
Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Document Title Specification of CAN Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 011
Document Classification Standard

Document Version 3.0.0
Document Status Final
Part of Release 4.0
Revision 1

Document Change History
Date Version Changed by Change Description
30.11.2009 3.0.0 AUTOSAR

Administration
 General improvements of requirements

in preparation of CT-development.
 Can_MainFunction_Mode added to

support asynchronous controller state
change

 Limited number of supported message
objects removed

 Description of CAN controller state
transitions improved

 Debbuging concept added
 Legal disclaimer revised

23.06.2008

2.2.2 AUTOSAR
Administration

 Legal disclaimer revised

24.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

30.11.2007 2.2.0 AUTOSAR
Administration

 Tables generated from UML-models,
 General improvements of requirements

in preparation of CT-development.
 Functions Can_MainFunction_Write,

Can_MainFunction_Read,
Can_MainFunction_BusOff and
Can_MainFunction_WakeUp changed
to scheduled functions

 Cycle Parameters added for new
scheduled functions

 Wakeup concept added (Chapter 7.7)
and addition of function
Can_Cbk_CheckWakeup

 Document meta information extended
 Small layout adaptations made

1 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

31.01.2007 2.1.0 AUTOSAR
Administration

 File structure reworked (chapter 5.2)
 Removed return value CAN_WAKEUP

in function Can_SetControllerMode
 Replaced by CAN_NOT_OK
 Renamed CanIf_ControllerWakeup to

CanIf_SetWakeupEvent
 Reworked development errors (chapter

7.10)
 Removed implementation specific

description in Can_Write
 Changed timing of cyclic functions to

"fixed cyclic"
 Reworked "Scope" for all configuration

variables (chapter 10.2)
 Legal disclaimer revised
 Release notes added
 “Advice for users” revised
 “Revision Information” added

21.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template
 clarified development and production

error handling and function abortion
 multiplexed transmission and TX

cancellation
 version check
 configuration description according

template
 individual main functions for RX TX

and status

31.05.2005 1.0.0 AUTOSAR
Administration

Initial release

2 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Table of Content

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

2.1 Priority Inversion... 9
2.2 CAN Hardware Unit.. 10

3 Related documentation.. 12

3.1 Input documents... 12
3.2 Related standards and norms .. 13

4 Constraints and assumptions .. 14

4.1 Limitations .. 14
4.2 Applicability to car domains.. 14

5 Dependencies to other modules.. 15

5.1.1 Static Configuration... 15
5.1.2 Driver Services.. 15
5.1.3 System Services ... 15
5.1.4 Can module Users .. 16

5.2 File structure .. 16
5.2.1 Code file structure ... 16
5.2.2 Header file structure.. 16

6 Requirements traceability .. 19

7 Functional specification ... 25

7.1 Driver scope ... 25
7.2 Driver State Machine.. 26
7.3 CAN Controller State Machine ... 27

7.3.1 CAN Controller State Description.. 27
7.3.2 CAN Controller State Transitions .. 28
7.3.3 State transition caused by function Can_Init 29
7.3.4 State transition caused by function Can_InitController........................ 30
7.3.5 State transition caused by function Can_SetControllerMode 30
7.3.6 State transition caused by Hardware Events 32

7.4 Can module/Controller Initialization.. 33
7.5 L-PDU transmission ... 34

7.5.1 Priority Inversion ... 35
7.5.1.1 Multiplexed Transmission... 36
7.5.1.2 Transmit Cancellation .. 36

7.5.2 Transmit Data Consistency ... 38
7.6 L-PDU reception... 38

7.6.1 Receive Data Consistency .. 38
7.7 Wakeup concept... 39
7.8 Notification concept .. 39
7.9 Reentrancy issues.. 40
7.10 Error classification .. 40

4 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7.10.1 Development Errors .. 41
7.10.2 Production Errors .. 41
7.10.3 Return Values ... 41

7.11 Error detection.. 41
7.12 Error notification ... 42
7.13 Version Check.. 42
7.14 Debugging.. 42

8 API specification.. 43

8.1 Imported types.. 43
8.2 Type definitions .. 43

8.2.1 Can_ConfigType ... 43
8.2.2 Can_ControllerBaudrateConfigType ... 43
8.2.3 Can_PduType ... 44
8.2.4 Can_IdType... 44
8.2.5 Can_HwHandleType ... 44
8.2.6 Can_StateTransitionType ... 44
8.2.7 Can_ReturnType... 45

8.3 Function definitions .. 45
8.3.1 Services affecting the complete hardware unit.................................... 45

8.3.1.1 Can_Init.. 45
8.3.1.2 Can_GetVersionInfo .. 46

8.3.2 Services affecting one single CAN Controller...................................... 46
8.3.2.1 Can_InitController .. 46
8.3.2.2 Can_SetControllerMode... 47
8.3.2.3 Can_DisableControllerInterrupts.. 49
8.3.2.4 Can_EnableControllerInterrupts... 50
8.3.2.5 Can_CheckWakeup ... 50

8.3.3 Services affecting a Hardware Handle .. 51
8.3.3.1 Can_Write .. 51

8.4 Call-back notifications .. 53
8.5 Scheduled functions ... 53

8.5.1.1 Can_MainFunction_Write... 53
8.5.1.2 Can_MainFunction_Read .. 54
8.5.1.3 Can_MainFunction_BusOff .. 54
8.5.1.4 Can_MainFunction_Wakeup.. 55
8.5.1.5 Can_MainFunction_Mode.. 55

8.6 Expected Interfaces.. 56
8.6.1 Mandatory Interfaces .. 56
8.6.2 Optional Interfaces .. 56
8.6.3 Configurable interfaces ... 57

9 Sequence diagrams .. 58

9.1 Interaction between Can and CanIf module ... 58
9.2 Wakeup sequence.. 58

10 Configuration specification... 59

10.1 How to read this chapter .. 59
10.1.1 Configuration and configuration parameters 59
10.1.2 Variants... 59
10.1.3 Containers... 59

5 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

10.1.4 Specification template for configuration parameters 60
10.2 Containers and configuration parameters .. 61

10.2.1 Variants... 61
10.2.2 Can ... 68
10.2.3 CanGeneral... 68
10.2.4 CanController .. 71
10.2.5 CanControllerBaudrateConfig ... 74
10.2.6 CanHardwareObject.. 75
10.2.7 CanFilterMask ... 77
10.2.8 CanConfigSet.. 78

10.3 Published Information... 79

11 Changes to Release 3 ... 80

11.1 Deleted SWS Items.. 80
11.2 Replaced SWS Items ... 80
11.3 Changed SWS Items.. 80
11.4 Added SWS Items.. 81

6 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Driver (called “Can module” in this
document).

The Can module is part of the lowest layer, performs the hardware access and offers
a hardware independent API to the upper layer.
The only upper layer that has access to the Can module is the CanIf module (see
also BSW12092).

The Can module provides services for initiating transmissions and calls the callback
functions of the CanIf module for notifying events, independently from the hardware.

