transformations and how to use standard XSLT mechanism.

In this chapter, you also learned how to extend predefined classes of the PHP SOAP
extension and how standard methods of these classes can be overridden to suit the
needs of your application. The chapter wrapped up by explaining how to build Web
services supporting parameter-driven operations.

