
Specification of Operating System
 V4.0.0

R4.0 Rev 1

Document Title Specification of Operating
System

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 034
Document Classification Standard

Document Version 4.0.0
Document Status Final
Part of Release 4.0
Revision 1

Document Change History
Date Version Changed by Change Description
30.11.2009 4.0.0 AUTOSAR

Administration
 Extension of services (Chapter 12)
 States in OS- Applications
 Active termination of other OS-

Applications in possible (Chapter8)
 Legal disclaimer revised
 Chapter 10.3 revised

15.01.2009 3.1.0 AUTOSAR
Administration

 Changes in OS configuration:
- removed "OsAppModeId"

Parameter from
OsAppModeContainer

added optional references from
OsAppModeContainer to OsAlarm,
OsTask and OsScheduleTable

04.08.2008 3.0.2 AUTOSAR
Administration

Legal Disclaimer revised

17.04.2008 3.0.1 AUTOSAR
Administration

 Added “OsScheduleTableDuration”
parameter to configuration specification
chapter

07.12.2007 3.0.0 AUTOSAR
Administration

 Changed methods for timing protection
 Moved configuration from OIL to

AUTOSAR XML
 Clarrified description for

synchronization and schedule tables
 Document meta information extended
 Small layout adaptations made

1 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Document Change History
Date

2 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Version Changed by Change Description
31.01.2007 2.1.0 AUTOSAR

Administration
 Added support for

SoftwareFreeRunningTimer (SWFRT)
incl. 2 new APIs

 Added API to start a schedule table
synchron

 Misc. Corrections, Clarification and
further explanations

 Legal disclaimer revised

 Release Notes added
 “Advice for users” revised
 “Revision Information” added

28.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

 Major changes in chapter 10
 Structure of document changed

partly
 Other changes see chapter 14

28.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Table of Content

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations ... 9

2.1 Glossary of Terms.. 9

3 Related documentation.. 13

3.1 Input documents... 13
3.2 Related standards and norms .. 14

3.2.1 OSEK/VDX.. 14
3.2.2 HIS .. 14
3.2.3 ISO/IEC... 14

3.3 Company Reports, Academic Work, etc... 15

4 Constraints and assumptions .. 16

4.1 Existing Standards ... 16
4.2 Terminology ... 16
4.3 Interaction with the RTE ... 16
4.4 Operating System Abstraction Layer (OSAL)... 17
4.5 Limitations .. 18

4.5.1 Hardware .. 18
4.5.2 Programming Language.. 18
4.5.3 Miscellaneous ... 19

4.6 Applicability to car domains.. 19

5 Dependencies to other modules.. 20

5.1 File structure .. 20
5.1.1 Code file structure ... 20
5.1.2 Header file structure.. 20

6 Requirements Traceability... 22

6.1 General Requirements on Basic Software Modules 22
6.2 Requirements on Software Free-Running Timer.. 27
6.3 AUTOSAR SRS OS Requirements .. 28
6.4 AUTOSAR SWS Service Requirements to API .. 29

7 Functional specification ... 31

7.1 Core OS ... 31
7.1.1 Background & Rationale ... 31
7.1.2 Requirements.. 31

7.1.2.1 Restrictions on OSEK OS .. 31
7.1.2.2 Undefined Behaviour in OSEK OS... 32
7.1.2.3 Extensions to OSEK OS .. 33

7.2 Software Free Running Timer .. 34
7.3 Schedule Tables... 35

7.3.1 Background & Rationale ... 35
7.3.2 Requirements.. 35

4 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.3.2.1 Structure of a Schedule Table.. 35

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.3.2.2 Constraints on Expiry Points .. 36
7.3.2.3 Processing Schedule Tables.. 36
7.3.2.4 Repeated Schedule Table Processing... 38
7.3.2.5 Controlling Schedule Table Processing 38

7.4 Schedule Table Synchronization.. 41
7.4.1 Background & Rationale ... 41
7.4.2 Requirements.. 43

7.4.2.1 Implicit Synchronization ... 43
7.4.2.2 Explicit Synchonization .. 44
7.4.2.3 Performing Synchronization ... 48

7.5 Stack Monitoring Facilities.. 50
7.5.1 Background & Rationale ... 50
7.5.2 Requirements.. 51

7.6 OS-Application ... 51
7.6.1 Background & Rationale ... 51
7.6.2 Requirements.. 53

7.7 Protection Facilities .. 55
7.7.1 Memory Protection .. 55

7.7.1.1 Background & Rationale .. 55
7.7.1.2 Requirements... 56

7.7.2 Timing Protection .. 57
7.7.2.1 Background & Rationale .. 57
7.7.2.2 Requirements... 61
7.7.2.3 Implementation Notes .. 62

7.7.3 Service Protection ... 63
7.7.3.1 Invalid Object Parameter or Out of Range Value 63
7.7.3.2 Service Calls Made from Wrong Context 64
7.7.3.3 Services with Undefined Behaviour ... 65
7.7.3.4 Service Restrictions for Non-Trusted OS-Applications................. 67
7.7.3.5 Service Calls on Objects in Different OS-Applications 68

7.7.4 Protecting the Hardware used by the OS.. 68
7.7.4.1 Background & Rationale .. 68
7.7.4.2 Requirements... 69
7.7.4.3 Implementation Notes .. 69

7.7.5 Providing »Trusted Functions«.. 69
7.7.5.1 Background & Rationale .. 69
7.7.5.2 Requirements... 70

7.8 Protection Error Handling ... 70
7.8.1 Background & Rationale ... 70
7.8.2 Requirements.. 71

7.9 System Scalability .. 73
7.9.1 Background & Rationale ... 73
7.9.2 Requirements.. 74

7.10 Hook Functions .. 75
7.10.1 Background & Rationale ... 75
7.10.2 Requirements.. 75

7.11 Error classification .. 76
7.12 Debug support.. 77

8 API specification.. 78
5 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.1 Constants ... 78
8.1.1 Error codes of type StatusType... 78

8.2 Macros ... 78
8.3 Type definitions .. 78

8.3.1 ApplicationType (for OS-Applications) .. 78
8.3.2 ApplicationStateType .. 78
8.3.3 ApplicationStateRefType... 79
8.3.4 TrustedFunctionIndexType ... 79
8.3.5 TrustedFunctionParameterRefType .. 79
8.3.6 AccessType... 79
8.3.7 ObjectAccessType .. 79
8.3.8 ObjectTypeType.. 79
8.3.9 MemoryStartAddressType... 79
8.3.10 MemorySizeType .. 80
8.3.11 ISRType .. 80
8.3.12 ScheduleTableType .. 80
8.3.13 ScheduleTableStatusType .. 80
8.3.14 ScheduleTableStatusRefType... 80
8.3.15 CounterType ... 80
8.3.16 ProtectionReturnType ... 81
8.3.17 RestartType... 81
8.3.18 PhysicalTimeType... 81

8.4 Function definitions .. 81
8.4.1 GetApplicationID ... 81
8.4.2 GetISRID... 82
8.4.3 CallTrustedFunction .. 82
8.4.4 CheckISRMemoryAccess ... 84
8.4.5 CheckTaskMemoryAccess.. 84
8.4.6 CheckObjectAccess .. 85
8.4.7 CheckObjectOwnership .. 86
8.4.8 StartScheduleTableRel ... 87
8.4.9 StartScheduleTableAbs .. 88
8.4.10 StopScheduleTable... 89
8.4.11 NextScheduleTable... 89
8.4.12 StartScheduleTableSynchron.. 91
8.4.13 SyncScheduleTable .. 92
8.4.14 SetScheduleTableAsync ... 93
8.4.15 GetScheduleTableStatus .. 94
8.4.16 IncrementCounter ... 95
8.4.17 GetCounterValue .. 96
8.4.18 GetElapsedValue .. 97
8.4.19 TerminateApplication .. 97
8.4.20 AllowAccess .. 99
8.4.21 GetApplicationState .. 99

8.5 Hook functions.. 101
8.5.1 Protection Hook... 101
8.5.2 Application specific StartupHook... 101
8.5.3 Application specific ErrorHook .. 102
8.5.4 Application specific ShutdownHook .. 102

6 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9 Sequence diagrams... 104

9.1 Sequence chart for calling trusted functions... 104
9.2 Sequence chart for usage of ErrorHook ... 105
9.3 Sequence chart for ProtectionHook.. 106
9.4 Sequence chart for StartupHook .. 107
9.5 Sequence chart for ShutdownHook.. 108

10 Configuration Specification .. 109

10.1 How to read this chapter .. 109
10.1.1 Configuration and configuration parameters 109
10.1.2 Variants... 109
10.1.3 Containers... 110
10.1.4 Rules for paramters... 110

10.2 Containers and configuration parameters .. 110
10.2.1 Variants... 110

10.3 Published Information... 138

11 Generation of the OS... 139

11.1 Read in configuration ... 139
11.2 Consistency check ... 139
11.3 Generating operating system ... 140

12 Application Notes... 142

12.1 Hooks ... 142
12.2 Providing Trusted Functions... 142
12.3 Migration hints for OSEKtime OS users ... 144
12.4 Software Components and OS-Applications .. 146
12.5 Global Time Synchronization ... 147
12.6 Working with FlexRay... 147
12.7 Migration from OIL to XML ... 148
12.8 Migrating RES_SCHEDULER in AUTOSAR OS...................................... 148
12.9 Debug support.. 149

13 AUTOSAR Service implemented by the OS .. 150

13.1 Scope of this Chapter... 150
13.1.1 Package .. 150

13.2 Overview .. 150
13.3 Specification of the Ports and Port Interfaces .. 151

13.3.1 Data Types and Port Interface .. 151
13.3.1.1 General Approach.. 151
13.3.1.2 Data Types... 151
13.3.1.3 Port Interface ... 151
13.3.1.4 Ports .. 152

14 Outlook on Memory Protection Configuration .. 153

14.1 Configuration Approach.. 153

15 Changes to Release 3.0/3.1 .. 154

7 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

 is configured and scaled statically
 is amenable to reasoning of real-time performance
 provides a priority-based scheduling policy
 provides protective functions (memory, timing etc.) at run-time
 is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary Oss
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary Oss, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL).

This document uses the industry standard OSEK OS [14] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

8 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

2 Acronyms and abbreviations

9 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Abbreviation Description
API Application Programming Interface
BSW Basic Software
BSWMD Basic Software Module Description
COM Communication
ECU Electronic Control Unit
HIS Hersteller Initiative Software
ISR Interrupt Service Routine
MCU Microcontroller Unit
MPU Memory Protection Unit
OIL OSEK Implementation Language
OS Operating System
OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
SWC Software Component
SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term: Definition
Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application

has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.
An operating system object that registers a count in ticks. There are two types of
counters:

Counter

Hardware Counter A counter that is advanced by hardware (e.g. timer).
The count value is maintained by the peripheral “in
hardware”.

Software Counter A counter which is incremented by making the
IncrementCounter() API call (see OS399). The
count value is maintained by the operating system “in
software”.

Deadline The time at which a Task/Category 2 ISR must reach a certain point during its
execution defined by system design relative to the stimulus that triggered
activation. See Figure 2.1

Delay The number of ticks between two adjacent expiry points on a schedule table.
A pair of expiry points X and Y are said to be adjacent when:

 There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset

 X and Y are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation The minimum number of ticks between the current position on an explicitly
synchronized schedule table and the value of the synchronization count modulo
the duration of the schedule table.

Duration The number of ticks from a notional zero at which a schedule table wraps.
Execution Time Tasks:

The net time a task spends in the RUNNING state without entering the
SUSPENDED or WAITING state excluding all preemptions due to ISRs

Specification of Operating System
 V4.0.0

R4.0 Rev 1

which preempt the task. An extended task executing the WaitEvent()
API call to wait on an event which is already set notionally enters the
WAITING state. For multiple activated basic tasks the net time is per
activation of a task.

ISRs:
The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget Maximum permitted execution time for a Task/ISR.

10 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.

Expiry Point

Initial Expiry Point The expiry point with the smallest offset
Final Expiry Point The expiry point with the largest offset
A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions

Hook Function

Application-specific Hook functions within the scope of an individual OS-
Application.

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset The smallest expiry point offset on a schedule table. This can be zero.

Interarrival Time Basic Tasks
The time between successively entering the READY state from the
SUSPENDED state. Activation of a task always represents a new arrival.
This applies in the case of multiple activations, even if an existing
instance of the task is in the RUNNING or READY state.

Extended Tasks:
The time between successively entering the READY state from the
SUSPENDED or WAITING states. Setting an event for a task in the
WAITING state represents a new arrival if the task is waiting on the
event. Waiting for an event in the RUNNING state which is already set
represents a new arrival.

ISRs:
The time between successive occurrences of an interrupt.

See Figure 2.1.
Interrupt Lock Time The time for which a Task/ISR executes with Category 1 interrupts

disabled/suspended and/or Category 2 interrupts disabled/suspended .
Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the Final Expiry Point offset and the duration on a
schedule table in ticks. This value defines the delay from the Final Expiry Point to
the logical end of the schedule table for single-shot and “nexted” schedule tables.

Forced OS-
Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks,
disables interrupts, etc., which are associated to the OS-Application. OS-
Application and internal variables are potentially left in an undefined state.

Forced
Termination

The OS terminates the Task/Category 2 ISR and does ”unlock” its held
resources. For details see OS108 and OS109.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Linker File File containing linking settings for the linker. The syntax of the linker file depends
on the specific linker and, consequently, definitions are stored “linker-specific” in
the linker file.

Lock Budget Maximum permitted Interrupt Lock Time or Resource Lock Time.
Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.
Note that some devices may realise the functionality of an MPU in an MMU.
Describes the permissions available on a processor.
Privileged In general, in »privileged mode« unrestricted access is

available to memory as well as the underlying hardware.

Mode

Non-privileged In »non-privileged mode« access is restricted.

Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is
equal to OsCounterMaxAllowedValue +1 ticks of the counter.
A collection of OS objects
Trusted An OS-Application that is executed in privileged mode and has

unrestricted access to the API and hardware resources. Only
trusted applications can provide trusted functions.

OS-Application

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Applicaton-specific hook.

OS Service OS services are the API of the operating system.
Systematic error in the software of an OS-Application.
Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Timing fault A protection error that violates the timing protection.

Illegal service A protection error that violates the service protection, e.g.
unauthorized call to OS service.

Protection Error

Hardware exception division by zero, illegal instruction etc.

Resource Lock
Time

The time an OSEK resource is held by a Task/ISR (excluding the preemptions of
the Task/ISR by higher prior Tasks/ISRs).

Response Time The time between a Task/ISR being made ready to execute and generating a
specified response. The time includes all preemptions. See Figure 2.1

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,
the OS activates the configured OsRestartTask.

Scalability Class The features of the OS (e.g. Memory Protection or Timing Protection), described
by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are
named scalability classes. For details see Chapter 7.9

Schedule Table Encapsulation of a statically defined set of expiry points.
Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.
From the linker perspective, two different sides can be distinguished:
Input section

11 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

memory section in an input object file of the linker.

Section

Output section memory section in an output object file of the linker.
Set (of OS objects) This document uses the term set, indicating a collection of the same type of OS

objects, in the strict mathematical sense, i.e.:
- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)

Symbol Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Start symbol Tags the start of a memory section
End symbol Tags the end of a memory section

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

The “Synchronization Counter”, distinct from an OS counter object, is an external
counter, external to the OS, against which expiry points of a schedule table are
synchronized
A Task is the object which executes (user) code and which is managed by the
OS. E.g. the OS switches between different Tasks (“schedules”). There are 2
types of Tasks; for more details see [14].
Basic Task A Task which can not block by itself. This means that it can not

wait for (OS) event(s).

Task

Extended Task A Task which can block by itself and wait for (OS) event(s).
Time Frame The minmum inter-arrival time for a Task/ISR.
Trusted Function A service provided by a trusted OS-Application that can be used by other OS-

Applications (trusted or non-trusted).
Worst case
execution time
(WCET)

The longest possible execution time.

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

12 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 152 3 4 5 6 7 8 9 10 110 1

High

LOW’s Inter-arrival time

16 17

LOW’s Deadline

LOW’s Response Time

High High

Low Low Low Low

18 19 20 21 22 23 24

Low

LOW’s Execution Time

Task HIGH and Task
LOW activated

Task LOW terminates
Task LOW activated
again

Figure 2.1: Definition of Timing Terminology

Specification of Operating System
 V4.0.0

R4.0 Rev 1

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[5] Requirements on Software FreeRunningTimer
AUTOSAR_SRS_FreeRunningTimer.pdf

[6] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[7] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] Specification of Multi-Core OS Architecture,
AUTOSAR_SWS_MultiCoreOS.pdf

[13] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

13 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

3.2 Related standards and norms

3.2.1 OSEK/VDX

The OSEK/VDX specifications are publicly available from www.osek-vdx.org

[14] Operating System

Version 2.2.3
17th February 2005

[15] Time-Triggered Operating System

Version 1.0
24th July 2001

[16] System Generation OIL: OSEK Implementation Language

Version 2.5
1st July 2004

[17] OSEK RunTime Interface (ORTI) Part A: Language Specification

Version 2.2
14th November 2005

[18] OSEK Run Time Interface (ORTI) Part B: OSEK Objects and Attributes
Version 2.2
25th November 2005

[19] Binding Specification

Version 1.4.2
15th July 2004

3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[20] Requirements for Protected Applications under OSEK

Version 1
25th September 2002.

[21] OSEK OS Extensions for Protected Applications

Version 1.0
27th July 2003

3.2.3 ISO/IEC

[22] ISO/IEC 9899:1990 Programming Language – C

14 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

(Remark: The international ISO standard ISO/IEC 9899:1990, also sometimes simply
called »C90«, describes the language C. It was introduced in 1990 and replaced the
ANSI C standard that was introduced only one year before, that’s why it is also called
»C89«. C89 differs from ISO/IEC 9899:1990 essentially only by the copyright note.)

[23] ISO/IEC 9899:1999 Programming Language – C

(Remark: A revised version of the standard was published in 1999. It is officially
ISO/IEC 9899:1999, but is more often referred to as »C99«.)

3.3 Company Reports, Academic Work, etc.

[24] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058_02
DaimlerChrysler AG

15 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

 OSEK OS [14] provides a sufficiently flexible scheduling policy to schedule

AUTOSAR systems.
 OSEK OS [14] is a mature specification and implementations are used in millions

of ECUs worldwide.
 OSEK OS [14] does not provide sufficient support for isolating multi-source

software components at runtime.
 OSEK OS [14] does not provide sufficient runtime support for demonstrating the

absence of some classes of fault propagation in a safety-case.
 OSEKtime OS [15] and the HIS Protected OSEK [21] are immature specifications

that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.
16 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and ISRs
that are scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

17 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

4.5 Limitations

4.5.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

 interrupt control registers
 processor status words
 stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

 Memory Protection: A hardware memory protection unit is required. All memory

accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

 Time Protection: Timer Hardware for monitoring execution times and arrival rates.

 »Privileged« and »non-privileged« modes on the MCU: to protect the OS against

internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

 Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

18 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

4.5.2 Programming Language

The API of the operating system is defined as C89 [22] function calls or macros. If
other languages are used they must adapt to the C interface. This is because C99
[23] allows for internal dynamic memory allocation during subroutine calls. Most
automotive applications are static (non-heap based).

Specification of Operating System
 V4.0.0

R4.0 Rev 1

4.5.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

This specification handles only single core MCUs (this means one single thread of
execution at one time). If you need support for multi-core MCUs please see [12].

If you are using a multi processor system and want to use this operating system,
each processor has to run its own operating system. (e.g. a multi-processor system
must use a different OS image for each processor.

4.6 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

19 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o It is assumed that the operating system may use timer units directly to drive
counters.

o If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

o If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system module is not fixed, besides the
requirements in the General SRS.

5.1.2 Header file structure

20 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 5:1: Header File Structure for the OS

OS

The figure above contains the defined AUTOSAR header file hierarchy of the
Operating System module.

OS546: OS implementer shall provide a header file structure, so that users of the
Operating System module needs only to include the Os.h file

Os.h

includes

Std_Types.h Os_Cfg.h MemMap.h

Specification of Operating System
 V4.0.0

R4.0 Rev 1

If an implementation of the Operating System module requires additional header
files, it is free to include them. The header files are self contained, that means they
will include all other header files which are required by them.

[OS552:The Operating System module shall avoid the integration of incompatible (c
or h) files by the following pre-processor checks:

For included (external) header files:
 <MODULENAME>_AR_RELEASE_MAJOR_VERSION
 <MODULENAME>_AR_RELEASE_MINOR_VERSION

shall be verified.

For the module internal c and h files:
 OS_SW_MAJOR_VERSION
 OS_SW_MINOR_VERSION
 OS_AR_RELEASE_MAJOR_VERSION
 OS_AR_RELEASE_MINOR_VERSION
 OS_AR_RELEASE_REVISION_VERSION

shall be verified.

If the values are not identical to the values expected by the Operating System
module, an error shall be reported.

21 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

6.1 General Requirements on Basic Software Modules

22 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
Functional Requirements – Configuration

[BSW00344] Not applicable
Reference to link time configuration (AUTOSAR OS is a statically configured

Operating System.)
[BSW00404] Not applicable
Reference to post build time configuration (AUTOSAR OS does not support post build time

configuration.)
[BSW00405] Not applicable
Reference to multiple configuration sets (AUTOSAR OS does not support post build time

configuration.)
[BSW00345] See Chapter 5
Pre—compile—time configuration
[BSW159] OS uses standard XML, so various tools may be

used to configure the OS Tool-based configuration
[BSW167] See Chapter 11.2
Static configuration checking
[BSW171] See Chapter 10. Requirement focuses on

implementation. Configurability of optional functionality
[BSW170] Not applicable
Data for reconfiguration of AUTOSAR SW-
Components
[BSW00380] Not applicable
Separate C-Files for configuration parameters (Requirement for implementation)
[BSW00419] Not applicable

(Requirement for implementation) Separate C-Files for pre-compile time
configuration parameters
[BSW00381] Not applicable

(Requirement for implementation) Separate configuration header file for pre-compile
time parameters
[BSW00412] Not applicable

(Requirement for implementation) Separate H-File for configuration parameters
[BSW00383] Not applicable
List dependencies of configuration files (SWS has no dependencies for configuration

files.)
[BSW00384] Not applicable
List dependencies to other modules (SWS has no dependencies to other modules.)
[BSW00387] See Chapter 8.5 for details.
Specify the configuration class of callback function
[BSW00388] See Chapter 10.2.
Introduce containers
[BSW00389] See Chapter 10.2.
Containers shall have names
[BSW00390] See Chapter 10.2.
Parameter content shall be unique within the
module
[BSW00391] See Chapter 10.2.
Parameter shall have unique names
[BSW00392]
Parameters shall have a type

See Chapter 10.2.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

23 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00393] See Chapter 10.2.
Parameters shall have a range
[BSW00394] See Chapter 10.2.
Specify the scope of the parameters
[BSW00395] See Chapter 10.2.
List the required parameters (per parameter)
[BSW00396] See Chapter 10.2.
Configuration classes
[BSW00397] See Chapter 10.2.
Pre-compile-time parameters
[BSW00398] See Chapter 10.2.
Link-time parameters
[BSW00399]
Loadable Post-build time parameters

See Chapter 10.2.