Furthermore, it provides services to control the behavior and state of the CAN
controllers that are belonging to the same CAN Hardware Unit.

Several CAN controllers can be controlled by a single Can module as long as they
belong to the same CAN Hardware Unit.

For a closer description of CAN controller and CAN Hardware Unit see chapter
Acronyms and abbreviations and a diagram in [5].

7 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

CAN controller A CAN controller serves exactly one physical channel.
CAN Hardware
Unit

A CAN Hardware Unit may consists of one or multiple CAN controllers of
the same type and one or multiple CAN RAM areas. The CAN Hardware
Unit is either on-chip, or an external device. The CAN Hardware Unit is
represented by one CAN driver.

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, DLC and Data
(SDU). (see [18])

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-
PDU. (see [18])

DLC Data Length Code (part of L-PDU that describes the SDU length)
Hardware Object A CAN hardware object is defined as a PDU buffer inside the CAN RAM

of the CAN hardware unit / CAN controller. A Hardware Object is defined
as L-PDU buffer inside the CAN RAM of the CAN Hardware Unit.

Hardware
Receive Handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN Driver. Each HRH typically represents just one hardware object. The
HRH can be used to optimize software filtering.

Hardware
Transmit Handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN Driver. Each HTH typically represents just one or multiple hardware
objects that are configured as hardware transmit buffer pool.

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a
pending low-priority L-PDU in the same transmit hardware object.

ISR Interrupt Service Routine
L-PDU Handle The L-PDU handle is defined and placed inside the CanIf module layer.

Typically each handle represents an L-PDU, which is a constant structure
with information for Tx/Rx processing.

MCAL Microcontroller Abstraction Layer
Outer Priority
Inversion

A time gap occurs between two consecutive transmit L-PDUs.
In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the lower
priority L-PDU already won the arbitration.

Physical Channel A physical channel represents an interface from a CAN controller to the
CAN Network. Different physical channels of the CAN hardware unit may
access different networks.

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The
lower the numerical value of the identifier, the higher the priority.

SFR Special Function Register. Hardware register that controls the controller
behavior.

SPAL Standard Peripheral Abstraction Layer

8 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

2.1 Priority Inversion

"If only a single transmit buffer is used inner priority inversion may occur. Because of
low priority a message stored in the buffer waits until the ”traffic on the bus calms
down”. During the waiting time this message could prevent a message of higher
priority generated by the same microcontroller from being transmitted over the bus."1

9 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

1 Picture and text by CiA (CAN in Automation)

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

"The problem of outer priority inversion may occur in some CAN implementations. Let
us assume that a CAN node wishes to transmit a package of consecutive messages
with high priority, which are stored in different message buffers. If the interframe
space between these messages on the CAN network is longer than the minimum
space defined by the CAN standard, a second node is able to start the transmission
of a lower priority message. The minimum interframe space is determined by the
Intermission field, which consists of 3 recessive bits. A message, pending during the
transmission of another message, is started during the Bus Idle period, at the earliest
in the bit following the Intermission field. The exception is that a node with a waiting
transmission message will interpret a dominant bit at the third bit of Intermission as
Start-of-Frame bit and starts transmission with the first identifier bit without first
transmitting an SOF bit. The internal processing time of a CAN module has to be
short enough to send out consecutive messages with the minimum interframe space
to avoid the outer priority inversion under all the scenarios mentioned."2

2.2 CAN Hardware Unit

The CAN Hardware Unit combines one or several CAN controllers, which may be
located on-chip or as external standalone devices of the same type, with common or
separate Hardware Objects.

Following figure shows a CAN Hardware Unit consisting of two CAN controllers
connected to two Physical Channels:

10 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

2 Text and image by CiA (CAN in Automation)

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN Controller A

Tx A CAN

Message Obj cte
Mailbox A

Transceiver
A Rx A

CAN Controller B

Tx B

Rx B

CAN Controllers with MailboxesCAN Hardware Unit

CAN
Transceiver

B
Message Obj cte

Mailbox B

CAN
Bus A

CAN
Bus B

Physical Channel A

Physical Channel B

11 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture..pdf

[2] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[3] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[4] Requirements on CAN
AUTOSAR_SRS_CAN.pdf

[5] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager.pdf

[8] Specification of MCU Driver
AUTOSAR_SWS_MCUDriver.pdf

[9] Specification of Operating System
 AUTOSAR_SWS_OS.pdf

[10] Specification of ECU Configuration

AUTOSAR_TPS_ECUConfiguration.pdf

[11] Specification of C Implementation Rules

AUTOSAR_TR_CImplementationRules.pdf

[12] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.doc.pdf

[13] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[14] Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

[15] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

12 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

[16] List of Basis Software Modules
AUTOSAR_TR_BSWModuleList.pdf

3.2 Related standards and norms

[17] ISO11898 – Road vehicles - Controller area network (CAN)

[18] ISO-IEC 7498-1 – OSI Basic Reference Model

[19] HIS – Joint Subset of the MISRA C Guidelines

13 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

4 Constraints and assumptions

4.1 Limitations

A CAN controller always corresponds to one physical channel. It is allowed to
connect physical channels on bus side. Regardless the CanIf module will treat the
concerned CAN controllers separately.
A few CAN hardware units support the possibility to combine several CAN controllers
by using the CAN RAM, to extend the number of message objects for one CAN
controller. These combined CAN controller are handled as one controller by the Can
module.

The Can module does not support CAN remote frames.
CAN237: The Can module shall not transmit messages triggered by remote
transmission requests.
CAN236: The Can module shall initialize the CAN HW to ignore any remote
transmission requests.

4.2 Applicability to car domains

The Can module can be used for any application, where the CAN protocol is used.

14 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

5 Dependencies to other modules

5.1.1 Static Configuration

The configuration elements described in chapter 10 can be referenced by other BSW
modules for their configuration.

5.1.2 Driver Services

CAN238: If the CAN controller is on-chip, the Can module shall not use any service
of other drivers.

CAN239: The function Can_Init shall initialize all on-chip hardware resources that are
used by the CAN controller. The only exception to this is the digital I/O pin
configuration (of pins used by CAN), which is done by the port driver.

CAN240: The Mcu module (SPAL see [8]) shall configure register settings that are
'shared' with other modules.

Implementation hint: The Mcu module shall be initialized before initializing the Can
module.

CAN242: If an off-chip CAN controller is used3, the Can module shall use services of
other MCAL drivers (e.g. SPI).

Implementation hint: If the Can module uses services of other MCAL drivers (e.g.
SPI), it must be ensured that these drivers are up and running before initializing the
Can module.

The sequence of initialization of different drivers is partly specified in [7].

CAN244: The Can module shall use the synchronous APIs of the underlying MCAL
drivers and shall not provide callback functions that can be called by the MCAL
drivers.

Thus the type of connection between µC and CAN Hardware Unit has only impact on
implementation and not on the API.

5.1.3 System Services

CAN280: In special hardware cases, the Can module shall poll for events of the
hardware.