[BSW00400]
Selectable Post-build time parameters

See Chapter 10.2.

[BSW00438]
Post-build configuration data structure

See Chapter 10.2.

[BSW00402]
Published information

See Chapter 10.2.

Functional Requirements – Wake Up
[BSW00375]
Notification of wake-up reason

Not applicable

Functional Requirements – Initialization
StartOS() [BSW101]

Initialization interface
[BSW00416]
Sequence of Initialization

StartOS() is called by the user. Sequence of
calls with other modules is not affected.

[BSW00406]
Check module initialization

Not applicable
(Requirement for implementation)

[BSW00437]
NoInit—Area in RAM

N/A – The OS only covers it’s own data areas.

Functional Requirements – Normal Operation
[BSW168]
Diagnostic interface of SW components

Not applicable

[BSW00407]
Function to read out published parameters

Not applicable
(Requirement for implementation)

[BSW00423]
Usage of SW-C template to describe BSW
modules with AUTOSAR Interface

Not applicable
(AUTOSAR OS does not interact directly with SW-
C.)

[BSW00424]
BSW main processing function task allocation

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00425] Trigger conditions for schedulable
objects

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00426]
Exclusive areas in BSW modules

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00427]
ISR description for BSW modules

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00428]
Execution order dependencies of main processing
functions

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00429]
Restricted BSW OS functionality access

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00431]
The BSW Scheduler module implements task
bodies

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00432] Requirement for users of AUTOSAR OS together

Specification of Operating System
 V4.0.0

R4.0 Rev 1

24 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
Modules should have separate main processing
functions for read/receive and write/transmit data
path

with the RTE.

[BSW00433]
Calling of main processing functions

Requirement for users of AUTOSAR OS together
with the RTE.

[BSW00434]
The Schedule Module shall provide an API for
exclusive areas

Requirement for users of AUTOSAR OS together
with the RTE.

Functional Requirements – Shutdown Operation
ShutdownOS() [BSW00336]

Shutdown Interface
Functional Requirements – Fault Operation and Error Detection

[BSW00337]
Classification of errors

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

[BSW00338]
Detection and Reporting of development errors

Not applicable
(AUTOSAR OS calls the ErrorHook (defined by
the OSEK OS specification [14]) and the
ProtectionHook (see Section 7.8) in case of
errors. It is possible to call Debug Error Tracer
from these hook routines.)

[BSW00369]
Do not return development error codes via API

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. In
accordance with OSEK OS all possible errors are
reported via the ErrorHook() and as return
values of system services.)

[BSW00339] Not applicable
(AUTOSAR OS calls the ErrorHook() (defined
by the OSEK OS specification [14]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

Reporting of production relevant error status

[BSW00422]
Debouncing of production relevant error status

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined
by the OSEK OS specification [14]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

[BSW00417] Not applicable
(e.g. this module does not provide any wake-up
reason)

Reporting of Error Events by Non-Basic Software

[BSW00323] See Section 7.7.3
API parameter checking
[BSW004]
Version check

Not applicable
(Requirement for implementation)

[BSW00409]
Header files for production code error IDs

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

[BSW00385]
List possible error notifications

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See
Section 7.11.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

25 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00386] Not applicable
Configuration for detecting an error (AUTOSAR OS calls the ErrorHook() (defined

by the OSEK OS specification [14]) and the
ProtectionHook() (see Section 7.8) in case of
errors. It is possible to call the function inhibition
or diagnostic event manager (DEM) and handle
the debouncing from these hook routines.)

Non-functional Requirements – Software Architecture Requirements
[BSW161]
Microcontroller Abstraction

N/A

[BSW162]
ECU Layout Abstraction

N/A

[BSW005]
No hard coded horizontal interfaces within MCAL

OS does not belong to MCAL

[BSW00415] N/A – OS is used by several BSWs and SWCs
User dependant include files

Non-functional Requirements – Software Integration Requirements
[BSW164]
Implementation of interrupt service routines

OK – OS is allowed to implement interrupt service
routines

[BSW00325]
Runtime of interrupt service routines

N/A

[BSW00326]
Transition of ISRs to OS tasks

N/A

[BSW00342]
Usage of source code and object code

N/A

[BSW00343]
Specification and configuration of time

OS supports ticks for OSEK compatibility and
physical times (with convert macros)

[BSW160]
Human-readable configuration data

OS is using XML

Software Module Design Requirements
[BSW007]
HIS MISRA C

N/A – Requirement on implementation

[BSW00300] See Chapter 5
Module naming conventions
[BSW00413]
Accessing instances of BSW modules

N/A – Only one instance of the OS is possible

[BSW00347]
Naming seperation of different instances of BSW
drivers

N/A – OS is not a driver

[BSW00441]
Enumeration literals and #define naming
convention

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00305]
Data types naming convention

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00307]
Global variables naming convention

N/A – AUTOSAR SWS OS does not offer global
variables.

[BSW00310]
API naming convention

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00373]
Main processing function naming convention

N/A – OS has no main function

[BSW00327]
Error values naming convention

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00335]
Status values naming convention

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00350]
Development error detection keyword

N/A – Requirement on implementation

[BSW00408] See Chapter 10

Specification of Operating System
 V4.0.0

R4.0 Rev 1

26 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
Configuration parameter naming convention
[BSW00410]
Compiler switches shall have defined values

N/A – Requirement on implementation

[BSW00411]
Get version info keyword

N/A – Requirement on implementation

[BSW00346]
Basic set of module files

See Chapter 5

[BSW158]
Separation of configuration from implementation

See Chapter 5

[BSW00314] Separation of interrupt frames and
service routines

N/A – Requirement on implementation

[BSW00370]
Separation of callback interface from API

N/A – Requirement on implementation

[BSW00435]
Module Header File Structure for the Basic
Software Scheduler

N/A – OS does not use the BSW Scheduler

[BSW00436]
Module Header File Structure for the Basic
Software Memory Mapping

N/A – Requirement on implementation

[BSW00348]
Standard type header

See Chapter 5

[BSW00353]
Platform specific type header

See Chapter 5

[BSW00361]
Compiler specific language extention header

N/A – Requirement on implementation

[BSW00301]
Limit imported information

N/A – Requirement on implementation

[BSW00302]
Limit exported information

N/A – Requirement on implementation

[BSW00328]
Avoid duplication of code

N/A – Requirement on implementation

[BSW00312]
Shared code shall be reentrant

N/A – Requirement on implementation

[BSW006]
Platform independency

N/A – The OS depends on the used µC and the
used compiler (e.g. because of the calling
conventions)

[BSW00439]
Declaration of interrupt handlers and ISRs

N/A – OS is no MCAL module

[BSW00357]
Standard API return type

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00377]
Module specific API return type

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00304]
AUTOSAR integer data types

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00355]
Do not redefine AUTOSAR integer data types

N/A – OS follows the OSEK OS naming scheme
since it is based on OSEK OS API

[BSW00378]
AUTOSAR boolean type

N/A – OS has no boolean parameters, etc.

[BSW00306]
Avoid direct us eof compiler and platform specific
keywords

N/A – Requirement on implementation

[BSW00308]
Definition of global data

N/A – Requirement on implementation

[BSW00309]
Global data with read—only constraint

N/A – Requirement on implementation

[BSW00371]
Do not pass function pointers via API

OS does not allow this

Specification of Operating System
 V4.0.0

R4.0 Rev 1

27 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00358]
Return type of init() functions

N/A – StartOS() does not return

[BSW00414]
Parameter of init function

N/A – StartOS() is an OSEK OS function

[BSW00376]
Return type and parameters of main processing
functions

N/A – OS has no main function

[BSW00359]
Return type of callback functions

See Chapter 8

[BSW00360]
Parameters of callback functions

See Chapter 8

[BSW00440]
Function prototype for callback functions of
AUTOSAR Services

N/A – OS offers no callbacks as AUTOSAR
services

[BSW00329] N/A
Avoidance of generic interfaces
[BSW00330]
Usage of macros / inline functions instead of
functions

N/A – Requirement on implementation

[BSW00331]
Separation of error and status values

OS does not mix error and status values

Non-functional Requirements – Software Documentation Requirements
[BSW009]
User Module Documentation

N/A

[BSW00401]
Documentation of multiple instance of
configuration parameters

N/A

[BSW172]
Compatibility and documentation of scheduling
strategy

N/A

[BSW010]
Memory resource documentation

N/A

[BSW00333]
Documentation of callback function context

N/A

[BSW00374]
Module vendor identification

N/A

[BSW00379]
Module identification

N/A

[BSW003]
Version identification

N/A

[BSW00318]
Format of module version numbers

N/A

[BSW00321]
Enumeration of module version numbers

N/A

[BSW00341]
Microcontroller compatibility documentation

N/A

[BSW00334]
Provision of XML file

N/A

6.2 Requirements on Software Free-Running Timer

Requirement Satisfied by
[SWFRT00019]
Configure HW Timer Type

See chapter 10.2

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Requirement Satisfied by
[SWFRT00020]
Configuration/initialization of HW Timer

OS374

[SWFRT00021]
Import Used HW Timer’s Configuration

GPT is not used by OS. See chapter 10.2
for details.

[SWFRT00022]
State which HW Timer is used

OS370

[SWFRT00023]
Set up Duration of one Tick

Possible via OsSecondsPerTick

[SWFRT00024]
Support different Ranges/Resolutions

The setup of different ranges/resolutions is
up to the timer driver

[SWFRT00025]
Set up Access Methods

OS383, OS392

[SWFRT00026]
Set up Target Count Values

OS386_Conf

[SWFRT00028]
Ensure Continuous Running Mode

GPT is not used by OS.

[SWFRT00029]
Init Function

The init function of the OS is the
StartOS() service.

[SWFRT00030]
Start with Zero

OS384

[SWFRT00031]
Increment Counter

OS384

[SWFRT00032]
Wrap Around

N/A. This requirement targets specific timer
features. The OS should minimize the
software access to timers (e.g. by using
automatic reload features of the hardware).

[SWFRT00033]
Read out Ticks

OS377

[SWFRT00034] OS382
Calculate Ticks Elapsed since given value
[SWFRT00041]
Shutdown Function

There is no function to shutdown the timers
which drive counters

[SWFRT00047]
Convert Ticks to Time

OS393

[SWFRT00048]
EcuM Modes

The OS is not aware of any EcuM modes
and switching modes which influences
timers (e.g. stop them or slow down
counting) is neither recognized nor handled
by the OS. It is the responsibility of the user
to take care of this affects.

6.3 AUTOSAR SRS OS Requirements

Requirement Satisfied by
[BSW097]
Existing OSEK OS

OS001

[BSW11001]
Object Grouping

OS114_Conf, OS056

[BSW098]
Table based schedules

OS002, OS007

[BSW099]
Switchable schedules

OS191

[BSW11002]
Synchronization with global time

OS206, OS201, OS013, OS199, OS227

[BSW11003] OS067, OS068

28 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Requirement Satisfied by
Stack Monitoring
[BSW11005]
Memory Write Access

OS207, OS208, OS195

[BSW11006] OS086, OS196, OS087
Data exchange
[BSW11007]
Code Sharing

OS081

[BSW11000]
Memory read access

OS026

[BSW11008]
Timing Protection

OS028, OS089, OS033, OS037, OS048,
OS064, OS465, OS469, OS470, OS471,
OS472, OS473, OS474

[BSW11009]
Protection of the OS

OS051, OS088, OS052, OS069, OS070,
OS092, OS093

[BSW11010]
Protection of OS-Applications

OS056

[BSW11011]
Protecting the OS managed hardware

OS096, OS245

[BSW11012]
Scalable Protection

OS241, OS240

[BSW11016]
Scalability of the OS

OS241, OS240

[BSW11013]
Error Notification

OS068, OS044, OS210, OS033, OS037,
OS064, OS051, OS088, OS070, OS093,
OS056, OS246

[BSW11014]
Protection Error Handling

OS033, OS037, OS106, OS107, OS108,
OS109, OS110, OS243, OS244,

[BSW11018]
Interrupt services

OS299

[BSW11020]
Interface for ticking counters

OS286

[BSW11021]
Cascading counters

OS301

[BSW11019]
Creation of Interrupt Vector Table

OS336

6.4 AUTOSAR SWS Service Requirements to API

Requirement Associated API
OS016 8.4.1
OS097 8.4.3
OS358 8.4.9
OS347 8.4.8
OS006 8.4.10
OS191 8.4.11
OS399 8.4.16
OS199 8.4.13, 8.4.14
OS227, OS359 8.4.15
OS099 8.4.4,8.4.5,8.4.2
OS256 8.4.6
OS017 8.4.7
OS258 8.4.19
OS383, OS392 8.4.17
OS201 8.4.12
OS501 8.4.20

29 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Requirement Associated API
OS499 8.4.21

30 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [14] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

o fixed priority-based scheduling
o facilities for handling interrupts
o only interrupts with higher priority than tasks
o some protection against incorrect use of OS services
o a startup interface through StartOS() and the StartupHook()
o a shutdown interface through ShutdownOS() and the ShutdownHook()

OSEK OS provides many features in addition to these. Readers should consult the
OSEK specification [14] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible – i.e. applications written for OSEK OS will run on AUTOSAR OS.
However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

OS001: The Operating System module shall provide an API that is backward
compatible with the OSEK OS API [14].

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (OS242)

31 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS242: The Operating System module shall only allow Alarm Callbacks in Scalability
Class 1.

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol
LOCALMESSAGESONLY is defined. AUTOSAR OS can deprecate the need to
implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where
LOCALMESSAGESONLY is undefined. This leads to the following requirement:

OS398: The Operating System module shall not define the symbol
LOCALMESSAGESONLY

OSEK OS has one special resource called RES_SCHEDULER. This resource has 2
specific aspects:

1. It is always present in the system, even if it is not configured. This means that
the RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
resource can not be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing
protection) AUTOSAR OS handles RES_SCHEDULER as any other resource. This
means that the RES_SCHEDULER is not automatically created. However, a
configuration attribute allows that a resource in AUTOSAR OS can optionally be
assigned the priority of the highest priority task in the system.

For backwards compatibility with OSEK OS systems, see Chapter 12.8 on how to
configure a standard resource called RES_SCHEDULER in a way that make it
compatible with the resource of the same name which is declared automatically in
OSEK OS.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

OS304: If in a call to SetRelAlarm() the parameter “increment” is set to zero, the
service shall return E_OS_VALUE in standard and extended status .

OS424: The first call to StartOS() (for starting the Operating System) shall not
return.
32 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS425: If ShutdownOS() is called and ShutdownHook() returns then the Operating
System module shall disable all interrupts and enter an endless loop.

7.1.2.3 Extensions to OSEK OS

OS299: The Operating System module shall provide the services
DisableAllInterrupts(), EnableAllInterrupts(), SuspendAllInterrupts(),
ResumeAllInterrupts() prior to calling StartOS() and after calling ShutdownOS().

It is assumed that the static variables of the functions mentioned in OS299 are
initialized.

OS301: The Operating System module shall provide the ability to increment a
software counter as an alternative action on alarm expiry.

The Operating System module provides API service IncrementCounter() (see
OS399) to increment a software counter.

OS476: The Operating System module shall allow to automatically start
preconfigured absolute alarms during the start of the Operating System.

OS476 is an extension to OSEK OS which allows this only for relative alarms.

33 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurements. For more details see also [5] (SWFRT).

OS374: The Operating System module shall handle all the initialization and
configuration of timers used directly by the Operating System module and not
handled by the GPT driver.

The Operating System module provides API service GetCounterValue() (see
OS383) to read the current count value of a counter (returning either the hardware
timer ticks if counter is driven by hardware or the software ticks when user drives
counter).

The Operating System module provides API service GetElapsedValue() (see
OS392) to get the number of ticks between the current tick value and a previously
read tick value.

OS384: The Operating System module shall adjust the read out values of hardware
timers (which drive counters) in such that the lowest value is zero and consecutive
reads return an increasing count value until the timer wraps at its modulus.

34 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

 one or more actions that must occur when it is processed where an action is

the activation of a task or the setting of an event.
 An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the Operating System module will iterate over the schedule table,
processing each expiry point in turn. The iteration is driven by an OSEK counter. It
therefore follows that the properties of the counter have an impact on what is
possible to configure on the schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Initial Expiry

Point
Final Expiry

Point

35 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Delay=8 Delay=8

Expiry Point 1

Task Activations
TaskA
TaskB

Event Settings
EventP:TaskC
EventP:TaskD

Offset
4 ticks

Expiry Point 2

Task Activations
<none>

Event Settings
EventP:TaskC
EventP:TaskD

Offset
12 ticks

Expiry Point 3

Task Activations
TaskA
TaskE

Event Settings
<none>

Offset
20 ticks

Expiry Point 4

Task Activations
TaskA
TaskE

Event Settings
EventQ:TaskC
EventQ:TaskE

Offset
32 ticks

Expiry Point 5

Task Activations
TaskB
TaskF

Event Settings
EventP:TaskC

Offset
40 ticks

Delay=12 Delay=8

FinalDelay=10

InitialOffset=4

Delay=InitialOffset+FinalDelay=14

0 4 12 20 32 40 0

 Schedule Table Duration = 50 ticks

Figure 7.1: Anatomy of a Schedule Table

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS401: A schedule table shall have at least one expiry point.

OS402: An expiry point shall contain a (possibly empty) set of tasks to activate.

OS403: An expiry point shall contain a (possibly empty) set of events to set.

OS404: An expiry point shall contain an offset in ticks from the start of the schedule
table.

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

OS407: An expiry point shall activate at least one task OR set at least one event.

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

OS442: : Each expiry point on a given schedule table shall have a unique offset.

Iteration over expiry points on a schedule table is driven by an OSEK counter. The
characteristics of the counter – OsCounterMinCycle and
OsCounterMaxAllowedValue – place constraints on expiry point offsets.

OS443: The Initial Offset shall be zero OR in the range OsCounterMinCycle ..
OsCounterMaxAllowedValue of the underlying counter.

Simlarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

OS408: The delay between adjacent expiry points shall be in the range
OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter.

7.3.2.3 Processing Schedule Tables

OS002: The Operating System module shall process each expiry point on a
schedule table from the Initial Expiry Point to the Final Expiry Point in order of
increasing offset.

OS007: The Operating System module shall permit multiple schedule tables to be
processed concurrently.

36 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS409: A schedule table of the Operating System module shall be driven by exactly
one counter.

OS410: The Operating System module shall be able to process at least one schedule
table per counter at any given time.

OS411: The Operating System module shall make use of ticks so that one tick on the
counter corresponds to one tick on the schedule table.

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

OS412: The Operating System module shall process all task activations on an expiry
point first and then set events.

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

Figure 7.2: States of a schedule table

If a schedule table is not active – this means that is not processed by the Operating
System – the state is SCHEDULETABLE_STOPPED. After starting a schedule tables
enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry points.
If the service to switch a schedule table is called a schedule table enters the the
SCHEDULETABLE_NEXT state and waits until the “current” schedule table ends.

37 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

1. single-shot – the schedule table processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating – the schedule table processes each expiry point in turn, After

processing the final expiry point, it loops back to the initial expirt point. This is
useful for building applications that perform repeated processing or system
which need to synchronise processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

OS413: The schedule table shall be configurable as either single-shot or repeating.

OS009: If the schedule table is single-shot, the Operating System module shall stop
the processing of the schedule table Final Delay ticks after the Final Expiry Point is
processed.

OS427: If the schedule table is single-shot, the Operating System module shall allow
a Final Delay between 0 .. OsCounterMaxAllowedValue of the underlying
counter.

OS444: For periodic schedule tables the value of Final Delay shall be in the range
OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter.

OS194: After processing the Final Expiry Point, and if the schedule table is repeating,
the Operating System shall process the next Initial Expiry Point, after Final Delay
plus Initial Offset ticks have elapsed.

7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table.

The Operating System module provides the service StartScheduleTableAbs()
(see OS358) to start the processing of a schedule table at an absolute value “Start”
on the underlying counter. (The Initial Expiry Point has to be processed when the
value of the underlying counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel()
(see OS347) to start the processing of a schedule table at “Offset” relative to the
“Now” value on the underlying counter (The Initial Expiry Point shall be processed
when the value of the underlying counter equals Now + Offset + InitialOffset).

38 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

39 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The figure below illustrates the two different methods for a schedule table driven by a
counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Schedule Table Tbl
Initial Offset = 2
Final Delay = 2
Duration = 10

EP1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableRel(Tbl,2);
Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

EP1 EP2

2 3 4 5 6 70 1

OS Counter

OS Counter

Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable() (see
OS006) to cancel the processing of a schedule table immediately at any point while
the schedule table is running.

OS428: If schedule table processing has been cancelled before reaching the Final
Expiry Point and is subsequently restarted then OS358/OS347 means that the re-
start occurs from the start of the schedule table.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

The Operating System module provides the service NextScheduleTable() (see
OS191) to switch the processing from one schedule table to another schedule table.

OS414: When a schedule table switch is requested, the Operating System module
shall continue to process expiry points on the current schedule table up and including
the Final Expiry Point then delay for Final Delay ticks before processing the Initial
Expiry Point on the switched-to schedule table (after the initial offset).

The Operating System module provides the service GetScheduleTableStatus()
(see OS227) to query the state of a schedule table.

Schedule tables can be configured (see chapter 10) to start automatically during start
of the Operating System module (like Tasks and Alarms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with schedule tables.

OS510: The Operating System module shall perform the autostart of schedule tables
during startup after the autostart of Tasks and Alarms.

40 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

 Synchronization of expiry points to degrees of angular rotation for motor
management

 Synchronizing the computation to a global (network) time base. Note that in

AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases
2. other AUTOSAR modules, most notably FlexRay, provide this

independently to the Operating System
3. if the Operating System is required to synchronize to multiple global

(network) time sources (for example when building a gateway between two
time-triggered networks) the Operating System cannot be the source of a
unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization – the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved –
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the Operating System.
The following figure shows the possible states for schedule tables with implicit
synchronization.

41 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

42 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND
_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

SCHEDULETABLE_STOPPED

NextScheduleTable()

SCHEDULETABLE_NEXT

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization – the schedule table is driven by an Operating System

counter which is not the counter with which synchronization is required. The
Operating System provides additional functionality to keep schedule table
processing driven by the Operating System counter synchronized with the
synchronization counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such
schedule tables.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

43 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()
SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

ABS(CounterValue-GlobalValue)<=PRECISION

StartScheduleTableSync()

SyncScheduleTable()

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND
_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()
StartScheduleTableRel()

StopScheduleTable()

SCHEDULETABLE_STOPPED

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_WAITING SCHEDULETABLE_RUNNING

Figure 7.5: States of an explicit synchronized schedule table (not all conditions for transitions
are shown in the picture)

7.4.2 Requirements

OS013: The Operating System module shall provide the ability to synchronize the
processing of schedule table to known counter values.

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of schedule tables. However, it is necessary to constrain
configuration and runtime control of the schedule table so that ticks on the configured
schedule table can be aligned with ticks on the counter. This requires the range of
the schedule table to be identical to the range of the counter (the equality of tick
resolution of each is guaranteed by the requirements on the schedule table / counter
interaction):

OS429: A schedule table of the Operating System module that is implicitly
synchronized shall have a Duration equal to OsCounterMaxAllowedValue + 1 of its
associated OSEK OS counter.

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit

Specification of Operating System
 V4.0.0

R4.0 Rev 1

synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

OS430: The Operating System module shall prevent a schedule table that is implicitly
synchronized from being started at a relative count value.

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified in
the schedule table configuration correspond to absolute values of the underlying
counter. This is achieved trivially using StartScheduleTable(Tbl,0) as shown
below.

STOPPED RUNNING AND SYNCHRONOUS

44 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 3 4 5 6 7 8 90 1

StartScheduleTableAbs(Tbl,0);
Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40

EP1

1

4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 2 3 41

OS Counter

Figure 7.6: Example for implicit synchronized schedule table

7.4.2.2 Explicit Synchonization

An explicitly synchronized schedule table requires additional support from the
Operating System module. The schedule table is driven by an Operating System
module’s counter as normal (termed the “drive counter”) but processing needs to be
synchronized with a different counter (termed the “synchronization counter”) which is
not an Operating System module’s counter object.

The following constraints must be enforced between the schedule table, the
Operating System module’s counter and the synchronization counter:

Constraint1:

OS431: A schedule table that is explicitly synchronized shall have a duration
no greater than modulus of the drive counter.

Constraint2:

OS462: A schedule table that is explicitly synchronized shall have a duration
equal to the modulus of the synchronization counter.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Constraint3:

OS463: The synchronization counter shall have the same resolution as the
drive counter associated with the schedule table. This means that a tick on the
schedule table has the same duration as a tick on the synchronization counter.

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization counter equal
to the expiry point’s offset. This means that explicit synchronization always assumes
that the notional zero of the schedule table has to be synchronized with absolute
value zero on the synchronization counter.

To achieve this, the Operating System module must be told the value of the
synchronization counter by the user. As the modulus of the synchronization counter
and the schedule table are identical, the Operating System module can use this
information to calculate drift. The Operating System module then automatically
adjusts the delay between specially configured expiry points, retarding them or
advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

Synchronous start requires an additional service that starts the schedule table only
after the Operating System module is told the value of the synchronization counter.

The Operating System module provides the service
StartScheduleTableSynchron() (see OS201) to start an explicitly synchronized
schedule table synchronously. The Initial Expiry Point will be processed after
(Duration – Value) + Initial Offset ticks of the driver counter have elapsed where
Value is the absolute value of the synchronization counter provided to the schedule
table.

45 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS435: If an explicitly synchronized schedule table was started synchronously, then
the Operating System module shall guarantee that it has state “waiting” when the call
of service StartScheduleTableSynchron() returns.

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization counter.
Since the schedule table duration is equal to the modulus of the synchronization
counter, the Operating System module can use this to determine the drift between
the current count value on the schedule table time and the synchronization count and
decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service SyncScheduleTable() (see
OS199) to provide the schedule table with a synchronization count and start
synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

 OsScheduleTableMaxRetard : the maximum value that can be subtracted
from the expiry offset

 OsScheduleTableMaxAdvance: the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on
OsScheduleTableMaxRetard and OsScheduleTableMaxAdvance:

46 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

47 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Delay=14

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=18

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=18Delay=14-7=7

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Delay 18=

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=14+2=16

Expected Delays

Maximum Retardation

Maximum Advance

Figure 7.7: Adjustment of Exipry Points

Specification of Operating System
 V4.0.0

R4.0 Rev 1

So called “hard” and “smooth” synchronization from OSEKtime [15] are supported by
this single unified concept in AUTOSAR OS. “Smooth” synchronization may be
emulated by setting the small adjustment values on the final expiry point. “Hard”
synchronization may be emulated by setting large adjustment values on the final
expiry point.

OS415: An expiry point shall permit the configuration of a
OsScheduleTableMaxRetard that defines the maximum number of ticks that can be
subtracted from expiry point offset.

OS416: An expiry point shall permit the configuration of a
OsScheduleTableMaxAdvance that defines the maximum number of ticks that can be
added to expiry point offset.

When performing synchrioniszation it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.
This means that the range of permitted values for OsScheduleTableMaxRetard and
OsScheduleTableMaxAdvance must ensure that the next expiry point is not retarded
into the past or advanced beyond more than one iteration of the schedule table.

OS436: The value of (Offset – OsScheduleTableMaxRetard) of an expiry point shall
be greater than (Offset + OsCounterMinCycle) of the pervious expiry point.

OS437: The value of (OsScheduleTableMaxAdvance + delay_to_next_EP) of an
expiry point shall be less than the duration of the schedule table.

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are indentical..

OS438: A schedule table shall define a precision bound with a value in the range 0
to duration.

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support
(re-)synchronization of a schedule table at each expiry point by calculating an
adjustment to the delay to the next expiry point. This provides faster re-
synchronization of the schedule table than doing the action on the final expiry point.

OS206: When a new synchronization count is provided, the Operating System
module shall calculate the current deviation between the explicitly synchronized
scheduled table and the synchronization count.

48 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

It is meaningless to try and synchronise an explicitly synchronized schedule table
before a synchronization count is provided.

OS417: The Operating System module shall start to synchronise an explicitly
synchronized schedule table after a synchronization count is provided AND shall
continue to adjust expiry points until synchronized.

OS418: The Operating System module shall set the state of an explicitly
synchronized schedule table to “running and synchronous” if the deviation is less
than or equal to the configured OsScheduleTblExplicitPrecision threshold.

OS419: The Operating System module shall set the state of an explicitly
synchronized schedule table to “running” if the deviation is greater than the
configured OsScheduleTblExplicitPrecision threshold.

OS420: IF the deviation is non-zero AND the next expiry point is adjustable AND the
table is ahead of the sync counter (TableTicksAheadOfSyncCounter <=
TableTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay
- min(MaxRetard, Deviation) ticks from the current expiry.

OS421: IF the deviation is non-zero AND the next expiry point is adjustable AND the
table is behind the sync counter (TableTicksAheadOfSyncCounter >
TableTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay
+ min(MaxAdvance, Deviation) ticks from the current expiry.

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

 EP1-3 have OsScheduleTableMaxAdvance=2
 EP1-3 have OsScheduleTableMaxRetard =1

49 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

12 13 14 15 16 17 18 19 20 212 3 4 5 6 7 8 9 10 110 1 22 23

STOPPED

StartScheduleTableSynchron(Tbl);

65535
65534

65533
65532

8

SyncScheduleTable(Tbl,8);
DriveCtr.Match
 = DriveCtr.Now + (Duration-8) + InitialOffset
 = 65535+2+2=3

24 25 26 27

WAITING RUNNING_AND_SYNCHRONOUS

65531

SyncScheduleTable(Tbl,5);
PositionOnTbl
 = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
 = 8 - (9-8) = 7
Deviation
 = PositionOnTbl-5 = 2

2

RUNNING_AND_SYNCHRONOUS

76 8 9 0 1

RUNNING

4 5 76 303 4 5 76

28 29 30 31

8 9 08

RUNNING_AND_SYNCHRONOUS RUNNING

?? ? ? 5

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Drive
Counter

Synchronization
Counter

EP1 EP2 EP3

2 3 4 5 6 7 8 91 0

EP1 EP2 EP3

2 4 5 7 8 90 1 0

29 0 1 4 5 63

EP3.Delay = EP3.Delay + Adjustment
 = 4 + min(MaxAdvance,Deviation)
 = 4 + 2 = 6

+2 -1 -1

EP1.Delay = EP1.Delay - Adjustment
 = 3 - min(MaxRetard,Deviation)
 = 3 - 1 = 2

EP2.Delay = EP2.Delay - Adjustment
 = 3 + min(MaxRetard,Deviation)
 = 3 - 1 = 2

? 9

SyncScheduleTable(Tbl,3);
PositionOnTbl
 = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
 = 2 - (25-24) = 1
Deviation
 = PositionOnTbl-3 = -2

65530

Figure 7.8: Explict Schedule Table Synchronization

The Operating System module provides the service SetScheduleTableAsync()
(see OS422) to cancel synchronization being performed at adjustable expiry points
on a schedule table.

The Operating System module provides the service GetScheduleTableStatus()
(see OS227) to query the state of a schedule table also with respect to
synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a “best effort with available resources” scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/ISR that was executing that used more than
stack space than required – it could be a lower priority object that was pre-empted.

50 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using a MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

OS067: The Operating System module shall provide a stack monitoring which
detects possible stack faults of Task(s)/Category 2 ISR(s).

OS068: If a stack fault is detected by stack monitoring AND the configured scalability
class is 1 or 2, the Operating System module shall call the ShutdownOS() service
with the status E_OS_STACKFAULT.

OS396: If a stack fault is detected by stack monitoring AND the configured scalability
class is 3 or 4, the Operating System module shall call the ProtectionHook() with
the status E_OS_STACKFAULT.

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRs, Alarms, Schedule tables, Counters, Resources) that form a
cohesive functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRs, Resources, Counters, Alarms and Schedule tables must
belong to an OS-Application. All objects which belong to the same OS-Application
have access to each other. The right to access objects from other OS-Applications
may be granted during configuration. An event is accessible if the task for which the
event can be set is accessible. Access means that these Operating System objects
are allowed as parameters to API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the Operating System module’s API, and need not have their timing behaviour
enforced at runtime. They are allowed to run in privileged mode when
supported by the processor.

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or

protection features disabled at runtime. They have restricted access to
51 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

memory, restricted access to the Operating System module’s API and have
their timing behaviour enforced at runtime. They are not allowed to run in
privileged mode when supported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

Figure 7.9: UML-model of OS-Application

OS-Applications have a state which defines the scope of accessability of its
Operating System objects from other OS-Applications. Each OS-Application is
always in one of the following states:
52 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

 Currently in restart phase (APPLICATION_RESTART). Operating System objects
can not be accessed from other OS-Applications. State is valid until the OS-
Application calls AllowAccess().

 Terminated and not accessible (APPLICATION_TERMINATED): Operating
System objects can not be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

Figure 7.13: States of OS-Applications

7.6.2 Requirements

OS445: The Operating System module shall support OS-Applications which are a
configurable selection of Trusted Functions, Tasks, ISRs, Alarms, Schedule tables,
Counters, Resources, hooks (for startup, error and shutdown).

OS446: The Operating System module shall support the notion of trusted and non-
trusted OS-Applications.

OS464: Trusted OS-Applications may offer services (“trusted services”) to other
(even non-trusted) OS-Applications.

53 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

The Operating System module provides the service GetApplicationID() (see
OS016) to determine the currently running OS-Application (a unique identifier shall
be allocated to each application).

The Operating System module provides the service CheckObjectOwnership() (see
OS017) to determine to which OS-Application a given Task, ISR, Resource, Counter,
Alarm or Schedule Table belongs.

The Operating System module provides the service CheckObjectAccess() (see
OS256) to determine which OS-Applications are allowed to use the IDs of a Task,
ISR, Resource, Counter, Alarm or Schedule Table in API calls.

The Operating System module provides the service TerminateApplication() (see
OS258) to terminate the OS-Application to which the calling Task/Category 2
ISR/application specific error hook belongs. (This is an OS-Application level variant
of the TerminateTask() service)

The Operating System provides the service TerminateApplication() (see OS258)
to terminate another OS-Application AND calls to this service shall be ignored if the
caller does not belong to a trusted OS-Application.

OS447: If the Operating System module terminates an OS-Application, then it shall:

 terminate all running, ready and waiting Tasks/ISRs of the OS-Application
AND

 disable all interrupts of the OS-Application AND
 stop all active alarms of the OS-Applications AND
 stop all schedule tables of the OS-Application.

OS448: The Operating System module shall prevent access of OS-Applications,
trusted or non-trusted, to objects not belonging to this OS-Application, except access
rights for such objects are explicitly granted by configuration.

The Operating System provides the service GetApplicationState() (see OS499)
to request the current state of an OS-Application.

OS500: The Operating System module shall set the state of all OS-Applications after
the call of StartOS() and before any StartupHook is called to
APPLICATION_ACCESSIBE.

The Operating System module provides the service AllowAccess() (see OS501) to
set the own state of an OS-Application from APPLICATION_RESTARTING to
APPLICATION_ACCESSIBLE.

OS502: If an OS-Application is terminated (e.g. through a service call or via
protection hook) and no restart is requested, then the Operating System module shall
set the state of this OS-Application to APPLICATION_TERMINATED.

54 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS503: If an OS-Application is terminated (e.g. through a service call or via
protection hook) and a restart is requested, then the Operating System module shall
set the state of this OS-Application to APPLICATION_RESTARTING.

OS504: The Operating System module shall deny access to Operating System
objects from other OS-Applications to an OS-Application which is not in state
APPLICATION_ACCESSIBLE.

OS509: If a service call is made on an Operating System object that is owned by
another OS-Application without state APPLICATION_ACCESSIBLE, then the Operating
System module shall return E_OS_ACCESS.

An example for OS509 is a call to ActivateTask() for a task in an OS-Application that
is restarting.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

 It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs have to be
avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 ISR must belong to a trusted OS-Application.

 It is not possible to provide protection between functions called from the body

of the same Task/Category 2 ISR.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and ISRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore
no need to share stack data between objects, even if those objects belong to the
same OS-Application.
Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

55 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

(1) Provide a more immediate detection of stack overflow and
underflow for the Task or ISR than can be achieved with stack
monitoring

(2) Provide protection between constituent parts of and OS-Application,
for example to satisfy some safety constraints.

Data: OS-Applications can have private data sections and Tasks/ISRs can have
private data sections. OS-Application’s private data sections are shared by all
Tasks/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

OS198: The Operating System module shall prevent write access to its own data
sections and its own stack from non-trusted OS-Applications.

Private data of an OS-Application

OS026: The Operating System module may prevent read access to an OS-
Application’s data section attempted by other non-trusted OS-Applications.

OS086: The Operating System module shall permit an OS-Application read and write
access to that OS-Application’s own private data sections.

OS207: The Operating System module shall prevent write access to the OS-
Application’s private data sections from other non-trusted OS-Applications.

Private Stack of Task/ISR

OS196: The Operating System module shall permit a Task/Category 2 ISR read and
write access to that Task’s/Category 2 ISR’s own private stack.

OS208: The Operating System module may prevent write access to the private stack
of Tasks/Category 2 ISRs of a non-trusted application from all other Tasks/ISRs in
the same OS-Application.

OS355: The Operating System module shall prevent write access to all private stacks
of Tasks/Category 2 ISRs of an OS-Application from other non-trusted OS-
Applications.

Private data of a Task/ISR

56 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS087: The Operating System module shall permit a Task/Category 2 ISR read and
write access to that Task’s/Category 2 ISR’s own private data sections.

OS195: The Operating System module may prevent write access to the private data
sections of a Task/Category 2 ISR of a non-trusted application from all other
Tasks/ISRs in the same OS-Application.

OS356: The Operating System module shall prevent write access to all private data
sections of a Task/Category 2 ISR of an OS-Application from other non-trusted OS-
Applications.

Code Sections

OS027: The Operating System module may provide an OS-Application the ability to
protect its code sections against executing by non-trusted OS-Applications.

OS081: The Operating System module shall provide the ability to provide shared
library code in sections that are executable by all OS-Applications.

Peripherals

OS209: The Operating System module shall permit trusted OS-Applications read and
write access to peripherals.

OS083: The Operating System module shall allow non-trusted OS-Applications to
write to their assigned peripherals only (incl. reads that have the side effect of writing
to a memory location).

Memory Access Violation

OS044: If a memory access violation is detected, the Operating System module shall
call the Protection Hook with status code E_OS_PROTECTION_MEMORY.

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a Task/ISR misses its deadline. The Task/ISR that misses a deadline is
therefore not necessarily the Task/ISR that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

57 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline (=Period)
A High 1 5
B Medium 3 10
C Low 5 15

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

.

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation – a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

58 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

59 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 152 3 4 5 6 7 8 9 10 110 1

A

B

A A

C

B

Task A executes for too long
Task A meets its deadline

Task B executes for too long
Task B meets its deadline

C
Task B arrives too early (at 8 rather than at 10)

Task B executes as expected otherwise
Task B meets its deadline

!

Task C has executed within specification.
Task C misses its deadline 4 ticks into its
execution with 1 tick of execution
remaining

B

C

 16 17

Figure 7.11: Insufficiency of Deadline Monitoring

Whether a task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

(1) the execution time of Task/ISRs in the system

(2) the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

(3) the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

 Tasks
 Category 2 ISRs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:

 Resources are held by Tasks/Category 2 ISRs
 OS interrupts are suspended by Tasks/Category 2 ISRs
 ALL interrupts are suspended/disabled by Tasks/Category 2 ISRs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 A task being permitted to transition into the READY state due to:
o Activation (the transition from the SUSPENDED to the READY state)
o Release (the transition from the WAITING to the READY state)

 A Category 2 ISR arriving
An arrival occurs when the Category 2 ISR is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of
queued activations, activating a basic task which is in the READY or RUNNING state is
a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive
activations and releases. When a task is in the WAITING state and multiple events are
set with a single call to SetEvent() this represents a single release. When a task
waits for one or more events which are already set this represents a notional
Wait/Release/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

Wait
OsTaskExecutionBudget reset

Terminate
OsTaskExecutionBudget reset

60 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Preempt
OsTaskExecutionBudget stopped

Start
OsTaskExecutionBudget started

Activate
OsTaskTimeFrame started

A task that waits on an event which is already set
notionally transitions into the WAITING state

Successful activation of a task already in the RUNNING
state marks the start of a new OsTaskTimeFrame

WAITING

RUNNING

SUSPENDED

Release
OsTaskTimeFrame started

READY

Successful activation of a task already in the READY
state marks the start of a new OsTaskTimeFrame

Figure 7.12: Time protection interaction with the task state transition model

Notes:

Specification of Operating System
 V4.0.0

R4.0 Rev 1

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a “babbling idiot” source of interrupts (e.g. a CAN controller taking
an interrupt each time a frame is received from another ECU on the network)
and provides the type of protection given by the OSEKtime Interrupt re-enable
schedule event [15].

2. Timing protection only applies to Tasks or Category 2 ISRs. There is no
protection for Category 1 ISRs. If timing protection error occurs during a
category 1 ISR, consistency of the Operating System module can not be
guaranteed. Therefore we discourage timing protection in systems with
category 1 interrupts.

3. Timing protection does not apply before the Operating System module is
started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

OS028: In a non-trusted OS-Application, the Operating System module shall apply
timing protection to every Task/Category 2 ISR of this non-trusted OS-Application.

OS089: In a trusted OS-Application, the Operating System module shall provide the
ability to apply timing protection to Tasks/Category 2 ISRs of this OS-Application.

OS397: If no OS-Application is configured, the Operating System module shall be
able to apply timing protection to Tasks/Category 2 ISRs.

Timing Protection: Tasks

OS064: If a task’s OsTaskExecutionBudget is reached then the Operating System
module shall call the ProtectionHook() with E_OS_PROTECTION_TIME.

OS473: The Operating System module shall reset a task’s OsTaskExecutionBudget
on a transition to the SUSPENDED or WAITING states.

OS465: The Operating System module shall limit the inter-arrival time of tasks to
one per OsTaskTimeFrame.

OS469: The Operating System module shall start an OsTaskTimeFrame when a task
is activated successfully.

OS472: The Operating System module shall start an OsTaskTimeFrame when a task
is released successfully.

OS466: If an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the
activation AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

61 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS467: If an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release
AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

Timing Protection: ISRs

OS210: If a Category 2 ISR’s OsIsrExecutionBudget is reached then the Operating
System module shall call the ProtectionHook() with E_OS_PROTECTION_TIME.

OS474: The Operating System module shall rest an ISR’s OsIsrExecutionBudget
when the ISR returns control to the Operating terminates.

OS470: The Operating System module shall limit the inter-arrival time of Category 2
ISRs to one per OsIsrTimeFrame.

OS471: The Operating System module shall measure the start of an
OsIsrTimeFrame from the point at which it recognises the interrupt (i.e. in the
Operating System interrupt wrapper).

OS048: If Category 2 interrupt occurs before the end of the OsIsrTimeFrame then the
Operating System module shall not execute the user provided ISR AND shall call the
ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

Timing Protection: Resource Locking and Interrupt Disabling

OS033: If a Task/Category 2 ISR holds an OSEK Resource and exceeds the
Os[Task|Isr]ResourceLockBudget, the Operating System module shall call the
ProtectionHook() with E_OS_PROTECTION_LOCKED.

OS037: If a Task/Category 2 ISR disables interrupts (via
Suspend/Disable|All/OS|Interrupts()) and exceeds the configured
Os[Task|Isr][All|OS]InterruptLockBudget, the Operating System module shall call the
ProtectionHook() with E_OS_PROTECTION_LOCKED.

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to “interrupt” the supervised tasks or ISRs.

Depending on the real hardware support this could mean that DisableAllInterrupts
and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts except of the
interrupt used for timing protection) or that the usage of Category 1 ISRs – which
bypass the Operating System (and also the timing protection) – is limited somehow.

The implementation has to document such implementation specific behaviour (e.g.
the limitations when timing protection is used).

62 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.7.3 Service Protection

Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module
itself. Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook().

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application
tries to execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following
sections describe – besides the mandatory extended status – the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value

7.7.3.1.1 Background & Rationale

The current OSEK OS’ service calls already return E_OS_ID on invalid objects (i.e.
objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.
setting an alarm cycle time less than OsCounterMinCycle).

7.7.3.1.2 Requirements

OS051: If an invalid address (address is not writable by this OS-Application) is
passed as an out-parameter to an Operating System service, the Operating System
module shall return the status code E_OS_ILLEGAL_ADDRESS.

63 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.7.3.2 Service Calls Made from Wrong Context

7.7.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls ([14], Fig. 12-
1), however protects against only a small set of these invalid calls, e.g. calling
TerminateTask() from a Category 2 ISR.

S
h

u
td

o
w

n
 H

o
o

k

P
o

st
T

as
k

H
o

o
k

P
re

T
as

k
H

o
o

k

S
ta

rt
u

p
 H

o
o

k

E
rr

o
r

H
o

o
k

C
at

2
IS

R

C
at

1
IS

R

T
as

k

Service A
la

rm
 C

al
lb

ac
k

P
ro

te
ct

io
n

 H
o

o
k

ActivateTask
TerminateTask C
ChainTask C
Schedule C
GetTaskID
GetTaskState
DisableAllInterrupts
EnableAllInterrupts
SuspendAllInterrupts
ResumeAllInterrupts
SuspendOSInterrupts
ResumeOSInterrupts
GetResource
ReleaseResource
SetEvent
ClearEvent C

 GetEvent
 C WaitEvent

GetAlarmBase
GetAlarm
SetRelAlarm

 SetAbsAlarm
 CancelAlarm
 GetActiveApplicationMode

StartOS

64 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ShutdownOS
 GetApplicationID
 GetISRID
 CallTrustedFunction
 CheckISRMemoryAccess
 CheckTaskMemoryAccess
 CheckObjectAccess
 CheckObjectOwnership
 StartScheduleTableRel
 StartScheduleTableAbs
 StopScheduleTable

Specification of Operating System
 V4.0.0

R4.0 Rev 1

A
la

rm
 C

al
lb

ac
k

P
ro

te
ct

io
n

 H
o

o
k

S
h

u
td

o
w

n
 H

o
o

k

P
o

st
T

as
k

H
o

o
k

P
re

T
as

k
H

o
o

k

S
ta

rt
u

p
 H

o
o

k

E
rr

o
r

H
o

o
k

C
at

1
IS

R

C
at

2
IS

R

T
as

k

Service
 NextScheduleTable
 StartScheduleTableSynchron
 SyncScheduleTable
 GetScheduleTableStatus
 SetScheduleTableAsync
 IncrementCounter
 GetCounterValue
 GetElapsedValue

1 TerminateApplication
 AllowAccess
 GetApplicationState

Tab. 1: Allowed Calling Context for OS Service Calls

In the table above “C” indicates that validity is only “Checked in Extended status by
E_OS_CALLEVEL” (see [12], section 13.1).