15 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

3 In this case the CAN driver is not any more part of the µC abstraction layer but put part of the ECU
abstraction layer. Therefore it is (theoretically) allowed to use any µC abstraction layer driver it needs.

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN281: The Can module shall use the free running timer provided by the system
service for timeout detection in case the hardware does not react in the expected
time (hardware malfunction) to prevent endless loops.

Implementation hint: The blocking time of the Can module function that is waiting for
hardware reaction shall be shorter than the CAN main function (i.e.
Can_MainFunction_Read) trigger period, because the CAN main functions can't be
used for that purpose.

5.1.4 Can module Users

CAN058: The Can module interacts among other modules (eg. Diagnostic Event
Manager (DEM), Development Error Tracer (DET), Ecu State Manager (ECUM)) with
the CanIf module in a direct way. This document never specifies the actual origin of a
request or the actual destination of a notification. The driver only sees the CanIf
module as origin and destination.

5.2 File structure

5.2.1 Code file structure

CAN078: The code file structure shall not be defined within this specification
completely. At this point it shall be pointed out that the code-file structure shall
include the following file named: Can_PBcfg.c. This file shall contain all post-build
time configurable parameters.
Can_Lcfg.c is not required because the Can module does not support link-time
configuration.

5.2.2 Header file structure

CAN034:

16 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Figure 5-1: File structure for the Can module

CAN043: The header file Can.h contains the declaration of the Can module API.

CAN037: The header file Can.h only contains 'extern' declarations of constants,
global data, type definitions and services that are specified in the Can module SWS.

CAN418: Constants, global data types and functions that are only used by the Can
module internally, are declared in Can.c

CAN388: The header file Can.h shall include the header file ComStack_Types.h.

CAN389: The implementation of the Can module shall provide the header file
Can_Cfg.h that shall contain the pre-compile-time configuration parameters.

CAN035: The file Can_Irq.c contains the implementation of interrupt frames
[BSW00314]. The implementation of the interrupt service routine shall be in Can.c

The Can module does not provide callback functions (no Can_Cbk.h, see also
CAN244)

17 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN036: The Can module shall include the header file CanIf_Cbk.h, in which the
callback functions called by the Can module at the CAN Interface module are
declared.

CAN390: The Can module shall include the header file EcuM_Cbk.h, in which the
callback functions called by the Can module at the Ecu State Manager module are
declared.

CAN391: Can module implementations for off-chip CAN controllers shall include the
header file Spi.h. By this inclusion, the APIs to access an external CAN controller by
the SPI module [12] are included.

CAN392: If an implementation defines implementation specific production errors, the
Can module shall include the header file Dem.h. By this inclusion, the APIs to report
production errors as well as the required Event Id symbols are included.

CAN393: If the development error detection for the Can module is enabled, the Can
module shall include the header file Det.h. By this inclusion, the APIs to report
development errors are included.

CAN394: The Can module shall include the header file MemMap.h and apply the
memory mapping abstraction mechanisms as specified by [13].

CAN397: The Can module shall include the header file Os.h file. By this inclusion,
the API to read a free running timer value (GetCounterValue) provided by the system
service shall be included.

CAN406: The Can module shall include the header file SchM_Can.h in order to
access the module specific functionality provided by the BSW Scheduler [14].

18 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

6 Requirements traceability

Document: General requirements on Basic Software [2]

Requirement Satisfied by
[BSW00344] Reference to link-time configuration CAN021
[BSW00404] Reference to post build time
configuration

CAN021

[BSW00405] Reference to multiple configuration
sets

CAN021

[BSW00345] Pre-Build Configuration CAN389
[BSW159] Tool-based configuration CAN022
[BSW167] Static configuration checking CAN023, CAN024
[BSW171] Configurability of optional functionality CAN064_Conf, CAN095_Conf, CAN069_Conf
[BSW170] Data for reconfiguration of SW-
components

not applicable
(doesn't concern this document)

[BSW00380] C-Files for configuration parameters CAN078
[BSW00419] Separate C-Files for pre-compile
time configuration

CAN078

[BSW00381] Separate configuration header file
for pre-compile time parameters

CAN034

[BSW00412] Separate H-File for configuration
parameters

CAN034

[BSW00383] List dependencies of configuration
files

not applicable
(implementation specific documentation)

[BSW00384] List dependencies to other modules Chapter 5
[BSW00387] Specify the configuration class of
callback function

CAN234

[BSW00388] Introduce containers Chapter 10.2
[BSW00389] Containers shall have names Chapter 10.2
[BSW00390] Parameter content shall be unique
within the module

Chapter 10.2

[BSW00391] Parameter shall have unique names Chapter 10.2
[BSW00392] Parameters shall have a type Chapter 10.2
[BSW00393] Parameters shall have a range Chapter 10.2
[BSW00394] Specify the scope of the parameters Chapter 10.2
[BSW00395] List the required parameters not applicable

(the parameters are defined in a way that their
values are independent from other settings. The
dependency is in the code generation
(implementation) not in the configuration
description -> hardware abstraction)

[BSW00396] Configuration classes Chapter 10.2
[BSW00397] Pre-compile-time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00398] Link-time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00399] Loadable Post-build time parameters Not applicable: this is not a requirement but a

definition of term.
[BSW00400] Selectable Post-build time
parameters

Not applicable: this is not a requirement but a
definition of term.

[BSW00438] Post Build Configuration Data
Structure

CAN291

[BSW00402] Published information Chapter 10.3
[BSW00375] Notification of wake-up reason CAN271, CAN364
[BSW101] Initialization interface CAN250

19 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

[BSW168] Diagnostic Interface of SW
components

not applicable
(requirement for the diagnostic services, not for
the BSW module)

[BSW00416] Sequence of Initialization not applicable
(this is a general software integration requirement)

[BSW00406] Check module initialization CAN103, defined development error
CAN_E_UNINIT

[BSW00437] NoInit--Area in RAM not applicable
[BSW00407] Function to read out published
parameters

CAN105, CAN106_Conf

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

not applicable
(trigger conditions are system configuration
specific.)

[BSW00426] Exclusive areas in BSW modules not applicable
(no exclusive areas defined)

[BSW00427] ISR description for BSW modules not applicable
(no ISR’s defined for this module, usage of
interrupts is implementation specific)

[BSW00428] Execution order dependencies of
main processing functions

CAN110

[BSW00429] Restricted BSW OS functionality
access

not applicable
(requirement on the implementation, not for the
specification)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

CAN031, CAN108, CAN109, CAN112

[BSW00433] Calling of main processing functions not applicable
(requirement on system design, not on a single
module)
CAN431 [BSW00450] Main Function Processing for Un-

Initialized Modules
[BSW00442] Debugging Support in Modules CAN365, CAN366, CAN367
[BSW00336] Shutdown interface not applicable
[BSW00337] Classification of errors CAN026, CAN027, CAN028, CAN104
[BSW00338] Detection and Reporting of
development errors

CAN028, CAN027

[BSW00369] Do not return development error
codes via API

CAN089

[BSW00339] Reporting of production relevant
errors and exceptions

CAN113_Conf

[BSW00422] Debouncing of production relevant
error status

not applicable
(requirement on the DEM)

[BSW00417] Reporting of Error Events by Non-
Basic Software

not applicable
(this is a BSW module)

[BSW00323] API parameter checking CAN026
[BSW004] Version check CAN111
[BSW00409] Header files for production code
error IDs

not applicable
(no production errors codes used by Can module)

[BSW00385] List possible error notifications CAN104
[BSW00386] Configuration for detecting an error CAN089
[BSW00455] Implementation Conformance Class
1 and 2 (ICC1 and ICC2) Guidelines

not applicable

[BSW161] Microcontroller abstraction Chapter 1

20 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

[BSW162] ECU layout abstraction not applicable
(done in CanIf module)

[BSW005] No hard coded horizontal interfaces
within MCAL

CAN238, CAN242

[BSW00415] User dependent include files not applicable
(only one user for this module)

[BSW164] Implementation of interrupt service
routines

CAN033

[BSW00325] Runtime of interrupt service routines not applicable
(The runtime is not under control of the Can
module, because callback functions are called.)