7.7.3.2.2 Requirements

OS088: If an OS-Application makes a service call from the wrong context AND is
currently not inside a Category 1 ISR the Operating System module shall not perform
the requested action (the service call shall have no effect), and return
E_OS_CALLEVEL (see [12], section 13.1) or the “invalid value” of the service.

7.7.3.3 Services with Undefined Behaviour

7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the Operating System module to be corrupted through its own service calls. The
implementation of service protection for the Operating System module must therefore
describe and implement a behaviour that does not jeopardise the integrity of the
system or of any OS-Application which did not cause the specific error.

7.7.3.3.2 Requirements

65 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

1 Only in case of self termination.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Tasks ends without calling a TerminateTask() or ChainTask()

OS052: If a task returns from its entry function without making a TerminateTask()
or ChainTask() call, the Operating System module shall terminate the task (and call
the PostTaskHook() if configured).

OS069: If a task returns from its entry function without making a TerminateTask()
or ChainTask() call AND the error hook is configured, the Operating System module
shall call the ErrorHook() (this is done regardless of whether the task causes other
errors, e.g. E_OS_RESOURCE) with status E_OS_MISSINGEND before the task leaves
the RUNNING state.

OS070: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and still holds OSEK Resources, the Operating System module
shall release them.

OS239: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and interrupts are still disabled, the Operating System module
shall enable them.

Category 2 ISR ends with locked interrupts or allocated resources

OS368: If a Category 2 ISR calls DisableAllInterupts() /
SuspendAllInterrupts() / SuspendOSInterrupts() and ends (returns) without
calling the corresponding EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts(), the Operating System module shall perform the missing
service and shall call the ErrorHook() (if configured) with the status
E_OS_DISABLEDINT.

OS369: If a Category 2 ISR calls GetResource() and ends (returns) without calling
the corresponding ReleaseResource(), the Operating System module shall perform
the ReleaseResource() call and shall call the ErrorHook() (if configured) with the
status E_OS_RESOURCE (see [12], section 13.1).

PostTaskHook called during ShutdownOS()

OS071: If the PostTaskHook() is configured, the Operating System module shall not
call the hook if ShutdownOS() is called.

Tasks/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts
without a corresponding disable

OS092: If EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()
/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the
Operating System module shall not perform this Operating System service.

66 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Tasks/ISRs calling OS services when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

OS093: If interrupts are disabled/suspended by a Task/ISR and the Task/ISR calls
any Operating System service (excluding the interrupt services) then the Operating
System module shall ignore the service AND shall return E_OS_DISABLEDINT if the
service returns a StatusType value.

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications

7.7.3.4.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see Section 7.7.3.2). In a protected system, additional constraints need to
be placed to prevent non-trusted OS-Applications executing API calls that can have a
global effect on the system. Each level of restriction is a proper subset of the
previous level as shown in the figure below.

Figure 7.13: API Restrictions

There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.4.2 Requirements

67 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS054: The Operating System module shall ignore calls to ShutdownOS() from non-
trusted OS-Applications.

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-
OS-Application systems).
This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been
configured as used by the task).

7.7.3.5.2 Requirements

OS056: If an OS-object identifier is the parameter of an Operating System module’s
system service, and no sufficient access rights have been assigned to this OS-object
at configuration time (Parameter Os[...]AccessingApplication) to the calling
Task/Category 2 ISR, the Operating System module’s system service shall return
E_OS_ACCESS.

OS449: CheckTaskMemoryAccess and CheckIsrMemoryAccess check the memory
access. Memory access checking is possible for all OS-Applications and from all OS-
Applications and does not need granted rights.

OS449 is an exception to OS056.

OS450: CheckObjectAccess checks the access rights for Operating System objects.
Checking object access is possible for all OS-Applications and from all OS-
Applications and does not need granted rights.

OS450 is an exception to OS056.

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
Tasks/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in

68 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

non-privileged mode. The Operating System module’s services will need to execute
in privileged mode as they will need to modify the registers that are protected outside
this mode.

The Operating System module can use the control registers of the MPU, timer
unit(s), interrupt controller, etc. and therefore it is necessary to protect those registers
against non-trusted OS-Applications.

7.7.4.2 Requirements

OS058: If supported by hardware, the Operating System module shall execute non-
trusted OS-Applications in non-privileged mode.

OS096: As far as supported by hardware, the Operating System module shall not
allow non-trusted OS-Applications to access control registers managed by the
Operating System module.

OS245: If an instruction exception occurs (e.g. division by zero) the Operating
System module shall call the protection hook with E_OS_PROTECTION_EXCEPTION.

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the
Operating System module’s treatment of interrupt entry and hook routines must be
carefully managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this
section) ISRs will require the Operating System module to do extra work in the ISR()
wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a
non-trusted OS-Application then the ISR() wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application can invoke a Trusted Function provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System.

69 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

The service is passed as an identifier that is used to determine, in the trusted
environment, if the service can be called.

(4) The Operating System offers services to check if a memory region is
write/read/execute accessible from an OS-Application. It also returns
information if the memory region is part of the stack space.

The Operating System software specification does not provide support for »non-
trusted services«.

7.7.5.2 Requirements

OS451: The Operating System module shall allow exporting services from trusted
OS-Applications.

The Operating System module provides the service CallTrustedFunction() (see
OS097) to call a trusted function from a (trusted or non-trusted) OS-Application.

OS100: If CallTrustedFunction() is called and the called trusted function is not
configured the Operating System module shall call the ErrorHook with
E_OS_SERVICEID.

The Operating System module provides the services CheckISRMemoryAccess() and
CheckTaskMemoryAccess() (see OS512 and OS513) for OS-Applications to check if
a memory region is write/read/execute accessible from a Task/Category 2 ISR and
also return information if the memory region is part of the stack space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured
information on what the constituent parts of an OS-Application can do at runtime.
See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the Operating System
module is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
Protection Hook for the notification of protection errors at runtime. The Protection
Hook runs in the context of the Operating System module and must therefore be
trusted code.

70 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

The Operating System module itself needs only to detect an error and provide the
ability to act. The Protection Hook can select one out of four options the Operating
System module provides, which will be performed after returning from the Protection
Hook, depending on the return value of the Protection Hook. The options are:

1. do nothing
2. forcibly terminate the faulty Task/Category 2 ISR
3. forcibly terminate all tasks and ISRs in the faulty OS-Application

a. without restart of the OS-Application
b. with restart of the OS-Application

4. shutdown the Operating System module.

Requirements OS243 and OS244 define the order of the default reaction if no faulty
Task/Category 2 ISR or OS-Application can be found, e.g. in the system specific
hook routines. Also OS-Applications are only mandatory in Scalability Classes 3 and
4, therefore in other Scalability Classes OS-Applications need not be defined.

Note that forcibly terminating interrupts is handled differently in “forcibly terminate the
faulty ISR” and “forcibly terminate the OS-Application”. If a faulty ISR is forcibly
terminated, the current invocation of the ISR is terminated. A subsequent invocation
is allowed. If the OS-Application is forcibly terminated, then the interrupt source is
also disabled, preventing subsequent interrupts.

7.8.2 Requirements

OS211: The Operating System module shall execute the ProtectionHook() with
the same permissions as the Operating System module.

OS107: If no ProtectionHook() is configured and a protection error occurs, the
Operating System module shall call ShutdownOS().

OS106: If the ProtectionHook() returns PRO_IGNORE and was called with
E_OS_PROTECTION_ARRIVAL the Operating System module shall return control to the
user application.

OS553: If the ProtectionHook() returns PRO_TERMINATETASKISR the Operating
System module shall forcibly terminate the faulty Task/Category 2 ISR.

OS554: If the ProtectionHook() returns PRO_TERMINATEAPPL the Operating
System module shall forcibly terminate the faulty OS-Application.

OS555: If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART the
Operating System module shall forcibly terminate the faulty OS-Application and
afterwards restart the OS-Application.

OS556: If the ProtectionHook() returns PRO_SHUTDOWN the Operating System
module shall call the ShutdownOS().

71 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS506: If the ProtectionHook() is called with E_OS_PROTECTION_ARRIVAL the
only valid return values are PRO_IGNORE or PRO_SHUTDOWN 2. Returning other values
will result in a call to ShutdownOS().

OS475: If the ProtectionHook() returns PRO_IGNORE and the ProtectionHook()
was not called with E_OS_PROTECTION_ARRIVAL then the Operating System module
shall call ShutdownOS().

OS243: If the ProtectionHook() returns PRO_TERMINATETASKISR and no Task or
ISR can be associated with the error, the running OS-Application is forcibly
terminated by the Operating System module. If even no OS-Application can be
assigned, ShutdownOS() is called.

OS244: If the ProtectionHook() returns PRO_TERMINATEAPPL or
PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned,
ShutdownOS() is called.

sOS557: If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART and no
OsRestartTask was configured for the faulty OS-Application, ShutdownOS() is
called.

OS108: If the Operating System module forcibly terminates a task, it terminates the
task, releases all allocated OSEK resources and calls EnableAllInterrupts()/
ResumeOSInterrupts() / ResumeAllInterrupts() if the Task called
DisableAllInterrupts() / SuspendOSInterrupts() /
SuspendAllInterrupts() before without the corresponding
EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

OS109: If the Operating System module forcibly terminates an interrupt service
routine, it clears the interrupt request, aborts the interrupt service routine (The
interrupt source stays in the current state.) and releases all OSEK resources the
interrupt service routine has allocated and calls EnableAllInterrupts() /
ResumeOSInterrupts() / ResumeAllInterrupts() if the interrupt called
DisableAllInterrupts() / SuspendOSInterrupts() /
SuspendAllInterrupts() before without the corresponding
EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

OS110: If the Operating System module shall forcibly terminates an OS-Application,
it:shall

o forcibly terminate all Tasks/ISRs of the OS-Application AND
o cancel all alarms of the OS-Application AND
o stop schedule tables of the OS-Application AND
o disable interrupt sources of Category 2 ISRs belonging to the OS-Application

72 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 The reason for this case is that the Task which is supervised is not necessary active (and can not be e.g. terminated) and it
can be that the caller of the activation is the real problem.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS111: When the Operating System module restarts an OS-Application, it shall
activate the configured OsRestartTask.

7.9 System Scalability

7.9.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

D
es

cr
ib

ed
 in

 S
ec

ti
o

n

S
ca

la
b

ili
ty

 C
la

ss
 1

S
ca

la
b

ili
ty

 C
la

ss
 2

S
ca

la
b

ili
ty

 C
la

ss
 3

S
ca

la
b

ili
ty

 C
la

ss
 4

Hardware requirements Feature

 OSEK OS (all
conformance classes)

7.1

 Counter Interface 8.4.16
SWFRT Interface 8.4.17,

8.4.18

 Schedule Tables 7.3
7.5 Stack Monitoring

73 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ProtectionHook 7.8
Timing Protection 7.7.2 Timer(s) with high priority

interrupt

Global Time
/Synchronization Support

7.4 Global time source

Memory Protection 7.7.1,
7.7.4

 MPU

OS-Applications 7.6, 7.10
Service Protection 7.7.3
CallTrustedFunction 7.7.5 (Non-)privileged Modes

Tab. 2: Scalability classes

S
ca

la
b

ili
ty

 C
la

ss
 1

S
ca

la
b

ili
ty

 C
la

ss
 2

S
ca

la
b

ili
ty

 C
la

ss
 3

S
ca

la
b

ili
ty

 C
la

ss
 4

Feature
Minimum number of Schedule 2 8 2 8

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Tables supported
Minimum number of OS-
Applications supported

0 0 2 2

Minimum number of software
Counters supported

8 8 8 8

Tab. 3: Minimum requirements of scalability classes

7.9.2 Requirements

OS240: If an implementation of a lower scalability class supports features of higher
classes then the interfaces for the features must comply with this Operating System
software specification.

OS241: The Operating System module shall support the features according to the
configured scalability class. (See Tab. 2)

OS327: The Operating System module shall always use extended status in
Scalability Class 3 and 4.

74 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.10 Hook Functions

7.10.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the Operating System
module and therefore can only belong to the trusted environment. Furthermore, these
hook routines are global to the system (system-specific) and will probably be
supplied by the ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute
application specific code e.g. initialize some hardware in its own additional
(application-specific) startup hook. These are called application specific hook
routines. In general the application specific hooks have the same properties as the
hook routines described in the OSEK OS specification. Differences are described
below.

7.10.2 Requirements

OS439: The Operating System module shall provide the OSEK error macros
(OSError…()) to all configured error hooks AND there shall be two (like in OIL) global
configuration parameters to switch these macros on or off.

StartupHook

OS060: If an application-specific startup hook is configured for an OS-Application
<App>, the Operating System module shall call StartupHook_<App> on startup of the
Operating System module.

OS226: The Operating System module shall execute an application-specific startup
hook with the access rights of the associated OS-Application.

OS236: If both a system-specific and one (or more) application specific startup
hook(s) are configured, the Operating System module shall call the system-specific
startup hook before the application-specific startup hook(s).

ShutdownHook

OS112: If an application-specific shutdown hook is configured for an OS-Application
<App>, the Operating System module shall call ShutdownHook_<App> on shutdown
of the OS.

OS225: The Operating System module shall execute an application-specific
shutdown hook with the access rights of the associated OS-Application.

OS237: If both a system-specific and one (or more) application specific shutdown
hook(s) are configured, the Operating System module shall call the system-specific
shutdown hook after the application-specific shutdown hook(s).

75 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Error Hook

OS246: When an error occurs AND an application-specific error hook is configured
for the faulty OS-Application <App>, the Operating System module shall call that
application-specific error hook ErrorHook_<App> after the system specific error hook
is called (if configured).

OS085: The Operating System module shall execute an application-specific error
hook with the access rights of the associated OS-Application.

OS367: Operating System module’s services which do not return a StatusType shall
not raise the error hook(s).

7.11 Error classification

Instead of specifying two versions for production and development errors the
AUTOSAR OS provides a finer granularity to adjust the error handling to specific
needs, e.g. Scalability Classes, standard and extended status, switching on/off of
hook routines.

Type or error Relevance Related error code Value

Service can not be called. Production E_OS_SERVICEID Assigned by
implementation

An invalid address is
given as a parameter to a
service.

Production E_OS_ILLEGAL_ADDRESS Assigned by
implementation

Tasks terminates without
a TerminateTask() or
ChainTask() call.

Production E_OS_MISSINGEND Assigned by
implementation

 A service of the OS is
called inside an interrupt
disable/enable pair.

Production E_OS_DISABLEDINT Assigned by
implementation

A stack fault detected via
stack monitoring by the
OS

Production E_OS_STACKFAULT Assigned by
implementation

A memory access
violation occurred

Production E_OS_PROTECTION_MEMORY Assigned by
implementation

76 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

A Task exceeds its
execution time budget

Production

E_OS_PROTECTION_TIME

Assigned by
implementation
 A Category 2 ISR

exceeds its execution
time budget
A Task/Category 2 ISR
arrives before its
timeframe has expired

Production E_OS_PROTECTION_ARRIVAL Assigned by
implementation

A Task/Category 2 ISR
blocks for too long

Production E_OS_PROTECTION_LOCKED Assigned by
implementation

A trap occurred Production E_OS_PROTECTION_EXCEPTION Assigned by
implementation

Specification of Operating System
 V4.0.0

R4.0 Rev 1

7.12 Debug support

In order to support debugging AUTOSAR implementations must publish information
which can be used for debugging purpose.

OS551: Each variable that shall be accessible by AUTOSAR Debugging, shall be
defined as global variable.

OS550: All type definitions of variables which shall be debugged, shall be accessible
by the header file Os.h.

OS549:The declaration of variables in the header file shall be such, that it is possible
to calculate the size of the variables by C-"sizeof".

77 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8 API specification

This chapter contains the APIs offered by the operating system. Note that not all
services are available in all scalability classes, and that the behavior of some
services is extended for specific scalability classes. For example, API to relatively
start a schedule table has an additional check if the schedule table allows implicit
synchronization. This check is only performed in SC2 and SC4 where
synchronization of schedule tables is supported.

8.1 Constants

8.1.1 Error codes of type StatusType

See Section 7.11 and [14].

8.2 Macros

OSMEMORY_IS_READABLE(<AccessType>)
OSMEMORY_IS_WRITEABLE(<AccessType>)
OSMEMORY_IS_EXECUTABLE(<AccessType>)
OSMEMORY_IS_STACKSPACE(<AccessType>)

These macros return a value not equal to zero if the memory is readable / writable /
executable or stack space. The argument of the macros must be of type
AccessType. Typically the return value of the service
Check[Task|ISR]MemoryAccess() is used as argument for these macros.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

Scalar Type:
This data type identifies the OS-Application. Description:

INVALID_OSAPPLICATION Constants of this
Type:

8.3.2 ApplicationStateType

Scalar Type:
This data type identifies the state of an OS-Application. Description:

Constants of this
Type:

APPLICATION_ACCESSIBLE
APPLICATION_RESTARTING
APPLICATION_TERMINATED

78 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.3.3 ApplicationStateRefType

Type: Pointer
Description: This data type points to location where a ApplicationStateType can be stored.

8.3.4 TrustedFunctionIndexType

Type: Scalar
Description: This data type identifies a trusted function.

8.3.5 TrustedFunctionParameterRefType

Type: Pointer
Description: This data type points to a structure which holds the arguments for a call to a

trusted function.

8.3.6 AccessType

Type: Integral
Description: This type holds information how a specific memory region can be accessed.

8.3.7 ObjectAccessType

Type : Scalar
Description: This data type identifies if an OS-Application has access to an object.

Constants of this
Type:

ACCESS
NO_ACCESS

8.3.8 ObjectTypeType

Type : Scalar
Description : This data type identifies an object.

OBJECT_TASK Constants of this
Type: OBJECT_ISR

OBJECT_ALARM
OBJECT_RESOURCE
OBJECT_COUNTER
OBJECT_SCHEDULETABLE

8.3.9 MemoryStartAddressType

Pointer Type:
This data type is a pointer which is able to point to any location in the MCU
address space.

Description:

79 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.3.10 MemorySizeType

Scalar Type:
This data type holds the size (in bytes) of a memory region. Description:

8.3.11 ISRType

Scalar Type:
Description: This data type identifies an interrupt service routine (ISR).

Constants of this
Type:

INVALID_ISR

8.3.12 ScheduleTableType

Scalar Type:
Description: This data type identifies a schedule table.

8.3.13 ScheduleTableStatusType

Type: Scalar
Description: This type describes the status of a schedule. The status can be one of the

following:
o The schedule table is not started (SCHEDULETABLE_STOPPED)
o The schedule table will be started after the end of currently running schedule

table (schedule table was used in NextScheduleTable() service)
(SCHEDULETABLE_NEXT)

o The schedule table uses explicit synchronization, has been started and is
waiting for the global time. (SCHEDULETABLE_WAITING)

o The schedule table is running, but is currently not synchronous to a global
time source (SCHEDULETABLE_RUNNING)

o The schedule table is running and is synchronous to a global time source
(SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS)

Constants of this
Type:

SCHEDULETABLE_STOPPED
SCHEDULETABLE_NEXT
SCHEDULETABLE_WAITING
SCHEDULETABLE_RUNNING
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS

8.3.14 ScheduleTableStatusRefType

Type: Pointer
This data type points to a variable of the data type ScheduleTableStatusType. Description:

8.3.15 CounterType

Type: Scalar

80 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

This data type identifies a counter. Description:

8.3.16 ProtectionReturnType

Type: Scalar
This data type identifies a value which controls further actions of the OS on return
from the protection hook.

Description:

PRO_IGNORE Constants of this
Type: PRO_TERMINATETASKISR

PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN

8.3.17 RestartType

Scalar Type:
This data type defines the use of a Restart Task after terminating an OS-
Application.

Description:

RESTART Constants of this
Type: NO_RESTART

8.3.18 PhysicalTimeType

Type: Scalar
This data type is used for values returned by the conversion macro (see OS393())
OS_TICKS2<Unit>_<Counter>().

Description:

8.4 Function definitions

The availability of the following services is defined in Tab. 2. The use of these
services may be restricted depending on the context they are called from. See
Tab. 1 for details.

8.4.1 GetApplicationID

OS016:
Service name: GetApplicationID

ApplicationType GetApplicationID(
 void
)

Syntax:

0x00 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):

Parameters
(inout):

None

81 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

None Parameters (out):
ApplicationType <identifier of running OS-Application> or

INVALID_OSAPPLICATION
Return value:

This service determines the currently running OS-Application (a unique identifier
has to be allocated to each application).

Description:

OS261: GetApplicationID() shall return the application identifier to which the
executing Task/ISR/hook belongs.

OS262: If no OS-Application is running, GetApplicationID() shall return
INVALID_OSAPPLICATION.

OS514: Availability of GetApplicationID(): Available in Scalability Classes 3 and
4.

8.4.2 GetISRID

OS511:
Service name: GetISRID
Syntax: ISRType GetISRID(

 void
)
0x01 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
ISRType <Identifier of running ISR> or

INVALID_ISR
Return value:

Description: This service returns the identifier of the currently executing ISR.

OS263: If called from category 2 ISR (or Hook routines called inside a category 2
ISR), GetISRID() shall return the identifier of the currently executing ISR.

OS264: If its caller is not a category 2 ISR (or Hook routines called inside a category
2 ISR), GetISRID() shall return INVALID_ISR.

OS515: Availability of GetISRID(): Available in all Scalability Classes.

8.4.3 CallTrustedFunction

OS097:
CallTrustedFunction Service name:
StatusType CallTrustedFunction(
 TrustedFunctionIndexType FunctionIndex,
 TrustedFunctionParameterRefType FunctionParams
)

Syntax:

0x02 Service ID[hex]:
Sync/Async: Depends on called function. If called function is synchronous then service is

82 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

synchronous. May cause rescheduling.
Reentrancy: Reentrant

FunctionIndex Index of the function to be called.
FunctionParams Pointer to the parameters for the function - specified by the

FunctionIndex - to be called. If no parameters are provided, a
NULL pointer has to be passed.

Parameters (in):

None Parameters
(inout):

None Parameters (out):
StatusType E_OK: No Error

E_OS_SERVICEID: No function defined for this index
Return value:

Description: A (trusted or non-trusted) OS-Application uses this service to call a trusted
function

OS265: If <FunctionIndex> is a defined function index, CallTrustedFunction()
shall switch the processor into privileged mode AND shall call the function
<FunctionIndex> out of a list of implementation specific trusted functions with
disabled memory protection AND shall return E_OK after completion.