[BSW00326] Transition from ISRs to OS tasks not applicable.
When the transition from ISR to OS task is done
will be defined in COM Stack SWS

[BSW00342] Usage of source code and object
code

not applicable
(Only source code delivery is supported)

[BSW00343] Specification and configuration of
time

CAN113_Conf, CAN355_Conf, CAN356_Conf,
CAN357_Conf, CAN358_Conf, CAN376_Conf

[BSW160] Human-readable configuration data CAN047
[BSW00453] Harmonization of BSW Modules not applicable, yet
[BSW007] HIS MISRA C CAN079
[BSW00300] Module naming convention is fulfilled, see function definitions in 8.3
[BSW00413] Accessing instances of BSW
modules

not applicable
(this requirement is fulfilled by the CanIf module
specification)

[BSW00347] Naming separation of drivers CAN077
[BSW00441] Enumeration literals and #define
naming convention

Chapter 8.2.6, Chapter 8.2.7

[BSW00305] Self-defined data types naming
convention

is fulfilled, see type definitions in 8.2

[BSW00307] Global variables naming convention not applicable
(because no global variables are specified for Can
module)

[BSW00310] API naming convention is fulfilled, see function definitions in 8.3
[BSW00373] Main processing function naming
convention

CAN031

[BSW00327] Error values naming convention Chapter 7.10.1
error names have been selected accordingly

[BSW00335] Status values naming convention Chapter 7.2
is fulfilled by state description

[BSW00350] Development error detection
keyword

CAN064_Conf

[BSW00408] Configuration parameter naming
convention

Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

Chapter 10.2

[BSW00411] Get version info keyword CAN106_Conf
[BSW00346] Basic set of module files CAN034
[BSW158] Separation of configuration from
implementation

CAN034

[BSW00314] Separation of interrupt frames and
service routines

CAN035

[BSW00370] Separation of callback interface from
API

CAN036

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

CAN034, CAN406

[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

CAN034, CAN394

21 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

[BSW00447] Standardizing Include file structure
of BSW Modules Implementing Autosar Service

not applicable

[BSW00348] Standard type header CAN034
[BSW00353] Platform specific type header not applicable

(automatically included with Standard types)
[BSW00361] Compiler specific language
extension header

not applicable

[BSW00301] Limit imported information CAN034
[BSW00302] Limit exported information CAN037
[BSW00328] Avoid duplication of code Implementation requirement

Fulfilled e.g. by defining one Can module that
controls multiple channels

[BSW00312] Shared code shall be reentrant CAN214, CAN231, CAN232, CAN233
[BSW006] Platform independency Chapter 1
[BSW00439] Declaration of interrupt handlers and
ISRs

not applicable

[BSW00448] Module SWS shall not contain
requirements from Other Modules

All chapters of this document containing SWS
items

[BSW00449] BSW Service APIs used by Autosar
Application Software shall return a
Std_ReturnType

not applicable

[BSW00357] Standard API return type not used
[BSW00377] Module Specific API return type CAN039
[BSW00304] AUTOSAR integer data types standard integer data types are used
[BSW00355] Do not redefine AUTOSAR integer
data types

no redefined integer types in 8.2

[BSW00378] AUTOSAR boolean type not applicable
(not used)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

CAN079

[BSW00308] Definition of global data CAN079
[BSW00309] Global data with read-only constraint CAN079
[BSW00371] Do not pass function pointers via API Chapter 8.3

(function definitions)
[BSW00358] Return type of init() functions CAN223
[BSW00414] Parameter of init function CAN223
[BSW00376] Return type and parameters of main
processing functions

CAN031

[BSW00359] Return type of callback functions not applicable
(no callback functions implemented in Can
module)

[BSW00360] Parameters of callback functions no callbacks implemented in Can module
[BSW00440] Function prototype for callback
functions of AUTOSAR Services

not applicable

[BSW00329] Avoidance of generic interfaces No generic interface used.
Still content of functions might be configuration
dependent. Scope of function is always defined

[BSW00330] Usage of macros instead of
functions

CAN079

[BSW00331] Separation of error and status values CAN104, CAN039
[BSW00443] Enabling / disabling defensive
behavior of BSW

not applicable

[BSW00444] Error reporting and logging for
defensive behavior of BSW

not applicable

[BSW00445] Protection against untimely call of
BSW initialization

not applicable

[BSW00446] Protection against untimely call of
BSW de-initialization

not applicable

22 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

[BSW009], [BSW00401], [BSW172], [BSW010],
[BSW00333], [BSW00374], [BSW00379],
[BSW003], [BSW00318], [BSW00321],
[BSW00341], [BSW00334]

Software Documentation Requirements are not
covered in the CAN Driver SWS

Document: AUTOSAR requirements on Basic Software, cluster SPAL (general SPAL
requirements) [3]

Requirement Satisfied by
[BSW12263] Object code compatible
configuration concept

CAN021

[BSW12056] Configuration of notification
mechanisms

CAN235

[BSW12267] Configuration of wake-up sources CAN330_Conf
[BSW12057] Driver module initialization CAN245, CAN246
[BSW12125] Initialization of hardware resources CAN053
[BSW12163] Driver module de-initialization not applicable

(decision in JointMM Meeting: no de-initialization
for drivers that don't need to store non volatile
information)

[BSW12461] Responsibility for register
initialization

CAN407

[BSW12462] Provide settings for register
initialization

not applicable
(Software Documentation Requirements are not
covered in the CAN Driver SWS)

[BSW12463] Combine and forward settings for
register initialization

CAN024

[BSW12068] MCAL initialization sequence not applicable
(requirement on ECU state manager)