OS312: Caveats of CallTrustedFunction():

 The called trusted function must conform to the following C prototype: void
TRUSTED_<name_of_the_trusted_service>(
TrustedFunctionIndexType,TrustedFunctionParameterRefType);
(The arguments are the same as the arguments of CallTrustedFunction).

 Normally, a user will not directly call this service, but it will be part of some
standard interface, e.g. a standard I/O interface.

 It is the duty of the called trusted function to check rights of passed
parameters, especially if parameters are interpreted as out parameters.

 It should be noted that the CallTrustedFunction() does not disable timing
protection for the task which called the service. This may lead to timing faults
(calls of the ProtectionHook()) even inside of a trusted OS-Application. It is
therefore recommended to use CallTrustedFunction() only for stateless
functions (e.g. functions which do not write or do not have internal states)

OS266: When CallTrustedFunction() calls the function <FunctionIndex>, that
function shall be executed with the same processor mode and memory protection
boundaries as the OS-Application to which it belongs. It shall however retain the
timing protection and service protection limitations of the calling Task or ISR, and the
notion of "current application" shall remain that of the calling Task or Category 2 ISR.

OS364: If CallTrustedFunction() calls the trusted function from a Category 2 ISR
context, that function shall continue to run on the same interrupt priority and be
allowed to call all system services defined for Category 2 ISR (see table in chapter
7.7.3.2).

OS365: If CallTrustedFunction() calls the trusted function from a task context,
that function shall continue to run on the same priority and be allowed to call all
system services defined for tasks (see table in chapter 7.7.3.2).

83 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS292: If the function index <FunctionIndex> in a call of CallTrustedFunction() is
undefined, CallTrustedFunction() shall return E_OS_SERVICEID.

OS516: Availability of CallTrustedFunction(): Available in Scalability Classes 3
and 4.

8.4.4 CheckISRMemoryAccess

OS512:
Service name: CheckISRMemoryAccess
Syntax: AccessType CheckISRMemoryAccess(

 ISRType ISRID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)
0x03 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ISRID ISR reference
Address Start of memory area Parameters (in):
Size Size of memory area

Parameters
(inout):

None

Parameters (out): None
Return value: AccessType Value which contains the access rights to the memory area.

This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

Description:

OS267: If the ISR reference <ISRID> in a call of CheckISRMemoryAccess() is valid,
CheckISRMemoryAccess() shall return the access rights of the ISR on the specified
memory area.

OS313: If an access right (e.g. “read”) is not valid for the whole memory area
specified in a call of CheckISRMemoryAccess(), CheckISRMemoryAccess() shall
yield no access regarding this right.

OS268: If the ISR reference <ISRID> is not valid, CheckISRMemoryAccess() shall
yield no access rights.

OS517: Availability of CheckISRMemoryAccess(): Available in Scalability Classes 3
and 4.

8.4.5 CheckTaskMemoryAccess

OS513:
CheckTaskMemoryAccess Service name:

84 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Syntax: AccessType CheckTaskMemoryAccess(
 TaskType TaskID,
 MemoryStartAddressType Address,

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 MemorySizeType Size
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant

TaskID Task reference
Address

85 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Start of memory area Parameters (in):
Size Size of memory area
None Parameters

(inout):
None Parameters (out):

Return value: AccessType Value which contains the access rights to the memory area.
This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

Description:

OS269: If the Task reference <TaskID> in a call of CheckTaskMemoryAccess() is
valid, CheckTaskMemoryAccess() shall return the access rights of the task on the
specified memory area.

OS314: If an access right (e.g. “read”) is not valid for the whole memory area
specified in a call of CheckTaskMemoryAccess(), CheckTaskMemoryAccess()
shall yield no access regarding this right.

OS270: If the Task reference <TaskID> in a call of CheckTaskMemoryAccess() is
not valid, CheckTaskMemoryAccess() shall yield no access rights.

OS518: Availability of CheckTaskMemoryAccess(): Available in Scalability
Classes 3 and 4

8.4.6 CheckObjectAccess

OS256:
CheckObjectAccess Service name:
ObjectAccessType CheckObjectAccess(
 ApplicationType ApplID,
 ObjectTypeType ObjectType,
 void ...
)

Syntax:

0x05 Service ID[hex]:
Sync/Async: Synchronous
Reentrancy: Reentrant

ApplID OS-Application identifier
ObjectType Type of the following parameter Parameters (in):
... The object to be examined

Parameters
(inout):

None

None Parameters (out):

Return value:
ObjectAccessType ACCESS if the ApplID has access to the object

NO_ACCESS otherwise
Description: This service determines if the OS-Applications, given by ApplID, is allowed to

use the IDs of a Task, ISR, Resource,

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Counter, Alarm or Schedule Table in API calls.

OS271: If the OS-Application <ApplID> in a call of CheckObjectAccess() has
access to the queried object, CheckObjectAccess() shall return ACCESS.

OS272: If the OS-Application <ApplID> in a call of CheckObjectAccess() has no
access to the queried object, CheckObjectAccess() shall return NO_ACCESS.

OS423: If in a call of CheckObjectAccess() the object to be examined is not a
valid object OR <ApplID> is invalid OR <ObjectType> is invalid THEN
CheckObjectAccess() shall return NO_ACCESS.

OS519: Availability of CheckObjectAccess(): Available in Scalability Classes 3
and 4.

8.4.7 CheckObjectOwnership

OS017:
CheckObjectOwnership Service name:
ApplicationType CheckObjectOwnership(
 ObjectTypeType ObjectType,
 void ...
)

Syntax:

0x06 Service ID[hex]:
Sync/Async: Synchronous
Reentrancy: Reentrant

ObjectType Type of the following parameter
Parameters (in):

... The object to be examined
Parameters
(inout):

None

Parameters (out): None

Return value:
ApplicationType <OS-Application>: the OS-Application to which the object

ObjectType belongs or
INVALID_OSAPPLICATION if the object does not exists

Description: This service determines to which OS-Application a given Task, ISR, Resource,
Counter, Alarm or Schedule Table belongs

OS273: If the object ObjectType specified in a call of CheckObjectOwnership()
exists, CheckObjectOwnership() shall return the identifier of the OS-Application
to which the object belongs.

OS274: If in a call of CheckObjectOwnership() the specified object ObjectType is
invalid OR the argument of the type (the “…”) is invalid,
CheckObjectOwnership() shall return INVALID_OSAPPLICATION.

OS520: Availability of CheckObjectOwnership():Available in Scalability Classes
3 and 4.

86 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.4.8 StartScheduleTableRel

OS347:
Service name: StartScheduleTableRel

StatusType StartScheduleTableRel(
 ScheduleTableType ScheduleTableID,
 TickType Offset
)

Syntax:

0x07 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ScheduleTableID Schedule table to be started

Parameters (in): Offset Number of ticks on the counter before the the schedule table
processing is started

None Parameters
(inout):

None Parameters (out):
StatusType E_OK: No Error

E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid.
E_OS_VALUE (only in EXTENDED status): Offset is greater
than (OsCounterMaxAllowedValue - InitialOffset) or is equal to 0.
E_OS_STATE: Schedule table was already started.

Return value:

Description: This service starts the processing of a schedule table at "Offset" relative to the
"Now" value on the underlying counter.

OS275: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is not valid, StartScheduleTableRel() shall
return E_OS_ID.

OS452: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is implicitely synchronized
(OsScheduleTblSyncStrategy = IMPLICIT), StartScheduleTableRel()
shall return E_OS_ID.

OS332: If <Offset> in a call of StartScheduleTableRel() is zero
StartScheduleTableRel() shall return E_OS_VALUE.

OS276: If the offset <Offset>) is greater than OsCounterMaxAllowedValue of the
underlying counter minus the Initial Offset, StartScheduleTableRel() shall
return E_OS_VALUE.

OS277: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableRel() shall return E_OS_STATE.

OS278: If the input parameters of StartScheduleTableRel() are valid and the
state of schedule table <ScheduleTableID> is SCHEDULETABLE_STOPPED, then
StartScheduleTableRel() shall start the processing of a schedule table
<ScheduleTableID>. The Initial Expiry Point shall be processed after <Offset> +
Initial Offset ticks have elapsed on the underlying counter. The state of
87 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

<ScheduleTableID> is set to SCHEDULETABLE_RUNNING before the service returns
to the caller.

OS521: Availability of StartScheduleTableRel(): Available in all Scalability
Classes.

8.4.9 StartScheduleTableAbs

OS358:
StartScheduleTableAbs Service name:
StatusType StartScheduleTableAbs(
 ScheduleTableType ScheduleTableID,
 TickType Start
)

Syntax:

0x08 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
ScheduleTableID Schedule table to be started

Parameters (in):
Start Absolute counter tick value at which the schedule table is started
None Parameters

(inout):
None Parameters (out):

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_VALUE (only in EXTENDED status): Tickvalue is greater
than OsCounterMaxAllowedValue
E_OS_STATE: Schedule table was already started

Description: This service starts the processing of a schedule table at an absolute value "Start"
on the underlying counter.

OS348: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableAbs() is not valid, StartScheduleTableAbs() shall
return E_OS_ID.

OS349: If the <Start> in a call of StartScheduleTableAbs() is greater than the
OsCounterMaxAllowedValue of the underlying counter,
StartScheduleTableAbs() shall return E_OS_VALUE.

OS350: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableAbs() is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableAbs() shall return E_OS_STATE.

OS351: If the input parameters of StartScheduleTableAbs() are valid and
<ScheduleTableID> is in the state SCHEDULETABLE_STOPPED,
StartScheduleTableAbs() shall start the processing of schedule table
<ScheduleTableID> when the underlying counter next equals <Start> and shall set
the state of <ScheduleTableID> to
- SCHEDULETABLE_RUNNING (for a non-synchronized / Explicitly synchronized
schedule table) OR
88 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

- SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (for implicitly synchronized schedule
table)
before returning to the user. (The Initial Expiry Point will be processed when the
underlying counter next equals <Start>+Initial Offset).

OS522: Availability of StartScheduleTableRel(): Available in all Scalability
Classes.

8.4.10 StopScheduleTable

OS006:
StopScheduleTable Service name:

Syntax: StatusType StopScheduleTable(
 ScheduleTableType ScheduleTableID
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): ScheduleTableID Schedule table to be stopped
Parameters
(inout):

None

None Parameters (out):

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid.
E_OS_NOFUNC: Schedule table was already stopped

Description: This service cancels the processing of a schedule table immediately at any point
while the schedule table is running.

OS279: If the schedule table identifier <ScheduleTableID> in a call of
StopScheduleTable() is not valid, StopScheduleTable() shall return
E_OS_ID.

OS280: If the schedule table with identifier <ScheduleTableID> is in state
SCHEDULETABLE_STOPPED when calling StopScheduleTable(),
StopScheduleTable() shall return E_OS_NOFUNC.

OS281: If the input parameters of StopScheduleTable() are valid,
StopScheduleTable()shall set the state of <ScheduleTableID> to
SCHEDULETABLE_STOPPED and (stop the schedule table <ScheduleTableID> from
processing any further expiry points and) shall return E_OK.

OS523: Availability of StopScheduleTable(): Available in all Scalability Classes.

8.4.11 NextScheduleTable

OS191:

89 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

NextScheduleTable Service name:
StatusType NextScheduleTable(
 ScheduleTableType ScheduleTableID_From,
 ScheduleTableType ScheduleTableID_To
)

Syntax:

0x0a Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
ScheduleTableID_From Currently processed schedule table

Parameters (in):
ScheduleTableID_To Schedule table that provides its series of expiry points
None Parameters

(inout):
None Parameters (out):

Return value:

StatusType E_OK: No error
E_OS_ID (only in EXTENDED status):
ScheduleTableID_From or ScheduleTableID_To
not valid
E_OS_NOFUNC: ScheduleTableID_From not started
E_OS_STATE: ScheduleTableID_To is started or next

Description: This service switches the processing from one schedule table to another schedule
table.

OS282: If the input parameter <ScheduleTableID_From> or <ScheduleTableID_To>
in a call of NextScheduleTable() is not valid, NextScheduleTable() shall
return E_OS_ID.

OS330: If in a call of NextScheduleTable() schedule table
<ScheduleTableID_To> is driven by different counter than schedule table
<ScheduleTableID_From> then NextScheduleTable() shall return an error
E_OS_ID.

OS283: If the schedule table <ScheduleTableID_From> in a call of
NextScheduleTable() is in state SCHEDULETABLE_STOPPED OR in state
SCHEDULETABLE_NEXT, NextScheduleTable() shall leave the state of
<ScheduleTable_From> and <ScheduleTable_To> unchanged and return
E_OS_NOFUNC.

OS309: If the schedule table <ScheduleTableID_To> in a call of
NextScheduleTable() is not in state SCHEDULETABLE_STOPPED,
NextScheduleTable() shall leave the state of <ScheduleTable_From> and
<ScheduleTable_To> unchanged and return E_OS_STATE.

OS484: If OsScheduleTblSyncStrategy of <ScheduleTableID_To> in a call of
NextScheduleTable() is not equal to the OsScheduleTblSyncStrategy of
<ScheduleTableID_From> then NextScheduleTable() shall return E_OS_ID.

OS284: If the input parameters of NextScheduleTable() are valid then
NextScheduleTable() shall start the processing of schedule table
<ScheduleTableID_To> <ScheduleTableID_From>.FinalDelay ticks after the Final
Expiry Point on <ScheduleTableID_From> is processed and shall return E_OK.

90 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

NextScheduleTable() shall process the Initial Expiry Point on
<ScheduleTableID_To> at <ScheduleTableID_From>.Final Delay +
<ScheduleTable_To>.Initial Offset ticks after the Final Expiry Point on
<ScheduleTableID_From> is processed .

OS324: If the input parameters of NextScheduleTable() are valid AND the
<ScheduleTableID_From> already has a “next” schedule table then
NextScheduleTable()shall replace the previous “next” schedule table with
<ScheduleTableID_To> and shall change the old “next” schedule table state to
SCHEDULETABLE_STOPPED.

OS505: If OsScheduleTblSyncStrategy of the schedule tables
<ScheduleTableID_From> and <ScheduleTableID_To> in a call of
NextScheduleTable() is EXPLICIT and the Operating System module already
synchronizes <ScheduleTableID_From>, NextScheduleTable() shall continue
synchonization after the start of processing <ScheduleTableID_To>.

OS453: If the <ScheduleTableID_From> in a call of NextScheduleTable() is
stopped, NextScheduleTable() shall not start the “next” schedule table and
change its state to SCHEDULETABLE_STOPPED.

OS524: Availability of NextScheduleTable(): Available in all Scalability Classes.

8.4.12 StartScheduleTableSynchron

OS201:
StartScheduleTableSynchron Service name:
StatusType StartScheduleTableSynchron(
 ScheduleTableType ScheduleTableID
)

Syntax:

0x0b Service ID[hex]:
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): ScheduleTableID Schedule table to be started

None Parameters
(inout):

None Parameters (out):

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_STATE: Schedule table was already started

This service starts an explicitly synchronized schedule table synchronously. Description:

OS387: If in a call of StartScheduleTableSynchron() the schedule table
<ScheduleTableID> is not valid OR the schedule table <ScheduleTableID> is not
explicitly synchronized (OsScheduleTblSyncStrategy != EXPLICIT)
StartScheduleTableSynchron() shall return E_OS_ID.

91 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS388: If the schedule table <ScheduleTableID> in a call of
StartScheduleTableSynchron()is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableSynchron() shall return E_OS_STATE.

OS389: If <ScheduleTableID> in a call of StartScheduleTableSynchron() is
valid, StartScheduleTableSynchron() shall set the state of <ScheduleTableID>
to SCHEDULETABLE_WAITING and start the processing of schedule table
<ScheduleTableID> after the synchronization count of the schedule table is set via
SyncScheduleTable(). The Initial Expiry Point shall be processed when
(Duration-SyncValue)+InitialOffset ticks have elapsed on the synchronization counter
where:

 Duration is <ScheduleTableID>.OsScheduleTableDuration
 SyncValue is the <Value> parameter passed to the SyncScheduleTable()
 InitialOffset is the shortest expiry point offset in <ScheduleTableID>

OS525: Availability of StartScheduleTableSynchron(): Available in Scalability
Classes 2 and 4.

8.4.13 SyncScheduleTable

OS199:
SyncScheduleTable Service name:
StatusType SyncScheduleTable(
 ScheduleTableType ScheduleTableID,
 TickType Value
)

Syntax:

Service ID[hex]: 0x0c
Sync/Async: Synchronous
Reentrancy: Reentrant

ScheduleTableID Schedule table to be synchronized
Parameters (in):

Value The current value of the synchronization counter
Parameters
(inout):

None

Parameters (out): None

Return value:

StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The ScheduleTableID
was not valid or schedule
table can not be synchronized (OsScheduleTblSyncStrategy not
set or
OsScheduleTblSyncStrategy = IMPLICIT)
E_OS_VALUE (only in EXETENDED status): The <Value> is out
of range
E_OS_STATE: The state of schedule table <ScheduleTableID>
is equal to
SCHEDULETABLE_STOPPED

This service provides the schedule table with a synchronization count and start
synchronization.

Description:

OS454: If the <ScheduleTableID> in a call of SyncScheduleTable() is not valid
OR schedule table can not be explicitely synchronized

92 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

(OsScheduleTblSyncStrategy is not equal to EXPLICIT)
SyncScheduleTable() shall return E_OS_ID.

OS455: If the <Value> in a call of SyncScheduleTable() is greater than the
OsScheduleTableDuration, SyncScheduleTable() shall return E_OS_VALUE.

OS456: If the state of the schedule table <ScheduleTableID> in a call of
SyncScheduleTable() is equal to SCHEDULETABLE_STOPPED or
SCHEDULETABLE_NEXT SyncScheduleTable() shall return E_OS_STATE.

OS457: If the parameters in a call of SyncScheduleTable() are valid,
SyncScheduleTable() shall provide the Operating System module with the
current synchronization count for the given schedule table. (It is used to synchronize
the processing of the schedule table to the synchronization counter.)

OS526: Availability of SyncScheduleTable(): Available in Scalability Classes 2
and 4.

8.4.14 SetScheduleTableAsync

OS422:
SetScheduletableAsync Service name:
StatusType SetScheduletableAsync(
 ScheduleTableType ScheduleTableID
)

Syntax:

0x0d Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): ScheduleTableID Schedule table for which status is requested
Parameters
(inout):

None

Parameters (out): None

Return value:
StatusType E_OK: No Error

E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID
This service stops synchronization of a schedule table. Description:

OS362: If SetScheduleTableAsync() is called for a running schedule table, the
Operating System module shall stop further synchronization until a
SyncScheduleTable() call is made.

OS323: If SetScheduleTableAsync() is called for a running schedule table the
Operating System module shall continue to process expiry points on the schedule
table.

OS458: If OsScheduleTblSyncStrategy of <ScheduleTableID> in a call of
SetScheduleTableAsync() is not equal to EXPLICIT OR if <ScheduleTableID> is
invalid then SetScheduleTableAsync() shall return E_OS_ID.

93 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS483: If the current state of the <ScheduleTableID> in a call of
SetScheduleTableAsync() equals to SCHEDULETABLE_STOPPED,
SCHEDULETABLE_NEXT or SCHEDULETABLE_WAITING then
SetScheduleTableAsync() shall return E_OS_STATE.

OS300: If the current state of <ScheduleTableID> in a call of
SetScheduleTableAsync() equals SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (or
SCHEDULETABLE_RUNNING) then SetScheduleTableAsync() shall set (or keep in
case of SCHEDULETABLE_RUNNING) the status of <ScheduleTableID> to
SCHEDULETABLE_RUNNING.

OS527: Availability of SetScheduleTableAsync(): Available in Scalability
Classes 2 and 4.

8.4.15 GetScheduleTableStatus

OS227:
GetScheduleTableStatus Service name:
StatusType GetScheduleTableStatus(
 ScheduleTableType ScheduleTableID,
 ScheduleTableStatusRefType ScheduleStatus
)

Syntax:

0x0e Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): ScheduleTableID Schedule table for which status is requested
None Parameters

(inout):
ScheduleStatus Reference to ScheduleStatusType Parameters (out):

Return value:
StatusType E_OK: No Error

E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID
Description: This service queries the state of a schedule table (also with respect to

synchronization).

OS289: If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is NOT started, GetScheduleTableStatus()
shall pass back SCHEDULETABLE_STOPPED via the reference parameter
<ScheduleStatus> AND shall return E_OK.

OS353: If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() was used in a NextScheduleTable() call AND
waits for the end of the current schedule table, GetScheduleTableStatus() shall
return SCHEDULETABLE_NEXT via the reference parameter <ScheduleStatus> AND
shall return E_OK.

OS354: If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is configured with explicit synchronization AND
<ScheduleTableID> was started with StartScheduleTableSynchron()AND no
synchronization count was provided to the Operating System,
94 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

GetScheduleTableStatus() shall return SCHEDULETABLE_WAITING via the
reference parameter <ScheduleStatus> AND shall return E_OK.

OS290: If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is started AND synchronous,
GetScheduleTableStatus() shall pass back
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter
<ScheduleStatus> AND shall return E_OK.

OS291: If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is started AND NOT synchronous (deviation is not
within the precision interval OR the schedule table has been set asynchronous),
GetScheduleTableStatus() shall pass back SCHEDULETABLE_RUNNING via the
reference parameter ScheduleStatus AND shall return E_OK.

OS293: If the identifier <ScheduleTableID> in a call of
GetScheduleTableStatus() is NOT valid, GetScheduleTableStatus() shall
return E_OS_ID.

OS528: Availability of GetScheduleTableStatus():Available in all Scalability
Classes.

8.4.16 IncrementCounter

OS399:
IncrementCounter Service name:
StatusType IncrementCounter(
 CounterType CounterID
)

Syntax:

0x0f Service ID[hex]:
Synchronous, may cause rescheduling Sync/Async:
Reentrant Reentrancy:
CounterID The Counter to be incremented Parameters (in):
None Parameters

(inout):
None Parameters (out):

Return value:

StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not valid or
counter is implemented in hardware and can not be incremented by
software

Description: This service increments a software counter.

OS285: If the input parameter <CounterID> in a call of IncrementCounter() is not
valid OR the counter is a hardware counter, IncrementCounter() shall return
E_OS_ID.

OS286: If the input parameter of IncrementCounter() is valid,
IncrementCounter() shall increment the counter <CounterID> by one (if any

95 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

alarm connected to this counter expires, the given action, e.g. task activation, is
done) and shall return E_OK.

OS321: If in a call of IncrementCounter() an error happens during the execution
of an alarm action, e.g. E_OS_LIMIT caused by a task activation,
IncrementCounter() shall call the error hook(s), but the IncrementCounter()
service itself shall return E_OK.

OS529: Caveats of IncrementCounter(): If called from a task, rescheduling may
take place.

OS530: Availability of IncrementCounter(): Available in all Scalability Classes.

8.4.17 GetCounterValue

OS383:
GetCounterValue Service name:
StatusType GetCounterValue(
 CounterType CounterID,
 TickRefType Value
)

Syntax:

0x10 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): CounterID The Counter which tick value should be read
Parameters
(inout):

None

Parameters (out): Value Contains the current tick value of the counter
StatusType E_OK: No errors

E_OS_ID (only in EXTENDED status): The <CounterID> was not
valid

Return value:

Description: This service reads the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when
user drives counter).

OS376: If the input parameter <CounterID> in a call of GetCounterValue() is not
valid, GetCounterValue() shall return E_OS_ID.

OS377: If the input parameter <CounterID> in a call of GetCounterValue() is valid,
GetCounterValue() shall return the current tick value of the counter via <Value>
and return E_OK.

OS531: Caveats of GetCounterValue(): Note that for counters of OsCounterType
= HARDWARE the real timer value (the – possibly adjusted – hardware value, see
OS384) is returned, whereas for counters of OsCounterType = SOFTWARE the
current “software” tick value is returned.

OS532: Availability of GetCounterValue(): Available in all Scalability Classes.

96 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.4.18 GetElapsedValue

OS392:
GetElapsedValue Service name:
StatusType GetElapsedValue(
 CounterType CounterID,
 TickRefType Value,
 TickRefType ElapsedValue
)

Syntax:

0x11 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
CounterID The Counter to be read Parameters (in):
Value in: the previously read tick value of the counter

out: the current tick value of the counter
Parameters
(inout):

ElapsedValue The difference to the previous read value Parameters (out):

Return value:

StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not
valid
E_OS_VALUE (only in EXTENDED status): The given Value was
not valid

Description: This service gets the number of ticks between the current tick value and a
previously read tick value.

OS381: If the input parameter <CounterID> in a call of GetElapsedValue() is not
valid GetElapsedValue() shall return E_OS_ID.

OS391: If the <Value> in a call of GetElapsedValue() is larger than the max
allowed value of the <CounterID>, GetElapsedValue() shall return E_OS_VALUE.

OS382: If the input parameters in a call of GetElapsedValue() are valid,
GetElapsedValue() shall return the number of elapsed ticks since the given
<Value> value via <ElapsedValue> and shall return E_OK.

OS460: GetElapsedValue() shall return the current tick value of the counter in the
<Value> parameter.

OS533: Caveats of GetCounterValue():If the timer already passed the <Value>
value a second (or multiple) time, the result returned is wrong. The reason is that the
service can not detect such a relative overflow.

OS534: Availability of GetCounterValue(): Available in all Scalability Classes.

8.4.19 TerminateApplication

OS258:
TerminateApplication Service name:

Syntax: StatusType TerminateApplication(
 ApplicationType Application,

97 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 RestartType RestartOption
)
0x12 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Application The identifier of the OS-Application to be terminated. If the caller

belongs to <Application> the call results in a self termination.
Parameters (in):

RestartOption Either RESTART for doing a restart of the OS-Application or
NO_RESTART if OS-Application shall not be restarted.

None Parameters
(inout):

None Parameters (out):

Return value:

StatusType E_OK: No errors
E_OS_ID: <Application> was not valid
E_OS_VALUE: <RestartOption> was neither RESTART nor
NO_RESTART
E_OS_ACCESS: The caller does not have the right to terminate
<Application>
E_OS_STATE: The state of <Application> does not allow
terminating <Application>

Description: This service terminates the OS-Application to which the calling Task/Category 2
ISR/application specific error hook belongs.

OS493: If the input parameter <Application> in a call of TerminateApplication()
is not valid TerminateApplication() shall return E_OS_ID.

OS459: If the <RestartOption> in a call of TerminateApplication() is invalid,
TerminateApplication() shall return E_OS_VALUE.

OS494: If the input parameter <Application> in a call of TerminateApplication()
is valid AND the caller belongs to a non-trusted OS-Application AND the caller does
not belong to <Application> TerminateApplication() shall return E_OS_ACCESS.

OS507: If the state of <Application> in a call of TerminateApplication() is
APPLICATION_TERMINATED TerminateApplication() shall return E_OS_STATE.

OS508: If the state of <Application> in a call of TerminateApplication() is
APPLICATION_RESTARTING and the caller does not belong to the <Application> then
TerminateApplication() shall return E_OS_STATE.

OS548: If the state of <Application> in a call of TerminateApplication() is
APPLICATION_RESTARTING AND the caller does belong to the <Application> AND the
<RestartOption> is equal RESTART then TerminateApplication() shall return
E_OS_STATE.

OS287: If the parameters in a call of TerminateApplication() are valid and the
above criteria are met TerminateApplication() shall terminate <Application>
(i.e. to kill all tasks, disable the interrupt sources of those ISRs which belong to the
OS-Application and free all other OS resources associated with the application) AND
shall activate the configured OsRestartTask of <Application> if <RestartOption>

98 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

equals RESTART. If the <Application> is restarted, its state is set to
APPLICATION_RESTARTING otherwise to APPLICATION_TERMINATED. If the caller
belongs to <Application> TerminateApplication() shall not return, otherwise it
shall return E_OK.

OS535: Caveats of TerminateApplication():

 If no applications are configured the implementation shall make sure that this
service is not available.

 Tasks and interrupts that are owned by a trusted application can terminate any
OS-Application. Tasks and interrupts that are owned by a non-trusted
application can only terminate their owning OS-Application.

OS536: Availability of TerminateApplication(): Available in Scalability Classes 3
and 4.

8.4.20 AllowAccess

OS501:
AllowAccess Service name:

Syntax: StatusType AllowAccess(
 void
)

Service ID[hex]: 0x13
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None

Return value:
StatusType E_OK: No errors

E_OS_STATE:The OS-Application of the caller is in the wrong
state

Description: This service sets the own state of an OS-Application from
APPLICATION_RESTARTING to APPLICATION_ACCESSIBLE.

OS497: If the state of the OS-Application of the caller of AllowAccess() is not
APPLICATION_RESTARTING AllowAccess() shall return E_OS_STATE.

OS498: If the state of the OS-Application of the caller of AllowAccess() is
APPLICATION_RESTARTING, AllowAccess() shall set the state to
APPLICATION_ACCESSIBLE and allow other OS-Applications to access the
configured objects of the callers OS-Application.

OS547: Availability of AllowAccess(): Available in Scalability Classes 3 and 4.

8.4.21 GetApplicationState

OS499:

99 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

GetApplicationState Service name:
StatusType GetApplicationState(
 ApplicationType Application,
 ApplicationStateRefType Value
)

Syntax:

0x14 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
Parameters (in): Application The OS-Application from which the state is requested

None Parameters
(inout):

Value The current state of the application Parameters (out):
StatusType E_OK: No errors

E_OS_ID: <Application> is not valid
Return value:

Description: This service returns the current state of an OS-Application.

OS495: If the <Application> in a call of GetApplicationState() is not valid
GetApplicationState() shall return E_OS_ID.

OS496: If the parameters in a call of GetApplicationState() are valid,
GetApplicationState() shall return the state of OS-Application <Application> in
<Value>.

OS537: Availability of GetApplicationState(): Available in Scalability Classes 3
and 4.

100 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

8.5 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [16]
and/or extensions from 7.10 may be called by the OS.

8.5.1 Protection Hook

OS538:
ProtectionHook Service name:
ProtectionReturnType ProtectionHook(
 StatusType Fatalerror
)

Syntax:

0x00 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Fatalerror The error which caused the call to the protection hook Parameters (in):
None Parameters

(inout):
None Parameters (out):
ProtectionReturnType PRO_IGNORE

PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN
The return value defines the action the OS shall take
after the protection hook.

Return value:

The protection hook is always called if a serious error occurs. E.g. exceeding the
worst case execution time or violating against the memory protection.

Description:

Depending on the return value the Operating System module will either:

 forcibly terminate the Task/Category 2 ISR which causes the problem OR
 forcibly terminate the OS-Application the Task/Category 2 ISR belong

(optional with restart) OR
 shutdown the system OR
 do nothing

(see 7.8.2)

OS308: If ProtectionHook() returns an invalid value, the Operating System
module shall take the same action as if no protection hook is configured.

OS542: Availability of ProtectionHook(): Available in Scalability Classes 2, 3 and
4.

8.5.2 Application specific StartupHook

OS539:
Service name: StartupHook_<App>
Syntax: void StartupHook_<App>(

101 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 void
)
0x00 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):

Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: The application specific startup hook is called during the start of the OS (after the

user has started the OS via StartOS()).

The application specific StartupHook is always called after the standard
StartupHook() (see OS236) . If more than one OS-Application is configured which
use startup hooks, the order of calls to the startup hooks of the different OS-
Applications is not defined.

OS543: Availability of StartupHook_<App>(): Available in Scalability Classes 3
and 4.

8.5.3 Application specific ErrorHook

OS540:
Service name: ErrorHook_<App>
Syntax: void ErrorHook_<App>(

 StatusType Error
)

Service ID[hex]: 0x00
Sync/Async: Synchronous

Reentrant Reentrancy:
Error The error which caused the call to the error hook Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
The application specific error hook is called whenever a Task or Category 2 ISR
which belongs to the OS-Application causes an error.

Description:

If the general ErrorHook() is configured, the general ErrorHook() is called
before the application specific error hook is called (see OS246).

OS544: Availability of ErrorHook_<App>(): Available in Scalability Classes 3 and
4.

8.5.4 Application specific ShutdownHook

OS541:
Service name: ShutdownHook_<App>
Syntax: void ShutdownHook_<App>(

 StatusType Fatalerror
)

102 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Service ID[hex]: 0x00
Synchronous Sync/Async:
Reentrant Reentrancy:
Fatalerror The error which caused the action to shut down the operating system.Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
The application specific shutdown hook is called whenever the system starts the
shut down of itself.

Description:

If the general ShutdownHook() is configured, the general ShutdownHook() is
called after all application specific shutdown hook(s) are called (see OS237). If more
OS-Applications with an application specific shutdown hook exist the order of calls to
these application specific shutdown hooks is not defined.

OS545: Availability of ShutdownHook_<App>(): Available in Scalability Classes 3
and 4.

103 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions

104 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

calling
OS-Appl.

<trusted
function stub>

operating
system

providing
OS-Appl.

<trusted function stub>

CallTrustedFunction(FunID,FunParPtr)

system call
dispatcheralt Check permission

[denied]

[accepted]

E_OS_SERVICEID

<trusted function>

<CheckAccess>

<Access Information>

E_OK

<return value>

Figure 9.1: System Call sequence chart

The above sequence describes a call to the CallTrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the OS
checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the
function checks the arguments for access right, etc.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9.2 Sequence chart for usage of ErrorHook

sd Interactions

OS-Appl.

105 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

alt

[condition]

<App>
operating
system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

<system service> which returns
a value of type StatusType

alt

[return != E_OK] ErrorHook (<Error>)

ErrorHook_<App> (<Error>)

StatusType value

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with E_OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9.3 Sequence chart for ProtectionHook

sd Interactions

OS-Appl. <App> /
Task / Category 2

ISR

106 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

break

[protection error]

alt return

[PRO_TERMINATETASKISR]

[PRO_TERMINATEAPPL]

[PRO_TERMINATEAPPL_RESTART]

[PRO_IGNORE]

[PRO_SHUTDOWN]

Processor operating system

«Exception»

ProtectionHook(Fatalerror)

«forced termination of Task/ISR»

«forced termination of
OS-Application»

«forced termination of OS-
Application»

ActivateTask(RESTARTTASK)

Ignore Exception

ShutdownOS

Figure 9.3: Protection Hook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on
the return values of the ProtectionHook, either the faulty Task/ISR is forcibly
terminated or the OS-Application is forcibly terminated or the system is shut down. If
the action is to terminate the faulty OS-Application an option is to start afterwards the
restart task, which can do a cleanup, etc.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9.4 Sequence chart for StartupHook

sd Interactions

OS-Appl. <App> operating system

107 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Startup

Normal Operation

StartOS(<Mode>)

Initial

alt

[system-/application-specific Startup Hook are configured]

StartupHook

StartupHook_<App>

Figure 9.4: StartupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the StartOS() service to start the OS. During the startup
the startup hooks are called in the above order. The rest of the startup sequence is
identical to the defined behaviour of OSEK OS.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the
same as in OSEK OS with the exception that the shut down hooks of the OS-
Applications are called before the general ShutdownHook is called. Note that the
specific shutdown hooks of the application are not allowed to block, they must return
to the caller.

sd Interactions

OS-Appl. <App> operating system

Shutdown

alt

[system-/application-specific Shutdown Hook are configured]

ShutdownHook_<App>(<Error>)

ShutdownHook(<Error>)

TerminateTerminate

Figure 9.5: ShutdownHook sequence chart

108 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Os.

Chapter 10.3 specifies published information of the module Os.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

Note that not all attributes may be available in all scalability class.

Memory protection configuration is not standardized and therefore not part of this
specification.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

109 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

10.1.3 Containers

Containers structure the set of configuration parameters. This means:
 all configuration parameters are kept in containers.
 (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Rules for paramters

Some configuration parameters are configured as floating point values and
sometimes these values must be rounded in order to be used. The following rules
define the rounding of specific parameters:

 Execution times (for the timing protection) are “round down”
 Timeframes are “round down”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
The detailed meanings of the parameters describe Chapters 7 and 0.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

10.2.1 Variants

The configuration of the AUTOSAR OS allows only pre-compile (“VARIANT-PRE-
COMPILE“) time configuration parameters.

10.2.2 Os

Os Module Name
Configuration of the Os (Operating System) module. Module Description

 Â
Included Containers
Container Name Multiplicity Scope / Dependency

An OsAlarm may be used to asynchronously inform or activate
a specific task. It is possible to start alarms automatically at
system start-up depending on the application mode.

OsAlarm 0..*

OsAppMode 1..*

OsAppMode is the object used to define OSEK OS properties
for an OSEK OS application mode. No standard attributes are
defined for AppMode. In a CPU, at least one AppMode object
has to be defined. [source: OSEK OIL Spec. 2.5] An
OsAppMode called OSDEFAULTAPPMODE must always be
there for OSEK compatilbility.

OsApplication 0..*

An AUTOSAR OS must be capable of supporting a collection
of OS objects (tasks, interrupts, alarms, hooks etc.) that form a
cohesive functional unit. This collection of objects is termed an
OS-Application. All objects which belong to the same OS-
Application have access to each other. Access means to allow
to use these objects within API services. Access by other
applications can be granted separately.

110 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Configuration information for the counters that belong to the
OsApplication.

OsCounter 0..*

OsEvent 0..*
Representation of OS events in the configuration context.
Adopted from the OSEK OIL specification.

OsIoc 0..1 Configuration of the IOC (Inter OS Application Communicator).

OsIsr 0..*
The OsIsr container represents an OSEK interrupt service
routine.

OsOS 1
OS is the object used to define OSEK OS properties for an
OSEK application. Per CPU exactly one OS object has to be
defined.

OsResource 0..*

An OsResource object is used to co-ordinate the concurrent
access by tasks and ISRs to a shared resource, e.g. the
scheduler, any program sequence, memory or any hardware
area.

OsScheduleTable 0..*
An OsScheduleTable addresses the synchronization issue by
providing an encapsulation of a statically defined set of alarms
that cannot be modified at runtime.

OsSpinlock 0..*
An OsSpinlock object is used to co-ordinate concurrent access
by TASKs/ISR2s on different cores to a shared resource.

OsTask 0..* This container represents an OSEK task.
 Â
10.2.3 OsAlarmSetEvent

SWS Item OS016_Conf :
Container Name OsAlarmSetEvent{SETEVENT}
Description This container specifies the parameters to set an event
Configuration Parameters
 Â
SWS Item OS017_Conf :
N ame OsAlarmSetEventRef {EVENT}
Description Reference to the event that will be set by that alarm action
Multiplicity 1
Type Reference to [OsEvent]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS018_Conf :
N ame OsAlarmSetEventTaskRef {TASK}
Description Reference to the task that will be activated by that event
Multiplicity 1
Type Reference to [OsTask]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.4 OsAlarm

SWS Item OS003_Conf :
111 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Container Name OsAlarm{ALARM}

Description
An OsAlarm may be used to asynchronously inform or activate a specific
task. It is possible to start alarms automatically at system start-up
depending on the application mode.

Configuration Parameters
 Â
SWS Item OS004_Conf :
Name OsAlarmAccessingApplication {ACCESSING_APPLICATION}

Reference to applications which have an access to this object. Description
Multiplicity 0..*
Type Reference to [OsApplication]

Pre-compile time X All Variants

112 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
SWS Item OS005_Conf :
N OsAlarmCounterRef {COUNTER} ame
Description Reference to the assigned counter for that alarm
Multiplicity 1

Reference to [OsCounter] Type
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsAlarmAction 1
This container defines which type of notification is used when
the alarm expires.

OsAlarmAutostart 0..1
If present this container defines if an alarm is started
automatically at system start-up depending on the application
mode.

 Â

10.2.5 OsAlarmAction

SWS Item OS006_Conf :
OsAlarmAction{ACTION} Choice Container Name
This container defines which type of notification is used when the alarm
expires.

Description

 Â
Container Choices
Container Name Multiplicity Scope / Dependency
OsAlarmActivateTask 0..1 This container specifies the parameters to activate a task.

This container specifies the parameters to call a callback OS
alarm action.

OsAlarmCallback 0..1

This container specifies the parameters to increment a
counter.

OsAlarmIncrementCounter 0..1

OsAlarmSetEvent 0..1 This container specifies the parameters to set an event
 Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

10.2.6 OsAlarmActivateTask

SWS Item OS007_Conf :
Container Name OsAlarmActivateTask{ACTIVATETASK}
Description This container specifies the parameters to activate a task.
Configuration Parameters
 Â
SWS Item OS008_Conf :
N OsAlarmActivateTaskRef {TASK} ame

Reference to the task that will be activated by that alarm action Description
1 Multiplicity
Reference to [OsTask] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.7 OsAlarmAutostart

SWS Item OS009_Conf :
OsAlarmAutostart{AUTOSTART} Container Name
If present this container defines if an alarm is started automatically at
system start-up depending on the application mode.

Description

Configuration Parameters
 Â
SWS Item OS010_Conf :
N ame OsAlarmAlarmTime {ALARMTIME}
Description The relative or absolute tick value when the alarm expires for the first time.

Note that for an alarm which is RELATIVE the value must be at bigger than
0.
1 Multiplicity
EcucIntegerParamDef Type
0 ..
18446744073709551615

Range Â

-- Default value
Pre-compile time X All Variants
Link time --

113 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

 Â
ConfigurationClass

-- Post-build time Â
Scope / Dependency
 Â
SWS Item OS011_Conf :
N ame OsAlarmAutostartType
Description This specifies the type of autostart for the alarm..
Multiplicity 1
Type EcucEnumerationParamDef

ABSOLUTE The alarm is started on startup via
SetAbsAlarm().

Range

RELATIVE The alarm is started on startup via
SetAbsAlarm.

Pre-compile time X All Variants ConfigurationClass
Link time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

114 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS012_Conf :
N ame OsAlarmCycleTime {CYCLETIME}

Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is not
cyclic.

Description

1 Multiplicity
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
 Â

-- Default value
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
SWS Item OS013_Conf :
N OsAlarmAppModeRef {APPMODE} ame
Description Reference to the application modes for which the AUTOSTART shall be

performed
Multiplicity 1..*
Type Reference to [OsAppMode]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.8 OsAlarmCallback

SWS Item OS014_Conf :
Container Name OsAlarmCallback{ALARMCALLBACK}

This container specifies the parameters to call a callback OS alarm action.Description
Configuration Parameters
 Â
SWS Item OS087_Conf :
N OsAlarmCallbackName {ALARMCALLBACKNAME} ame
Description Name of the function that is called when this alarm callback is triggered.
Multiplicity 1

EcucFunctionNameDef Type
Default value --
maxLength --
minLength --

-- regularExpression
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

10.2.9 OsAlarmIncrementCounter

SWS Item OS302_Conf :
Container Name OsAlarmIncrementCounter{INCREMENTCOUNTER}

This container specifies the parameters to increment a counter. Description
Configuration Parameters
 Â
SWS Item OS015_Conf :
N ame OsAlarmIncrementCounterRef {COUNTER}

Reference to the counter that will be incremented by that alarm action Description
Multiplicity 1
Type Reference to [OsCounter]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
scope: ECU Scope / Dependency

 Â
No Included Containers
 Â
10.2.10 OsApplication

SWS Item OS114_Conf :
OsApplication{APPLICATION} Container Name
An AUTOSAR OS must be capable of supporting a collection of OS
objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application. All
objects which belong to the same OS-Application have access to each
other. Access means to allow to use these objects within API services.
Access by other applications can be granted separately.

Description

Configuration Parameters
 Â
SWS Item MCOS1020_Conf :
N OsApplicationCoreAssignment {CORE} ame

ID of the core onto which the OsApplication is bound. Description
0..1 Multiplicity
EcucIntegerParamDef Type
0 .. 65534 Â Range

Default value --
Pre-compile time X All Variants

115 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

-- Â Post-build time
scope: The parameter defines onto which a single OS-Application instance
is bound.

Scope / Dependency

 Â
OS115_Conf : SWS Item
OsTrusted {TRUSTED} N ame
Parameter to specify if an OS-Application is trusted or not. true: OS-
Application is trusted false: OS-Application is not trusted (default)

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value false
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

 Â
SWS Item OS231_Conf :
N ame OsAppAlarmRef
Description Specifies the OsAlarms that belong to the OsApplication.
Multiplicity 0..*

Reference to [OsAlarm] Type

116 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
scope: ECU
dependency: Required for scalability class 3 and 4

Scope / Dependency

 Â
SWS Item OS234_Conf :
N ame OsAppCounterRef

References the OsCounters that belong to the OsApplication. Description
Multiplicity 0..*
Type Reference to [OsCounter]

X All Variants Pre-compile time
-- Link time Â

ConfigurationClass

-- Post-build time Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â

OS221_Conf : SWS Item
N ame OsAppIsrRef
Description references which OsIsrs belong to the OsApplication

0..* Multiplicity
Reference to [OsIsr] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â

OS248_Conf : SWS Item
N ame OsAppResourceRef
Description References the OsResources that belong to the OsApplication.
Multiplicity 0..*

Reference to [OsResource] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â

OS230_Conf : SWS Item
N ame OsAppScheduleTableRef
Description References the OsScheduleTables that belong to the OsApplication.
Multiplicity 0..*

Reference to [OsScheduleTable] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

 Â
OS116_Conf : SWS Item

N ame OsAppTaskRef
Description references which OsTasks belong to the OsApplication
Multiplicity 0..*

Reference to [OsTask] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4
 Â

OS120_Conf : SWS Item
N ame OsRestartTask {RESTARTTASK}
Description Optionally one task of an OS-Application may be defined as Restart Task.

Multiplicity = 1: Restart Task is activated by the Operating System if the
protection hook requests it. Multiplicity = 0: No task is automatically started
after a protection error happened.