[BSW12069] Wake-up notification of ECU State
Manager

CAN271, CAN364

[BSW157] Notification mechanisms of drivers and
handlers

CAN026, CAN028, CAN031, CAN108, CAN109,
CAN112

[BSW12169] Control of operation mode CAN017
[BSW12063] Raw value mode CAN059, CAN060
[BSW12075] Use of application buffers CAN011
[BSW12129] Resetting of interrupt flags CAN033
[BSW12064] Change of operation mode during
running operation

not applicable

[BSW12448] Behavior after development error
detection

CAN091, CAN089

[BSW12067] Setting of wake-up conditions CAN257
[BSW12077] Non-blocking implementation CAN371, CAN372
[BSW12078] Runtime and memory efficiency no effect on API definition

implementation requirement
[BSW12092] Access to drivers CAN058
[BSW12265] Configuration data shall be kept
constant

CAN021 (stored in ROM -> implicitly constant)

[BSW12264] Specification of configuration items Chapter 10

Document: AUTOSAR requirements on Basic Software, cluster CAN Driver [4]

Requirement Satisfied by
[BSW01125] Data throughput read direction not applicable

(requirement affects complete COM stack and will
not be broken down for the individual layers)

[BSW01126] Data throughput write direction not applicable
(requirement affects complete COM stack and will

23 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

not be broken down for the individual layers)
[BSW01139] CAN controller specific initialization CAN062
[BSW01033] Basic Software Modules
Requirements

see table above

[BSW01034] Hardware independent
implementation

Chapter 1

[BSW01035] Multiple CAN controller support Chapter 1
[BSW01036] CAN Identifier Length Configuration CAN065_Conf
[BSW01037] Hardware Filter Configuration CAN066_Conf, CAN325_Conf
[BSW01038] Bit Timing Configuration CAN005_Conf, CAN073_Conf, CAN074_Conf,

CAN075_Conf
[BSW01039] CAN Hardware Object Handle
definitions

CAN324_Conf

[BSW01040] HW Transmit Cancellation
configuration

CAN069_Conf

[BSW01058] Configuration of multiplexed
transmission

CAN095_Conf

[BSW01062] Configuration of polling mode CAN007, CAN314_Conf, CAN317_Conf,
CAN318_Conf, CAN319_Conf,

[BSW01135] Configuration of multiple TX
Hardware Objects

CAN100

[BSW01041] Can module Module Initialization CAN245, CAN246
[BSW01042] Selection of static configuration sets CAN062
[BSW01043] Enable/disable Interrupts CAN049, CAN050
[BSW01059] Data Consistency CAN011, CAN012
[BSW01045] Reception Indication Service CAN279, CAN396
[BSW01049] Dynamic transmission request
service

CAN212, CAN213, CAN214

[BSW01051] Transmit Confirmation CAN016
[BSW01053] CAN controller mode select CAN017
[BSW01054] Wake-up Notification CAN235, CAN271, CAN364
[BSW01132] Mixed mode for notification detection
on CAN HW

CAN099

[BSW01133] HW Transmit Cancellation Support CAN285, CAN286, CAN287, CAN288, CAN278,
CAN399, CAN400

[BSW01134] Multiplexed Transmission CAN076, CAN277, CAN401, CAN402, CAN403
[BSW01055] Bus-off Notification CAN020, CAN234
[BSW01060] no automatic bus-off recovery CAN272, CAN273, CAN274
[BSW01122] Support for wakeup during sleep
transition

CAN048

[BSW01147] No Remote Frame Support CAN236, CAN237

24 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7 Functional specification

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer
inside the CAN controller hardware.
See chapter 7.5 for closer description of L-PDU transmission.

On L-PDU reception, the Can module calls the RX indication callback function with
ID, DLC and pointer to L-SDU as parameter.
See chapter 7.6 for closer description of L-PDU reception.

The Can module provides an interface that serves as periodical processing function,
and which must be called by the Basic Software Scheduler module periodically.

Furthermore, the Can module provides services to control the state of the CAN
controllers. Bus-off and Wake-up events are notified by means of callback functions.

The Can module is a Basic Software Module that accesses hardware resources.
Therefore, it is designed to fulfill the requirements for Basic Software Modules
specified in AUTOSAR_SRS_SPAL (see [3]).

CAN033: The Can module shall implement the interrupt service routines for all CAN
Hardware Unit interrupts that are needed.
CAN419: The Can module shall disable all unused interrupts in the CAN controller.
CAN420: The Can module shall reset the interrupt flag at the end of the ISR (if not
done automatically by hardware).

Implementation hint: The Can module shall not set the configuration (i.e. priority) of
the vector table entry.

CAN079: The Can module shall fulfill all design and implementation guidelines
described in [11].

7.1 Driver scope

One Can module provides access to one CAN Hardware Unit that may consist of
several CAN controllers.

CAN077: For CAN Hardware Units of different type, different Can modules shall be
implemented.

CAN284: In case several CAN Hardware Units (of same or different vendor) are
implemented in one ECU the function names, and global variables of the Can
modules shall be implemented such that no two functions with the same name are
generated.

The naming convention is as follows:
<Can module name>_<vendorID>_<Vendor specific API name><driver
abbreviation>()
BSW00347 specifies the naming convention.

25 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN385: The naming conventions shall be used only in that case, if multiple different
CAN controller types on one ECU have to be supported.

CAN386: If only one controller type is used, the original naming conventions without
any <driver abbreviation> extensions are sufficient.

See [5] for description how several Can modules are handled by the CanIf module.

7.2 Driver State Machine

The Can module has a very simple state machine, with the two states CAN_UNINIT
and CAN_READY. Figure 7.1 shows the state machine.

CAN103: After power-up/reset, the Can module shall be in the state CAN_UNINIT.

Figure 7-1

CAN246: The function Can_Init shall change the module state to CAN_READY, after
initializing all controllers inside the HW Unit.

CAN245: The function Can_Init shall initialize all CAN controllers according to their
configuration.

Each CAN controller must then be started separately by calling the function
Can_SetControllerMode(CAN_T_START).

Implementation hint:
Hardware register settings that have impact on all CAN controllers inside the HW
Unit can only be set in the function Can_Init.

Implementation hint:
The ECU State Manager module shall call Can_Init at most once during runtime.

26 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7.3 CAN Controller State Machine

Each CAN controller has complex state machines implemented in hardware. For
simplification, the number of states is reduced to the following four basic states in this
description: UNINIT, STOPPED, STARTED and SLEEP.
For each CAN controller a corresponding 'software' state machine is implemented in
the CanIf module [5] with the following states: CANIF_CS_UNINIT,
CANIF_CS_STOPPED, CANIF_CS_STARTED and CANIF_CS_SLEEP. [5] shows
the implementation of the software state machine. Any CAN hardware access is
encapsulated by functions of the Can module, but the Can module does not
memorize the state changes.

During a transition phase, the software controller state inside the CanIf module may
differ from the hardware state of the CAN controller.

The Can module offers the services Can_Init, Can_InitController and
Can_SetControllerMode. These services perform the necessary register settings that
cause the required change of the hardware CAN controller state.

There are two possibilities for triggering state changes by external events:
 Bus-off event
 HW wakeup event

These events are indicated either by an interrupt or by a status bit that is polled in the
Can_MainFunction_BusOff or Can_MainFunction_Wakeup.