Multiplicity 0..1
Reference to [OsTask] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â
Included Containers
Container Name Multiplicity Scope / Dependency
OsApplicationHooks 1 Container to structure the OS-Application-specific hooks
OsApplicationTrustedFunctio
n

0..*
Container to structure the configration parameters of trusted
functions

 Â
10.2.11 OsApplicationHooks

SWS Item OS020_Conf :
Container Name OsApplicationHooks
Description Container to structure the OS-Application-specific hooks
Configuration Parameters
 Â
SWS Item OS213_Conf :
N OsAppErrorHook {ERRORHOOK} ame

Select the OS-Application error hook. true: Hook is called false: Hook is
not called

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants

117 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â
SWS Item OS125_Conf :

Specification of Operating System
 V4.0.0

R4.0 Rev 1

N ame OsAppShutdownHook {SHUTDOWNHOOK}
Select the OS-Application specific shutdown hook for the OS-Application.
true: Hook is called false: Hook is not called

Description

1 Multiplicity
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants

118 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

-- Post-build time Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â
SWS Item OS124_Conf :

OsAppStartupHook {STARTUPHOOK} N ame
Description Select the OS-Application specific startup hook for the OS-Application.

true: Hook is called false: Hook is not called
Multiplicity 1
Type EcucBooleanParamDef
Default value --

X Pre-compile time All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.
 Â
No Included Containers
 Â
10.2.12 OsApplicationTrustedFunction

SWS Item OS021_Conf :
Container Name OsApplicationTrustedFunction
Description Container to structure the configration parameters of trusted functions
Configuration Parameters
 Â
SWS Item OS254_Conf :
N ame OsTrustedFunctionName
Description Trusted function (as part of a trusted OS-Application) available to other

OS-Applications. This also supersedes the OSEK OIL attribute TRUSTED
in APPLICATION because the optionality of this parameter is describing
that already.

Multiplicity 1
EcucFunctionNameDef Type
-- Default value
-- maxLength

minLength --
regularExpression --

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4 and in trusted OS-
Applications.

 Â
No Included Containers
 Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

10.2.13 OsAppMode

OS022_Conf : SWS Item
OsAppMode{APPMODE} Container Name
OsAppMode is the object used to define OSEK OS properties for an OSEK
OS application mode. No standard attributes are defined for AppMode. In a
CPU, at least one AppMode object has to be defined. [source: OSEK OIL
Spec. 2.5] An OsAppMode called OSDEFAULTAPPMODE must always be
there for OSEK compatilbility.

Description

Configuration Parameters
 Â
No Included Containers
 Â

10.2.14 OsCounter

SWS Item OS026_Conf :
OsCounter{COUNTER} Container Name
Configuration information for the counters that belong to the OsApplication.Description

Configuration Parameters
 Â
SWS Item OS027_Conf :
N ame OsCounterMaxAllowedValue {MAXALLOWEDVALUE}
Description Maximum possible allowed value of the system counter in ticks.
Multiplicity 1

EcucIntegerParamDef Type
1 ..
18446744073709551615

Range Â

Default value --
Pre-compile time X All Variants

119 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS028_Conf :
N ame OsCounterMinCycle {MINCYCLE}
Description The MINCYCLE attribute specifies the minimum allowed number of

counter ticks for a cyclic alarm linked to the counter.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
 Â

Default value --
X Pre-compile time All Variants
-- Link time Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
SWS Item OS029_Conf :
N OsCounterTicksPerBase {TICKSPERBASE} ame

The TICKSPERBASE attribute specifies the number of ticks required to
reach a counterspecific unit. The interpretation is implementation-specific.

Description

1 Multiplicity
Type EcucIntegerParamDef

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Range 1 ..
18446744073709551615

 Â

Default value --
X

120 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
SWS Item OS255_Conf :
N ame OsCounterType {TYPE}
Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EcucEnumerationParamDef

HARDWARE This counter is driven by some hardware
e.g. a hardware timer unit.

Range

SOFTWARE The counter is driven by some software
which calls the IncrementCounter
service.

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
scope: ECU Scope / Dependency

 Â
SWS Item OS030_Conf :
N OsSecondsPerTick ame
Description Time of one hardware tick in seconds.
Multiplicity 0..1
Type EcucFloatParamDef

-- Default value
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â
scope: ECU Scope / Dependency

 Â
SWS Item OS031_Conf :
N ame OsCounterAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to [OsApplication]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
Scope / Dependency
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsDriver 0..1

This Container contains the information who will drive the
counter. This configuration is only valid if the counter has
OsCounterType set to HARDWARE. If the container does not
exist (multiplicity=0) the timer is managed by the OS internally
(OSINTERNAL). If the container exists the OS can use the
GPT interface to manage the timer. The user have to supply
the GPT channel. If the counter is driven by some other
(external to the OS) source (like a TPU for example) this must
be described as a vendor specific extension.

Specification of Operating System
 V4.0.0

R4.0 Rev 1

0..*

Allows the user to define constants which can be e.g. used to
compare time values with timer tick values. A time value will be
converted to a timer tick value during generation and can later
on accessed via the OsConstName. The conversation is done
by rounding time values to the nearest fitting tick value.

OsTimeConstant

 Â
10.2.15 OsEvent

SWS Item OS033_Conf :
Container Name OsEvent{EVENT}

Description
Representation of OS events in the configuration context. Adopted from
the OSEK OIL specification.

Configuration Parameters
 Â
SWS Item OS034_Conf :
N ame OsEventMask {MASK}

If event mask would be set to AUTO in OIL, this parameter should be
omitted here.

Description

0..1 Multiplicity
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
 Â

Default value --
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
Scope / Dependency
 Â
No Included Containers
 Â

10.2.16 OsHooks

OS035_Conf : SWS Item
Container Name OsHooks
Description Container to structure all hooks belonging to the OS
Configuration Parameters
 Â
SWS Item OS036_Conf :
N ame OsErrorHook {ERRORHOOK}
Description Error hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants

121 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â

OS037_Conf : SWS Item
N ame OsPostTaskHook {POSTTASKHOOK}
Description Post-task hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS038_Conf :
N OsPreTaskHook {PRETASKHOOK} ame
Description Pre-task hook as defined by OSEK true: Hook is called false: Hook is not

called
Multiplicity 1
Type EcucBooleanParamDef

-- Default value
X

122 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
Scope / Dependency
 Â
SWS Item OS214_Conf :
N OsProtectionHook {PROTECTIONHOOK} ame

Switch to enable/disable the call to the (user supplied) protection hook.
true: Protection hook is called on protection error false: Protection hook is
not called

Description

0..1 Multiplicity
EcucBooleanParamDef Type

Default value --
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2,3 and 4
 Â
SWS Item OS039_Conf :
N OsShutdownHook {SHUTDOWNHOOK} ame

Shutdown hook as defined by OSEK true: Hook is called false: Hook is not
called

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS040_Conf :
N OsStartupHook {STARTUPHOOK} ame

Startup hook as defined by OSEK true: Hook is called false: Hook is not
called

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
X All Variants Pre-compile time ConfigurationClass

Link time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

123 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.17 OsIsr

SWS Item OS041_Conf :
OsIsr{ISR} Container Name
The OsIsr container represents an OSEK interrupt service routine. Description

Configuration Parameters
 Â
SWS Item OS042_Conf :
N OsIsrCategory {CATEGORY} ame
Description This attribute specifies the category of this ISR.
Multiplicity 1
Type EcucEnumerationParamDef

CATEGORY_1 Interrupt is of category 1 Range
CATEGORY_2 Interrupt is of category 2
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Post-build time Â
Scope / Dependency
 Â
SWS Item OS043_Conf :
N OsIsrResourceRef {RESOURCE} ame

This reference defines the resources accessed by this ISR. Description
0..* Multiplicity
Reference to [OsResource] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsIsrTimingProtection 0..1

This container contains all parameters which are related to
timing protection If the container exists, the timing protection is
used for this interrupt. If the container does not exist, the
interrupt is not supervised regarding timing violations.

 Â

10.2.18 OsIsrResourceLock

SWS Item OS388_Conf :
OsIsrResourceLock{LOCKINGTIME} Container Name
This parameter contains a list of times the interrupt uses resources. Description

Configuration Parameters
 Â
SWS Item OS389_Conf :

OsIsrResourceLockBudget {MAXRESOURCELOCKTIME} N ame
Description This parameter contains the maximum time the interrupt is allowed to hold

the given resource (in seconds).

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Multiplicity 1
Type EcucFloatParamDef

-- Default value
Pre-compile time X All Variants
Link time --

124 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

 Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS390_Conf :
N OsIsrResourceLockResourceRef {RESOURCE} ame

Reference to the resource the locking time is depending on Description
1 Multiplicity
Reference to [OsResource] Type
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
No Included Containers
 Â

10.2.19 OsIsrTimingProtection

SWS Item OS326_Conf :
OsIsrTimingProtection{TIMING_PROTECTION} Container Name
This container contains all parameters which are related to timing
protection If the container exists, the timing protection is used for this
interrupt. If the container does not exist, the interrupt is not supervised
regarding timing violations.

Description

Configuration Parameters
 Â
SWS Item OS229_Conf :

OsIsrAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME} N ame
This parameter contains the maximum time for which the ISR is allowed to
lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type
-- Default value
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS222_Conf :

OsIsrExecutionBudget {EXECUTIONTIME} N ame
Description The parameter contains the maximum allowed execution time of the

interrupt (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Default value --
ConfigurationClass Pre-compile time X All Variants

Specification of Operating System
 V4.0.0

R4.0 Rev 1

125 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
Post-build time -- Â

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

 Â
SWS Item OS387_Conf :
N OsIsrOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME} ame
Description This parameter contains the maximum time for which the ISR is allowed to

lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef

-- Default value
X Pre-compile time All Variants

Link time -- Â
ConfigurationClass

-- Â Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS223_Conf :
N OsIsrTimeFrame {TIMEFRAME} ame

This parameter contains the minimum inter-arrival time between
successive interrupts (in seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type

Default value --
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsIsrResourceLock 0..*
This parameter contains a list of times the interrupt uses
resources.

 Â
10.2.20 OsOS

OS044_Conf : SWS Item
Container Name OsOS{OS}

Description
OS is the object used to define OSEK OS properties for an OSEK
application. Per CPU exactly one OS object has to be defined.

Configuration Parameters
 Â
SWS Item MCOS1019_Conf :

OsNumberOfCores N ame
Maximum number of cores that are controlled by the OS. The OS uses the
value internally. It depends on the ECU HW.

Description

Multiplicity 0..1
Type EcucIntegerParamDef
Range 1 .. 65535 Â
Default value --

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Post-build time Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 Scope / Dependency

 Â
SWS Item OS259_Conf :

OsScalabilityClass {SCALABILITYCLASS} N ame
A scalability class for each System Object "OS" has to be selected. In order to
customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled
according to the scalability classes. If the scalability class is omitted this
translates to the OIL AUTO mechanism.

Description

Multiplicity 0..1
Type EcucEnumerationParamDef

SC1 --
SC2

126 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

--
SC3 --

Range

SC4 --
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Post-build time Â
Scope / Dependency scope: ECU
 Â
SWS Item OS307_Conf :

OsStackMonitoring {STACKMONITORING} N ame
Select stack monitoring of Tasks/Category 2 ISRs true: Stacks are
monitored false: Stacks are not monitored

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU
 Â
SWS Item OS046_Conf :
N ame OsStatus {STATUS}
Description The Status attribute specifies whether a system with standard or extended

status has to be used. Automatic assigment is not supported for this attribute.
Multiplicity 1
Type EcucEnumerationParamDef

EXTENDED -- Range
STANDARD --
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS047_Conf :
N OsUseGetServiceId {USEGETSERVICEID} ame
Description As defined by OSEK
Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Post-build time Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Scope / Dependency
 Â

OS048_Conf : SWS Item
OsUseParameterAccess {USEPARAMETERACCESS} N ame
As defined by OSEK Description
1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants

127 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
OS049_Conf : SWS Item
OsUseResScheduler {USERESSCHEDULER} N ame

Description The OsUseResScheduler attribute defines whether the resource
RES_SCHEDULER is used within the application.

Multiplicity 1
Type EcucBooleanParamDef
Default value true

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
Included Containers
Container Name Multiplicity Scope / Dependency
OsHooks 1 Container to structure all hooks belonging to the OS
 Â
10.2.21 OsResource

OS252_Conf : SWS Item
OsResource{RESOURCE} Container Name
An OsResource object is used to co-ordinate the concurrent access by
tasks and ISRs to a shared resource, e.g. the scheduler, any program
sequence, memory or any hardware area.

Description

Configuration Parameters
 Â

OS050_Conf : SWS Item
OsResourceProperty {RESOURCEPROPERTY} N ame
This specifies the type of the resource. Description
1 Multiplicity
EcucEnumerationParamDef Type
INTERNAL The resource is an internal resource.
LINKED The resource is a linked resource (a

second name for a existing resource).

Range

STANDARD The resource is a standard resource.
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
OS051_Conf : SWS Item

N ame OsResourceAccessingApplication {ACCESSING_APPLICATION}

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Reference to applications which have an access to this object. Description
0..* Multiplicity
Reference to [OsApplication] Type

X All Variants

128 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time -- Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
OS052_Conf : SWS Item
OsResourceLinkedResourceRef {LINKEDRESOURCE} N ame
The link to the resource. Must be valid if OsResourceProperty is LINKED.
If OsResourceProperty is not LINKED the value is ignored.

Description

0..1 Multiplicity
Type Reference to [OsResource]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.22 OsScheduleTable

SWS Item OS141_Conf :
Container Name OsScheduleTable{SCHEDULETABLE}

Description
An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified
at runtime.

Configuration Parameters
 Â
SWS Item OS053_Conf :
N ame OsScheduleTableDuration
Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
 Â

Default value --
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
Scope / Dependency
 Â
SWS Item OS144_Conf :
N ame OsScheduleTableRepeating {REPEATING}
Description true: first expiry point on the schedule table shall be processed at final

expiry point delay ticks after the final expiry point is processed. false: the
schedule table processing stops when the final expiry point is processed.

Multiplicity 1
Type EcucBooleanParamDef
Default value --

X All Variants Pre-compile time ConfigurationClass
Link time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

-- Post-build time Â
Scope / Dependency scope: ECU
 Â
SWS Item OS054_Conf :
N ame OsSchTblAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to [OsApplication]

129 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
SWS Item OS145_Conf :
N ame OsScheduleTableCounterRef {COUNTER}

This parameter contains a reference to the counter which drives the
schedule table.

Description

Multiplicity 1
Type Reference to [OsCounter]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

This parameter specifies if and how the schedule table is
started on startup of the Operating System. The options to
start a schedule table correspond to the API calls to start
schedule tables during runtime.

OsScheduleTableAutostart 0..1

OsScheduleTableExpiryPoint 1..*
The point on a Schedule Table at which the OS activates tasks
and/or sets events

OsScheduleTableSync 0..1
This parameter specifies the synchronization parameters of
the schedule table.

 Â
10.2.23 OsScheduleTableAutostart

SWS Item OS335_Conf :
Container Name OsScheduleTableAutostart{AUTOSTART}

Description
This parameter specifies if and how the schedule table is started on startup
of the Operating System. The options to start a schedule table correspond
to the API calls to start schedule tables during runtime.

Configuration Parameters
 Â
SWS Item OS056_Conf :
N OsScheduleTableAutostartType ame

This specifies the type of the autostart for the schedule table. Description
1 Multiplicity
EcucEnumerationParamDef Type
ABSOLUTE The schedule table is started during startup

with the StartScheduleTableAbs() service.
RELATIVE The schedule table is started during startup

with the StartScheduleTableRel() service.

Range

SYNCHRON The schedule table is started during startup
with the StartScheduleTableSynchron()

Specification of Operating System
 V4.0.0

R4.0 Rev 1

service.
Pre-compile time X All Variants

130 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

-- Post-build time Â
Scope / Dependency
 Â
SWS Item OS057_Conf :
N ame OsScheduleTableStartValue
Description Absolute autostart tick value when the schedule table starts. Only used if

the OsScheduleTableAutostartType is ABSOLUTE. Relative offset in ticks
when the schedule table starts. Only used if the
OsScheduleTableAutostartType is RELATIVE.

Multiplicity 0..1
EcucIntegerParamDef Type

Range 0 ..
18446744073709551615

 Â

-- Default value
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

-- Â Post-build time
scope: ECU Scope / Dependency

 Â
SWS Item OS058_Conf :
N ame OsScheduleTableAppModeRef
Description Reference in which application modes the schedule table should be started

during startup
Multiplicity 1..*
Type Reference to [OsAppMode]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time
scope: ECU Scope / Dependency

 Â
No Included Containers
 Â

10.2.24 OsScheduleTableEventSetting

SWS Item OS059_Conf :
Container Name OsScheduleTableEventSetting{SETEVENT}
Description Event that is triggered by that schedule table.
Configuration Parameters
 Â
SWS Item OS060_Conf :
N ame OsScheduleTableSetEventRef {EVENT}

Reference to event that will be set by action Description
Multiplicity 1
Type Reference to [OsEvent]

X Pre-compile time All Variants
-- Link time Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS061_Conf :

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OsScheduleTableSetEventTaskRef N ame
-- Description

Multiplicity 1
Type Reference to [OsTask]

Pre-compile time X All Variants

131 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
No Included Containers
 Â

10.2.25 OsScheduleTableExpiryPoint

SWS Item OS143_Conf :
OsScheduleTableExpiryPoint{ACTION} Container Name
The point on a Schedule Table at which the OS activates tasks and/or sets
events

Description

Configuration Parameters
 Â
SWS Item OS062_Conf :
N ame OsScheduleTblExpPointOffset
Description The offset from zero (in ticks) at which the expiry point is to be processed.
Multiplicity 1
Type EcucIntegerParamDef

0 ..
18446744073709551615

Range Â

Default value --
X Pre-compile time All Variants

Link time -- Â
ConfigurationClass

Post-build time -- Â

 Scope / Dependency

 Â
Included Containers
Container Name Multiplicity Scope / Dependency
OsScheduleTableEventSetting 0..* Event that is triggered by that schedule table.
OsScheduleTableTaskActivation 0..* Task that is triggered by that schedule table.
OsScheduleTblAdjustableExpPoin
t

0..1 Adjustable expiry point

 Â

10.2.26 OsScheduleTableTaskActivation

OS066_Conf : SWS Item
OsScheduleTableTaskActivation{ACTIVATETASK} Container Name
Task that is triggered by that schedule table. Description

Configuration Parameters
 Â

OS067_Conf : SWS Item
OsScheduleTableActivateTaskRef {TASK} N ame

Description Reference to task that will be activated by action
1 Multiplicity
Reference to [OsTask] Type

ConfigurationClass Pre-compile time X All Variants

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Link time -- Â
Post-build time -- Â

Scope / Dependency scope: ECU
 Â
No Included Containers
 Â

10.2.27 OsScheduleTblAdjustableExpPoint

SWS Item OS068_Conf :
Container Name OsScheduleTblAdjustableExpPoint

Adjustable expiry point Description
Configuration Parameters
 Â

OS069_Conf : SWS Item
OsScheduleTableMaxAdvance N ame
The maximum positive adjustment that can be made to the expiry point
offset (in ticks).

Description

1 Multiplicity
EcucIntegerParamDef Type
0 ..
18446744073709551615

Range Â

Default value --
Pre-compile time X All Variants
Link time --

132 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

 Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS070_Conf :
N ame OsScheduleTableMaxRetard

The maximum negative adjustment that can be made to the expiry point
offset (in ticks).

Description

1 Multiplicity
EcucIntegerParamDef Type
0 ..
18446744073709551615

Range Â

-- Default value
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.28 OsScheduleTableSync

SWS Item OS063_Conf :
Container Name OsScheduleTableSync{LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION}

Description
This parameter specifies the synchronization parameters of the schedule
table.

Configuration Parameters
 Â
SWS Item OS064_Conf :

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OsScheduleTblExplicitPrecision N ame
Description This configuration is only valid if the explicit synchronisation is used.
Multiplicity 0..1
Type EcucIntegerParamDef

0 ..
18446744073709551615

Range Â

Default value --
Pre-compile time X All Variants

133 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: System
 Â
SWS Item OS065_Conf :

OsScheduleTblSyncStrategy N ame
Description AUTOSAR OS provides support for synchronisation in two ways: explicit and

implicit.
1 Multiplicity

Type EcucEnumerationParamDef
EXPLICIT The schedule table is driven by an OS

counter but processing needs to be
synchronized with a different counter
which is not an OS counter object.

IMPLICIT The counter driving the schedule table
is the counter with which
synchronisation is required.

Range

NONE No support for synchronisation.
(default)

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Post-build time Â
Scope / Dependency scope: System
 Â
No Included Containers
 Â

10.2.29 OsTask

SWS Item OS073_Conf :
Container Name OsTask{TASK}
Description This container represents an OSEK task.
Configuration Parameters
 Â
SWS Item OS074_Conf :
N ame OsTaskActivation {ACTIVATION}

This attribute defines the maximum number of queued activation requests
for the task. A value equal to "1" means that at any time only a single
activation is permitted for this task. Note that the value must be a natural
number starting at 1.

Description

1 Multiplicity
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
 Â

Default value --
Pre-compile time X All Variants ConfigurationClass
Link time -- Â

Specification of Operating System
 V4.0.0

R4.0 Rev 1

-- Post-build time Â
Scope / Dependency
 Â
SWS Item OS075_Conf :

OsTaskPriority {PRIORITY} Name
Description The priority of a task is defined by the value of this attribute. This value has

to be understood as a relative value, i.e. the values show only the relative
ordering of the tasks. OSEK OS defines the lowest priority as zero (0);
larger values correspond to higher priorities.
1 Multiplicity
EcucIntegerParamDef Type

Range 0 ..
18446744073709551615

 Â

Default value --

134 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS076_Conf :
N ame OsTaskSchedule {SCHEDULE}

The OsTaskSchedule attribute defines the preemptability of the task. If this
attribute is set to NON, no internal resources may be assigned to this task.

Description

1 Multiplicity
Type EcucEnumerationParamDef

FULL Task is preemptable. Range
NON Task is not preemptable.
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
SWS Item OS077_Conf :
N OsTaskAccessingApplication {ACCESSING_APPLICATION} ame
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to [OsApplication]

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
SWS Item OS078_Conf :
N OsTaskEventRef {EVENT} ame
Description This reference defines the list of events the extended task may react on.
Multiplicity 0..*
Type Reference to [OsEvent]

X All Variants Pre-compile time
-- Link time Â

ConfigurationClass

-- Â Post-build time

 Scope / Dependency

 Â
SWS Item OS079_Conf :
N ame OsTaskResourceRef {RESOURCE}

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Description This reference defines a list of resources accessed by this task.
Multiplicity 0..*
Type Reference to [OsResource]

135 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsTaskAutostart 0..1

This container determines whether the task is activated during
the system start-up procedure or not for some specific
application modes. If the task shall be activated during the
system start-up, this container is present and holds the
references to the application modes in which the task is auto-
started.

OsTaskTimingProtection 0..1
This parameter contains all parameters regarding timing
protection of the task.

 Â

10.2.30 OsTaskAutostart

SWS Item OS080_Conf :
OsTaskAutostart{AUTOSTART} Container Name

Description

This container determines whether the task is activated during the system
start-up procedure or not for some specific application modes. If the task
shall be activated during the system start-up, this container is present and
holds the references to the application modes in which the task is auto-
started.