The Can module does the register settings that are necessary to fulfill the required
behavior (i.e. no hardware recovery in case of bus off).
Then it notifies the CanIf module with the corresponding callback function. The
software state is then changed inside this callback function.

The Can module does not check for validity of state changes. It is the task of upper
layer modules to trigger only transitions that are allowed in the current state. In case
development errors are enabled, the Can module checks the transition. In case of
wrong implementation by the upper layer module, the Can module raises the
development error CAN_E_TRANSITION.

The Can module does not check the actual state before it performs Can_Write or
raises callbacks.

During a transition phase - where the software controller state inside the CanIf
module differs from the hardware state of the CAN controller – transmit might fail or
be delayed because the hardware CAN controller is not yet participating on the bus.
The Can module does not provide a notification for this case.

7.3.1 CAN Controller State Description

This chapter describes the required hardware behavior for the different SW states.
The software state machine itself is implemented and described in the CanIf module.
Please refer to [5] for the state diagram.
27 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN controller state UNINIT

The CAN controller is not initialized. All registers belonging to the CAN module are in
reset state, CAN interrupts are disabled. The CAN Controller is not participating on
the CAN bus.

CAN controller state STOPPED

In this state the CAN Controller is initialized but does not participate on the bus. In
addition, error frames and acknowledges must not be sent.
(Example: For many controllers entering an 'initialization'-mode causes the controller
to be stopped.)

CAN controller state STARTED

The controller is in a normal operation mode with complete functionality, which
means it participates in the network. For many controllers leaving the 'initialization'-
mode causes the controller to be started.

CAN controller state SLEEP

The hardware settings only differ from state STOPPED for CAN hardware that
support a sleep mode (wake-up over CAN bus directly supported by CAN hardware).

CAN257: When the CAN hardware supports sleep mode and is triggered to transition
into SLEEP state, the Can module shall set the controller to the SLEEP state from
which the hardware can be woken over CAN Bus.

CAN258: When the CAN hardware does not support sleep mode and is triggered to
transition into SLEEP state, the Can module shall emulate a logical SLEEP state
from which it returns only, when it is triggered by software to transition into
STOPPED state.

CAN404: The CAN hardware shall remain in state STOPPED, while the logical
SLEEP state is active.

7.3.2 CAN Controller State Transitions

A state transition is triggered by software with the function Can_SetControllerMode
with the required transition as parameter. A successful state transition triggered by
software is notified by the callback function (CanIf_ControllerModeIndication). The
monitoring whether the requested state is achieved is part of an upper layer module
and is not part of the Can module.
Some transitions are triggered by events on the bus (hardware). These transitions
cause a notification by means of a callback function (CanIf_ControllerBusOff,
EcuM_CheckWakeup).
28 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Plausibility checks for state transitions are only performed with development error
detection switched on. The behavior for invalid transitions in production code is
undefined. Figure 7-2 shows all valid state transitions.

stm Can Controller State Machine

UNINT

STOPPED

STARTED

SLEEP

PowerOff

PowerON reset

Figure 7-2

7.3.3 State transition caused by function Can_Init

 UNINIT STOPPED (for all controllers in HW unit)
 software triggered by the function call Can_Init
 does configuration for all CAN controllers inside HW Unit

All control registers are set according to the static configuration.

CAN259: The function Can_Init shall set all CAN controllers in the state STOPPED.

When the function Can_Init is entered and the Can module is not in state
CAN_UNINIT or the CAN controllers are not in state UNINIT, it shall raise the error
CAN_E_TRANSITION (Compare to CAN174 and CAN408).

29 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7.3.4 State transition caused by function Can_InitController

 STOPPED STOPPED
 software triggered by the function call Can_InitController
 changes the CAN controller configuration

CAN controller registers are set according to the static configurations.

CAN256: The Can module’s environment shall only call Can_InitController when the
CAN controller is in state STOPPED.

CAN260: The function Can_InitController shall maintain the CAN controller in the
state STOPPED.
CAN422: The function Can_InitController shall ensure that any settings that will
cause the CAN controller to participate in the network are not set.

When the function Can_InitController is entered and the CAN controller is not in state
STOPPED, it shall raise the error CAN_E_TRANSITION (Compare to CAN190).

7.3.5 State transition caused by function Can_SetControllerMode

The software can trigger a CAN controller state transition with the function
Can_SetControllerMode. Depending on the CAN hardware, a change of a register
setting to transition to a new CAN controller state may take over only after a delay.
The Can module notifies the upper layer (CanIf_ControllerModeIndication) after a
successful state transition about the new state. The monitoring whether the
requested state is achieved is part of an upper layer module and is not part of the
Can module.

CAN370: The functions Can_SetControllerMode shall poll a flag of the CAN status
register until the flag signals that the change takes effect and notify the upper layer
with function CanIf_ControllerModeIndication about a successful state transition.

CAN371: This polling shall take the maximum time of CanTimeoutDuration for
blocking function and thus the polling time is limited.

CAN398: The function Can_SetControllerMode shall use the system service
GetCounterValue for timeout monitoring to avoid blocking functions.

CAN372: In case the flag signals that the change takes no effect and the maximum
time CanTimeoutDuration is elapsed, the function Can_SetControllerMode shall
be left and the function Can_Mainfunction_Mode shall continue to poll the flag.

CAN373: The function Can_Mainfunction_Mode shall call the function
CanIf_ControllerModeIndication to notify the upper layer about a successful state
transition of the CAN controller, in case the state transition was triggered by function
Can_SetControllerMode.

30 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

State transition caused by function Can_SetControllerMode(CAN_T_START)

 STOPPED STARTED
 software triggered

CAN261: The function Can_SetControllerMode(CAN_T_START) shall set the
hardware registers in a way that makes the CAN controller participating on the
network.

CAN262: The function Can_SetControllerMode(CAN_T_START) shall wait for limited
time until the CAN controller is fully operational. Compare to CAN371.

Transmit requests that are initiated before the CAN controller is operational get lost.
The only indicator for operability is the reception of TX confirmations or RX
indications. The sending entities might get a confirmation timeout and need to be
able to cope with that.

CAN409: When the function Can_SetControllerMode(CAN_T_START) is entered
and the CAN controller is not in state STOPPED it shall detect a invalid state
transition (Compare to CAN200).

State transition caused by function Can_SetControllerMode(CAN_T_STOP)

 STARTED STOPPED
 software triggered

CAN263: The function Can_SetControllerMode(CAN_T_STOP) shall set the bits
inside the CAN hardware such that the CAN controller stops participating on the
network.

CAN264: The function Can_SetControllerMode(CAN_T_STOP) shall wait for a
limited time until the CAN controller is really switched off. Compare to CAN371.

CAN282: The function Can_SetControllerMode(CAN_T_STOP) shall cancel pending
messages.

CAN283: The function Can_SetControllerMode(CAN_T_STOP) shall not call a
cancellation notification.

Hint: Even if pending messages are cancelled by the function
Can_SetControllerMode(CAN_T_STOP), there are hardware restrictions and racing
problems. So it cannot be guaranteed if the cancelled messages are still processed
by the hardware or not.

CAN410: When the function Can_SetControllerMode(CAN_T_STOP) is entered and
the CAN controller is neither in state STARTED nor in state STOPPED, it shall detect
a invalid state transition (Compare to CAN200).

31 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

State transition caused by function Can_SetControllerMode(CAN_T_SLEEP)

 STOPPED SLEEP
 software triggered

CAN265: The function Can_SetControllerMode(CAN_T_SLEEP) shall set the
controller into sleep mode.

CAN266: If the CAN HW does support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall wait for a limited time until the CAN
controller is in SLEEP state and it is assured that the CAN hardware is wake able.
Compare to CAN371.

CAN290: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall set the CAN controller to the logical
sleep mode.

CAN405: This logical sleep mode shall left only, if function
Can_SetControllerMode(CAN_T_WAKEUP) is called.

CAN411: When the function Can_SetControllerMode(CAN_T_SLEEP) is entered
and the CAN controller is neither in state STOPPED nor in state SLEEP, it shall
detect a invalid state transition (Compare to CAN200).

State transition caused by function Can_SetControllerMode(CAN_T_WAKEUP)

 SLEEP STOPPED
 software triggered

CAN267: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall return from the logical sleep mode,
but have no effect to the CAN controller state (as the controller is already in stopped
state).

CAN268: The function Can_SetControllerMode(CAN_T_WAKEUP) shall wait for a
limited time until the CAN controller is in STOPPED state. Compare to CAN371.

CAN412: When the function Can_SetControllerMode(CAN_T_WAKEUP) is entered
and the CAN controller is neither in state SLEEP nor in state STOPPED, it shall
detect a invalid state transition (Compare to CAN200).

7.3.6 State transition caused by Hardware Events

State transition caused by Hardware Wakeup (triggered by wake-up event from
CAN bus)

 SLEEP STOPPED
 triggered by incoming L-PDUs

32 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

 The ECU Statemanager module is notified with the function
EcuM_CheckWakeup

This state transition will only occur when sleep mode is supported by hardware.

CAN270: On hardware wakeup (triggered by a wake-up event from CAN bus), the
CAN controller shall transition into the state STOPPED.

CAN271: On hardware wakeup (triggered by a wake-up event from CAN bus), the
Can module shall call the function EcuM_CheckWakeup either in interrupt context or
in the context of Can_MainFunction_Wakeup.

CAN269: The Can module shall not further process the L-PDU that caused a wake-
up.

CAN048: In case of a CAN bus wake-up during sleep transition, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall return CAN_NOT_OK.

State transition caused by Bus-Off (triggered by state change of CAN
controller)

CAN020:
 STARTED STOPPED
 triggered by hardware if the CAN controller reaches bus-off state
 The CanIf module is notified with the function CanIf_ControllerBusOff after

STOPPED state is reached.

CAN272: After bus-off detection, the CAN controller shall transition to the state
STOPPED and the Can module shall ensure that the CAN controller doesn't
participate on the network anymore.

CAN273: After bus-off detection, the Can module shall cancel still pending messages
without raising a cancellation notification.

CAN274: The Can module shall disable or suppress automatic bus-off recovery.

7.4 Can module/Controller Initialization

The ECU State Manager module shall initialize the Can module during startup phase
by calling the function Can_Init before using any other functions of the Can module.

CAN250: The function Can_Init shall initialize:
 static variables, including flags,
 Common setting for the complete CAN HW unit
 CAN controller specific settings for each CAN controller

CAN053: Can_Init shall not change registers of CAN controller Hardware resources
that are not used.

33 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

The Can module shall apply the following rules regarding initialization of controller
registers:
 CAN407: If the hardware allows for only one usage of the register, the Can

module implementing that functionality is responsible initializing the register.
 If the register can affect several hardware modules and if it is an I/O register it

shall be initialized by the PORT driver.
 If the register can affect several hardware modules and if it is not an I/O

register it shall be initialized by the MCU driver.
 One-time writable registers that require initialization directly after reset shall be

initialized by the startup code.
 All other registers shall be initialized by the startup code.

CAN056: Post-Build configuration elements that are marked as 'multiple' ('M' or 'x') in
chapter 10 can be selected by passing the pointer 'Config' to the init function of the
module.

CAN023: The consistency of the configuration must be checked by the configuration
tool(s).

CAN062: The function Can_InitController shall re-initialize the CAN controller and the
controller specific settings.

The CanIf module must first set the CAN controller in STOPPED state. Then
Can_InitController can be invoked by the appropriate upper layer.

CAN255: The function Can_InitController shall only affect register areas that contain
specific configuration for a single CAN controller.

CAN021: The desired CAN controller configuration can be selected with the
parameter Config.

CAN291: Config is a pointer into an array of implementation specific data structure
stored in ROM. The different controller configuration sets are located as data
structures in ROM.

The possible values for Config are provided by the configuration description (see
chapter 10).
The Can module configuration defines the global CAN HW Unit settings and
references to the default CAN controller configuration sets.

7.5 L-PDU transmission

On L-PDU transmission, the Can module converts the L-PDU contents ID and DLC
to a hardware specific format (if necessary) and triggers the transmission.

CAN059: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is sent out first is array element 0, the CAN data byte which is sent out
last is array element 7.

34 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN427: If the presentation inside the CAN Hardware buffer differs from AUTOSAR
definition, the Can module must provide an adapted SDU-Buffer for the upper layers.

CAN100: Several TX hardware objects with unique HTHs may be configured. The
CanIf module provides the HTH as parameter of the TX request. See Figure 7-3 for a
possible configuration.

Message Objects of CAN Hardware

Figure 7-3: Example of assignment of HTHs and HRHs to the Hardware Objects. The numbering
of HTHs and HRHs are implementation specific. The chosen numbering is only an example.

CAN276: The function Can_Write shall store the swPduHandle that is given inside
the parameter PduInfo until the Can module calls the CanIf_TxConfirmation for this
request where the swPduHandle is given as parameter.

The feature of CAN276 is used to reduce time for searching in the CanIf module
implementation.

CAN016: The Can module shall call CanIf_TxConfirmation to indicate a successful
transmission. It shall either called by the TX-interrupt service routine of the
corresponding HW resource or inside the Can_MainFunction_Write in case of polling
mode.

7.5.1 Priority Inversion

To prevent priority inversion two mechanisms are necessary: multiplexed
transmission and hardware cancellation (see chapter 2.1).

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

unused

HTH = 4

HTH = 5

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

ID DLC SDU

35 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7.5.1.1 Multiplexed Transmission

CAN277: The Can module shall allow that the functionality “Multiplexed
Transmission” is statically configurable (ON | OFF) at pre-compile time.

CAN401: Several transmit hardware objects shall be assigned by one HTH to
represent one transmit entity to the upper layer.

CAN402: The Can module shall support multiplexed transmission mechanisms for
devices where either
- Multiple transmit hardware objects, which are grouped to a transmit entity can be

filled over the same register set, and the microcontroller stores the L-PDU into a
free buffer autonomously,

or
- The Hardware provides registers or functions to identify a free transmit hardware

object within a transmit entity.