Configuration Parameters
 Â
SWS Item OS081_Conf :
N ame OsTaskAppModeRef {APPMODE}
Description Reference to application modes in which that task is activated on startup of

the OS
1..* Multiplicity

Type Reference to [OsAppMode]
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency
 Â
No Included Containers
 Â

10.2.31 OsTaskResourceLock

SWS Item OS082_Conf :
Container Name OsTaskResourceLock{RESOURCELOCK}

This parameter contains the worst case time between getting and
releasing a given resource (in seconds).

Description

Configuration Parameters
 Â
SWS Item OS083_Conf :
N ame OsTaskResourceLockBudget {RESOURCELOCKTIME}

Specification of Operating System
 V4.0.0

R4.0 Rev 1

This parameter contains the maximum time the task is allowed to lock the
resource (in seconds)

Description

Multiplicity 1
Type EcucFloatParamDef

-- Default value
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

-- Post-build time Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS084_Conf :

OsTaskResourceLockResourceRef {RESOURCE} N ame
Reference to the resource used by the task Description
1 Multiplicity

Type Reference to [OsResource]
Pre-compile time X All Variants

136 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
No Included Containers
 Â

10.2.32 OsTaskTimingProtection

SWS Item OS325_Conf :
Container Name OsTaskTimingProtection{TIMING_PROTECTION}

Description
This parameter contains all parameters regarding timing protection of the
task.

Configuration Parameters
 Â
SWS Item OS085_Conf :

OsTaskAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME} N ame
This parameter contains the maximum time for which the task is allowed to
lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type
-- Default value
Pre-compile time X All Variants
Link time -- Â

ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS185_Conf :

OsTaskExecutionBudget {EXECUTIONBUDGET} N ame
Description This parameter contains the maximum allowed execution time of the task

(in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Default value --
ConfigurationClass Pre-compile time X All Variants

Specification of Operating System
 V4.0.0

R4.0 Rev 1

137 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time -- Â
Post-build time -- Â

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

 Â
SWS Item OS086_Conf :
N OsTaskOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME} ame
Description This parameter contains the maximum time for which the task is allowed to

lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef

-- Default value
X Pre-compile time All Variants

Link time -- Â
ConfigurationClass

-- Â Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4
 Â
SWS Item OS391_Conf :
N OsTaskTimeFrame {TIMEFRAME} ame

The minimum inter-arrival time between activations and/or releases of a
task (in seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type

Default value --
X All Variants Pre-compile time

Link time -- Â
ConfigurationClass

Post-build time -- Â
Scope / Dependency scope: ECU

dependency: Only available in scalability class 2 and 4
 Â
Included Containers
Container Name Multiplicity Scope / Dependency

OsTaskResourceLock 0..*
This parameter contains the worst case time between getting
and releasing a given resource (in seconds).

 Â

10.2.33 OsTimeConstant

SWS Item OS386_Conf :
Container Name OsTimeConstant{TIMECONSTANTS}

Description

Allows the user to define constants which can be e.g. used to compare
time values with timer tick values. A time value will be converted to a timer
tick value during generation and can later on accessed via the
OsConstName. The conversation is done by rounding time values to the
nearest fitting tick value.

Configuration Parameters
 Â
SWS Item OS002_Conf :
N ame OsTimeValue

This parameter contains the value of the constant in seconds. Description
1 Multiplicity

Type EcucFloatParamDef
-- Default value

ConfigurationClass Pre-compile time X All Variants

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Link time -- Â
Post-build time -- Â

Scope / Dependency scope: ECU
 Â
No Included Containers
 Â

10.3 Published Information

[OS001_PI] The standardized common published parameters as required by
BSW00402 in the SRS General on Basic Software Modules [3]shall be published
within the header file of this module and need to be provided in the BSW Module
Description. The according module abbreviation can be found in the List of Basic
Software Modules [13].

Additional module-specific published parameters are listed below if applicable.

138 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

11 Generation of the OS

139 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 11.1: Generation Activities

11.1 Read in configuration

OS172: The generator shall provide the user the ability of reading the information of
a selectable configuration file.

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the
generation is completed successfully, only indicating a not advisable configuration.
Errors mean that the generation is not performed.

OS173: The generator shall provide the user the ability of performing a consistency
check of the current configuration.

OS050: If service protection is required and OsStatus is not equal to EXTENDED (all
the associated error handling is provided), the consistency check shall issue an error.

OS045: If timing protection is configured together with OSEK OS Category 1
interrupts, the consistency check shall issue a warning.

linker
«binary»

object
file

«executable»
executable
program

linker
file

generator

(input-)
section

(output-)
section

«source»
configuration

file

1..*

1

1..*

1

generates

controls

reads

UML 1.4

operating
system

generates/configures

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS320: If configured attributes do not match the configured scalability class (e.g.
defining an execution time budget in Tasks or Category 2 ISRs and selected
scalability class is 1) the consistency check shall issue a warning.

OS311: If OsScalabilityClass is SC3 or SC4 AND a Task OR Category 2 ISR OR
Resources OR Counters OR Alarms OR Schedule tables does not belong to exactly
one OS-Application the consistency check shall issue an error.

OS361: If OsScalabilityClass is SC3 or SC4 AND a Category 1 ISR does not
belong to exactly one trusted OS-Application the consistency check shall issue an
error

OS177: If OsScalabilityClass is SC3 or SC4 AND an interrupt source that is used
by the OS is assigned to an OS-Application, the consistency check shall issue an
error.

OS303: If OsAlarmIncrementCounter is configured as action on alarm expiry AND
the alarm is driven directly or indirectly (a cyclic chain of alarm actions with
OsAlarmIncrementCounter) by that counter, the consistency check shall issue a
warning..

OS328: If OsStatus is STANDARD and OsScalabilityClass is SC3 or SC4 the
consistency check shall issue an error.

OS343: If OsScalabilityClass is SC3 or SC4 AND a task is referenced within a
schedule table object AND the OS-Application of the schedule table has no access to
the task, the consistency check shall issue an error.

OS344: If OsScalabilityClass is SC3 or SC4 AND a task is referenced within an
alarm object AND the OS-Application of the alarm has no access to the task, the
consistency check shall issue an error.

OS440: If a schedule table has OsScheduleTblSyncStrategy = IMPLICIT and the
OsCounterMaxAllowedValue+1 of the associated counter is not equal to the
duration of the schedule table then the consitency check shall issue an error.

OS461: If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm Callbacks are
configured the conistency check shall isuue an error.

11.3 Generating operating system

OS179: If the consistency check of the read-in configuration file has not run free of
errors, the generator shall not generate/configure the operating system.

OS336: The generator shall generate a relocatable memory section containing the
interrupt vector table.

140 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

OS370: The generator shall print out information about timers used internally by the
OS during generation (e.g. on console, list file).

OS393: The generator shall create conversation macros to convert counter ticks
(given as argument) into real time. The format of the macro is
OS_TICKS2<Unit>_<Counter>(ticks) whereas <Unit> is one of NS
(nanoseconds), US (microseconds), MS (milliseconds) or SEC (seconds) and
<Counter> is the name of the counter; E.g. OS_TICKS2MS_MyCounter())

141 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-
Application are not called. Cleanup of OS-Application specific data can be done in
the restart task.

All application-specific hook functions (startup, shutdown and error) must return
(blocking or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a task or interrupt,
because this address space might no longer belong to the task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

142 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

struct parameter_struct {type1 name1, type2 name2, StatusType
return_value};

/* This service is called by the user and uses a trusted function */

StatusType system_service(
 type1 parameter1,
 type2 parameter2)
{
 /* store parameters in a structure (parameter1 and parameter2) */
 struct parameter_struct local_struct;
 local_struct.name1 = parameter1;
 local_struct.name2 = parameter2;

 /* call CallTrustedFunction with appropriate index and
 * pointer to structure */
 if(CallTrustedFunction(SYSTEM_SERVICE_INDEX, &local_struct) !=
 E_OK)
 return(FUNCTION_DOES_NOT_EXIST);
 return(local_struct.return_value);
}

/* The CallTrustedFunction() service switches to the privileged
* mode. Note that the example is only a fragment! */

StatusType CallTrustedFunction(
 TrustedFunctionIndexType ix,
 TrustedFunctionParameterRefType ref)
{
 /* check for legal service index and return error if necessary */
 if(ix > MAX_SYSTEM_SERVICE)
 return(E_OS_SERVICEID);

 /* some implementation specific magic happens: the processor is
 * set to privileged mode */
 ….

 /* indirectly call target function based on the index */
 (*(system-service_list[ix]))(ix, ref);

 /* some implementation specific magic happens: the processor is
 * set to non-privileged mode */
 ….

 return(E_OK);
}

143 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Note: Since the service of CallTrustedFunction() is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as
the example show). Depending on the implementation the stub interface may be
(partly) generated by the generation tool.

12.3 Migration hints for OSEKtime OS users

All important OSEKtime OS features are supported in AUTOSAR OS and it should
be relatively easy to port applications from OSEKtime OS to AUTOSAR OS.

/* This part of the system service is called by
 * CallTrustedFunction() */

void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,
parameter_struct *local_struct)
{
 TaskRefType task;
 type1 parameter1;
 type2 parameter2;

 if (GetTaskID(&task) != E_OK)
 task = INVALID_TASK;

 /* get parameters out of the structure (parameter1 and
 * parameter2) */
 parameter1 = local_struct.name1;
 parameter2 = local_struct.name2;

 /* check the parameters if necessary */
 /* example is for parameter1 being an address and parameter2
 * being a size */
 /* example only for system_service called from tasks */
 if(GetISRID()!=INVALID_ISR)
 {
 /* error: not callable from ISR */
 local_struct.return_value = E_OS_ACCESS;
 }
 else if(OSMEMORY_IS_WRITEABLE(CheckTaskMemoryAccess(
 task,parameter1,parameter2)))
 {
 /* system_service_part3() is now the function as it

* would be if directly called in a non-protected
* environment */

 local_struct.return_value =
 system_service_part3(parameter1,parameter2);
 }
 else
 {
 /* error handling */
 local_struct.return_value = E_OS_ACCESS;
 }
}

144 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

However, most OSEKtime OS features are implemented slightly differently and
requiring some porting effort. The following steps show how to proceed.

o Dispatcher tables can be implemented by using schedule tables provided by

AUTOSAR OS. Synchronization to a global time base can be done in a similar
way to OSEKtime by using the SyncScheduleTable() API call. A more elegant
synchronization solution is also available by driving the schedule table directly
from the global time source. However, the AUTOSAR OS implements priority
based scheduling rather than the stack based scheduling of OSEKtime.
Therefore, priorities have to be chosen for the tasks.
If a given OSEKtime dispatcher table has to be converted, all tasks can be given
the same priority as long as there are no task preemptions. If this cannot be
guaranteed, in each case where a task could be pre-empted at a dispatch point,
the pre-empting task must be allocated a strictly higher priority than the task it
pre-empts. Usually, there are few preemptions in OSEKtime systems, so the
priorities are easy to calculate – a simple monotonically increasing priority
assignment relative to the tasks position in the schedule table should suffice in
most cases. Caveat: In OSEKtime, it is theoretically possible that task A pre-
empts task B at one point in the dispatcher table and task B pre-empts task A at
another point (however, this is rarely used in practice). Such behaviour is not
directly possible in AUTOSAR OS. It can, however, be emulated if required, either
by constructing a simple state machine in the task bodies, or by adding two tasks
A' and B' using the same code as tasks A and B respectively.
o Deadline monitoring is not supported by AUTOSAR OS - instead, worst-case

execution time enforcement is provided. Schedulability analysis can be used
to calculate whether given deadlines are met in a system of periodic tasks with
given worst-case execution times.

o Reenabling of interrupts defined offline is not supported by AUTOSAR OS.
o Tasks that have precedence over interrupt service routines are not supported

by AUTOSAR OS, however, this behaviour can be easily emulated by
activating a low-priority task from an ISR.

o Smooth synchronization is achieved by adjusting the delay between adjacent
expiry points, generalising OSEKtime OS' approach, where the
synchronization of the local time to the global time is done during several
dispatcher rounds by extending or shortening the last ground state of the
dispatcher round.

The OSEK time specification allows dispatcher rounds to take 3 modes:

1. Synchronous
2. Asynchronous/Hard
3. Asynchronous/Smooth

Users of OSEKtime who are migrating the AUTOSAR OS can define a schedule
table that has the same range/tick resolution as their global time source (with an
accompanying AUTOSAR OS counter that has the same resolution as the global
time) and can synthesise these modes as follows:

145 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

1. Synchronous: Define OsScheduleTblSyncStrategy = IMPLICIT and start
using StartScheduleTableAbs(). Or define
OsScheduleTblSyncStrategy = EXPLICIT and start using
StartScheduleTableSynchron()

2. Asynchronous/Hard: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that the final expiry point on the schedule table has a
OsScheduleTableMaxRetard = 1 and a OsScheduleTableMaxAdvance
= OsCounterMaxAllowedValue. Start using StartScheduleTableRel().

3. Asynchronous/Smooth: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that each expiry point on the schedule table has
OsScheduleTableMaxRetard = 1 and a OsScheduleTableMaxAdvance
 < OsCounterMaxAllowedValue. Start using StartScheduleTableRel().

12.4 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to IO space. As software
components can not be allowed direct access to the hardware, software components
can not be trusted OS-Applications because this would violate this protection feature.
The configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on
how runnables from software components are mapped to OS tasks. However, the
protection mechanisms in AUTOSAR OS apply only to OS managed objects. This
means that all runnables in a task:

 Are not protected from each other at runtime
 Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different tasks
and those tasks protected accordingly.

A simple rule can suffice:

“When allocating runnables to tasks, only allocate runnables from the same
software component into the same task.”

If multiple software components from the same application are to reside on the same
processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of
protection to the application:

“When allocating runnables to tasks, only allocate runnables from the same
application into the same task.”

146 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

If an OS-Application is killed and the restart task is activated it can not assume that
the startup of the OS-Application has finished. Maybe the fault happened in the
application startup hook and no task of the application was started so far.

12.5 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding
the time source. For synchronization with e.g. FlexRay some glue code may be
necessary which transfer the information from the time source to the OS.

12.6 Working with FlexRay

Schedule tables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

1. Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a “hardware” counter tick source to drive the processing
of a schedule table (implicit synchronization)

2. Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncScheduleTable() OS service call

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.
In AUTOSAR OS a schedule table is associated with an underlying counter that has
a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by
the application.
If Cycle only resolution is required then an OS COUNTER object should be
configured to have a OsCounterMaxAllowedValue equal to the maximum number of
Cycles. If Cycle/MacrotickOffset is required then an OS COUNTER object should be
configured with a OsCounterMaxAllowedValue of the maximum number of Cycles
multiplied by the MacrotickOffset. This provides the OS with a time base against
which a ScheduleTable can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the SyncScheduleTable() service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a
Cycle of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

#define OSTIME(x) (TickType)(x);
FrIf_GetGlobalTime(Controller, &Cycle, &Macrotick);
SyncScheduleTable(Tbl, ((OSTIME(Cycle) << 16)+(OSTIME(Macrotick))));

147 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an
associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;
if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {
 if (CurrentSyncStatus == FR_ASYNC) {
 SetScheduleTableAsync(Table);
 }
}

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

12.7 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the
configuration via OIL. The support for OIL was dropped in favour of XML because
XML is the standard configuration language in AUTOSAR and is essential if
configuration data has to be imported / exported from / to other AUTOSAR modules
or between different tools during development.

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS
vendor must support OIL. This means that practically each AUTOSAR OS vendor will
offer some sort of import of OIL configurations – at least to show the OSEK OS
conformance.

12.8 Migrating RES_SCHEDULER in AUTOSAR OS

As stated in 7.1.2.1 AUTOSAR OS treats RES_SCHEDULER as a normal resource. If
you have legacy code which is migrated to AUTOSAR OS please take care of the
following aspects:

 In OSEK OS there is no need to configure the RES_SCHEDULER in the OIL file. If

you migrate to AUTOSAR OS the configuration is done in XML and each
resource must be properly configured. The easiest way to do this is to configure a
resource RES_SCHEDULER in XML (OsResource) and allow any Task in your
system to use this resource3.

 Avoid that ISRs are using the RES_SCHEDULER. In OSEK OS this is also not
possible.

148 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

3 This work can be done automatically by a configuration tool duirng importing an OIL file

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 Make the RES_SCHEDULER a STANDARD resource (at least not an INTERNAL
resource). The symbol RES_SCHEDULER must be present which is not the case if
the resource is an INTERNAL resource.

 If you are using OS-Applications, the RES_SCHEDULER should belong to a trusted
OS-Application. Tasks of other OS-Applications should be configured to have the
right to access the resource.

12.9 Debug support

For the AUTOSAR OS the following information may be useful for users and should
be considert for debug support (and may be published, e.g. in the BSWMD):

 General information about how to retrieve the current (active) Task or ISR and
their (current) priority and (current) stack.

 For ISRs: Information about the name of interrupts, their mapping to the ISR
identifier, the associated hardware and the used stack(s).

 For Tasks: Information about the name of the Task, its identifier, the task
state, the possible priorities, the event mask (if its an extended task), the OS-
Application to whom the Task belongs (if existant) and the used stack.

 For Resources: Information about the name of the Resource, its mapping to
the identifier, its priority and the current owner (the Task/ISR which currently
holds the Resource)

 For Alarms: Information about the name of the Alarm, its mapping to the
identifier, the counter to whom it belong, the action which is executed on
expiry and the current state (running or stopped). In running state the next
expiry in ticks and the possible cycle time shall be also published.

 For Counters: Information about the name of the Counter, its mapping to the
identifier, its associated alarms and the current counter value.

 For Schdule Tables: Information about the name of the Schedule Table, its
mapping to the identifier, its current state and the next expiry point (if the table
is running).

 For OS-Applications: Information about the name of the OS-Application, its
mapping to the identifier, its current state and the memory sections assigned
to it (if memory protection is used).

User documentation should contain information about the implemeted debug
features.

149 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter

This chapter is an addition to the specification of the Operating System. Whereas the
other parts of the specification define the behavior and the C-interfaces of the OS
module, this chapter formally specifies the corresponding AUTOSAR Service in
terms of the SWC Template. The interfaces described here will be visible on the VFB
and are used by the RTE generator to create the glue code between the application
software (SWC) and the OS.

13.1.1 Package

The following definitions are interpreted to be in
ARPackage AUTOSAR/Services/Os

13.2 Overview

The AUTOSAR Operating System is normally not used directly by SWCs. Even the
other BSW modules which are below the RTE are using the BSW Scheduler to have
access to OS services. The BSW Scheduler of course uses the OS to implement its
features, e.g. critical sections.

Nevertheless there are some cases, where it makes sense to allow SWCs access to
services of the OS:
 Timer services

Since the number of timers in an ECU is limited it make sense to share these
units across several SWCs. The functionality of the timer services of the OS
which are offered to the SWCs are:
 A service to get the current value of a – hardware or software – counter
 A service which calculates the time difference between the current timer value

and a given (previouls read) timer value

 Application modes
An application mode is always used to start the OS. To get the current application
mode the corresponding OS service is avalible to SWCs.

 OS-Application handling
To enable SWCs to start and stop OS-Applications the following services are
available:
 A service to terminate and optionally restart an OS-Application
 A service to get the current state of the OS-Application

150 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

13.3 Specification of the Ports and Port Interfaces

This chapter specifies the ports and port interfaces which are needed in order to
operate the timer services of the OS over the VFB. Note that there are ports on both
sides of the RTE: The SW-C description of the OS service will define the ports below
the RTE. Each SW-Component, which uses the Service, must contain “service ports”
in its own SW-C description which will be connected to the ports of the OS, so that
the RTE can be generated.
13.3.1 Data Types and Port Interface

13.3.1.1 General Approach

It is appropriate to model the requests issued from a client to the services by ports
using the client/server interfaces.

13.3.1.2 Data Types

This chapter describes the data types which will be used in the port interfaces for
service requests. In general the interfaces are using the following types:

 CounterType – This type is the reference to the requested Counter
 TickType – This type holds a timer value
 TickRefType – This is a reference (pointer) to a TickType
 AppModeType – This type holds the current mode of the OS
 ApplicationType – This type is the reference to a OS-Application
 RestartType – This type holds the restart parameter
 ApplicationStateRefType – This is a reference (pointer) to a location

which contains the state of an OS-Application

The APIs of the services have a return type of StatusType. This means that a
successful call returns 0 and a return value not equal 0 represents an error.

13.3.1.3 Port Interface

The operations correspond to the function calls of the OS C-API (notation in pseudo
code; must be transferred into XML).

The notation of possible error codes resulting from server calls follows the approach
in the meta-model. It is a matter of the RTE specification [9], how those error codes
will be passed via the actual API.

ClientServerInterface OsService {
 PossibleErrors {
 E_OS_ACCESS = 1
 E_OS_ID = 3,
 E_OS_STATE = 7

151 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

 E_OS_VALUE = 8

 };

 // The timer services

 GetCounterValue(IN CounterType CounterID,
 OUT TickRefType Value
 ERR{E_OS_ID});

 GetElapsedValue(IN CounterType CounterID,
 INOUT TickType PreviousValue,
 OUT TickRefType Value,
 ERR{E_OS_ID, E_OS_VALUE});

 // Service to access the current AppMode (which was
 // used in StartOS()).

 GetActiveApplicationMode(OUT AppModeType CurrentMode);

 // Services to terminate applications and to access the current
 // application state.

 TerminateApplication(IN ApplicationType Application,

IN RestartType RestartOption,
ERR{E_OS_ID,_E_OS_VALUE,
 E_OS_STATE, E_OS_ACCESS});

 GetApplicationState(IN ApplicationType Application,
 OUT ApplicationStateRefType Value,

ERR{E_OS_ID}));

};

13.3.1.4 Ports

We end up with the following structure for the AUTOSAR Interface of the OS:

Service Os
{
 ProvidePort OsService OsService;
};

It is obvious that the existence of all these port definitions depends on the ECU.

152 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

14 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet.
Nevertheless it seems helpful to contribute a recommendation in this chapter, how
the configuration might work.

14.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated,
disjoined memory sections (see meta-class»ObjectFileSection« in chapter 7.3 of
»Software Component Template«, Version 2.0.1, and »module specific sections« in
chapter 8.2 of »Specification of Memory Mapping«, Version 1.0.1).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

1. The generator can save for each OS-Application a (processor-specific)
maximum number of output sections for data in a file (to be used in the linker
file).

2. The generator can uniquely identify the address spaces of the data output

sections with symbols using the naming convention (see »memory allocation
keywords« _STOP_SEC_VAR and _START_SEC_VAR for start and stop
symbols) in the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned
to the output sections (with potential tool support). Usually, this is one segment for
global data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/ISR or OS-Application) in separate files.

153 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V4.0.0

R4.0 Rev 1

154 of 154 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

15 Changes to Release 3.0/3.1

- Many small correction (wording, typos, clarifications)
- Added additional services to the service interface for SWCs
- Changes caused by R4.0 concepts (e.g. debugging concept, error handling

concept, multicore concept, …)
o Added states to OS-Applications
o Added 2 new services: GetApplicationState() and AllowAccess()
o Extended API to terminate other OS-Applications