CAN403: The Can module shall support multiplexed transmission for devices, which
send L-PDUs in order of L-PDU priority.

CAN076: The Can module shall NOT support software emulation for the
transmission in order of LPDU-priority.

Figure 7-4: Example of assignment of HTHs and HRHs to the Hardware Objects with
multiplexed transmission. The numbering of HTHs and HRHs are implementation specific. The

chosen numbering is only an example.

7.5.1.2 Transmit Cancellation

For some applications, it is required to transmit always the newest data on the bus.
L-PDUs which are pending in the transmit buffer from the previous transmit cycle
must be replaced by an L-PDU of current transmit cycle. This requirement is
supported by cancellation of pending L-PDUs with identical priority. However,
36 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

cancellation and replacement of an L-PDU with identical priority can lead to priority
inversion, which is in conflict with the requirement to prevent priority inversion. To
satisfy both requirements, the configuration parameter CanIdenticalIdCancellation
enables/disables the cancellation of L-PDUs with identical priority.

CAN278: The Can module shall allow that the functionality “Transmit Cancellation” is

he complete cancellation sequence is described in the CanIf module [5].

AN432: The Can module shall allow that the cancellation of pending L-PDUs with

AN285: Transmit cancellation may only be used when transmit buffers are enabled

AN286: The Can module shall initiate a cancellation, when the hardware transmit

AN433: The Can module shall initiate a cancellation, when the hardware transmit

he following two items are valid, in case multiplexed transmission functionality is

AN399: The Can module shall initiate a cancellation of the L-PDU with the lowest

AN400: The Can module shall initiate a cancellation, when one of the hardware

he incoming request is also rejected because the cancellation is asynchronous.

AN287: The Can module shall raise a notification when the cancellation was

AN288: The TX request for the new L-PDU shall be repeated by the CanIf module,

plementation note:
 streams the sender must assure that the next transmit request

statically configurable (ON | OFF) at pre-compile time.

T

C
identical priority is statically configurable at pre-compile time by parameter
CanIdenticalIdCancellation.

C
inside the CanIf module.

C
object assigned by a HTH is busy and an L-PDU with higher priority is requested to
be transmitted.

C
object assigned by a HTH is busy, an L-PDU with identical priority is requested to be
transmitted and CanIdenticalIdCancellation is enabled.

T
enabled and several hardware transmit objects are assigned by one HTH:

C
priority, when all hardware transmit objects assigned by the HTH are busy and an L-
PDU with a higher priority is requested to be transmitted.

C
transmit objects assigned by the HTH is busy, an L-PDU with identical priority is
requested to be transmitted and CanIdenticalIdCancellation is enabled.

T

C
successful by calling the function CanIf_CancelTxConfirmation.

C
inside the notification function CanIf_CancelTxConfirmation.

Im
For sequence relevant
for the same CAN ID is only initiated after the last request was confirmed.

37 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

7.5.2 Transmit Data Consistency

CAN011: The Can module shall directly copy the data from the upper layer buffers. It
is the responsibility of the upper layer to keep the buffer consistent until return of
function call (Can_Write).

7.6 L-PDU reception

CAN279: On L-PDU reception, the Can module shall call the RX indication callback
function CanIf_RxIndication with ID, DLC and pointer to the L-SDU buffer as
parameter.
CAN423: If necessary, the Can module shall convert the ID and DLC to a
standardized format (i.e. MSB that marks extended identifiers).

CAN396: The RX-interrupt service routine of the corresponding HW resource or the
function Can_MainFunction_Read in case of polling mode shall call the callback
function CanIf_RxIndication.

CAN060: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is received first is array element 0, the CAN data byte which is received
last is array element 7.
If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper layers.

7.6.1 Receive Data Consistency

CAN299: The Can module shall copy the L-SDU in a shadow buffer after reception, if
the RX buffer cannot be protected (locked) by CAN Hardware against overwriting by
a newly received message.

CAN300: The Can module shall copy the L-SDU in a shadow buffer, if the CAN
Hardware is not globally accessible.

The complete RX processing (including copying to destination layer, e.g. COM) is
done in the context of the RX interrupt or in the context of the
Can_MainFunction_Read.

CAN012: The Can module shall guarantee that neither the ISRs nor the function
Can_MainFunction_Read can be interrupted by itself. The CAN hardware (or
shadow) buffer is always consistent, because it is written and read in sequence in
exactly one function that is never interrupted by itself.

If the CAN hardware cannot be configured to lock the RX hardware object after
reception (hardware feature), it could happen that the hardware buffer is overwritten
by a newly arrived message. In this case, the CAN controller detects an “overwrite”
event, if supported by hardware.

If the CAN hardware can be configured to lock the RX hardware object after
reception, it could happen that the newly arrived message cannot be stored to the

38 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

hardware buffer. In this case, the CAN controller detects an “overrun” event, if
supported by hardware.

CAN395: If the development error detection for the Can module is enabled, the Can
module shall raise the error CAN_E_DATALOST in case of “overwrite” or “overrun”
event detection.

Implementation Hint:
The system designer shall assure that the runtime for message reception (interrupt
driven or polling) correlates with the fasted possible reception in the system.

7.7 Wakeup concept

The Can module handles wakeups that can be detected by the Can controller itself
and not via the Can transceiver. There are two possible scenarios: wakeup by
interrupt and wakeup by polling.

For wakeup by interrupt, an ISR of the Can module is called when the hardware
detects the wakeup.
CAN364: If the ISR for wakeup events is called, it shall call EcuM_CheckWakeup in
turn. The parameter passed to EcuM_CheckWakeup shall be the ID of the wakeup
source referenced by the CanWakeupSourceRef configuration parameter.

The ECU State Manager will then set up the MCU and call the Can module back via
the Can Interface, resulting in a call to Can_CheckWakeup.

When wakeup events are detected by polling, the ECU State Manager will cyclically
call Can_CheckWakeup via the Can Interface as before. In both cases,
Can_CheckWakeup will check if there was a wakeup detected by a Can controller
and return the result. The Can Interface will then inform the ECU State Manager of
the wakeup event.

The wakeup validation to prevent false wakeup events, will be done by the ECU
State Manager and the Can Interface afterwards and without any help from the Can
module.

For a general description of the wakeup mechanisms and wakeup sequence
diagrams refer to Specification of ECU State Manager [7].

7.8 Notification concept

The Can module offers only an event triggered notification interface to the CanIf
module. Each notification is represented by a callback function.

CAN099: The hardware events may be detected by an interrupt or by polling status
flags of the hardware objects. The configuration possibilities regarding polling is
hardware dependent (i.e. which events can be polled, which events need to be
polled), and not restricted by this standard.

39 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN007: It shall be possible to configure the driver such that no interrupts at all are
used (complete polling).

The configuration of what is and is not polled by the Can module is internal to the
driver, and not visible outside the module. The polling is done inside the CAN main
functions (Can_MainFunction_xxx). Also the polled events are notified by the
appropriate callback function. Then the call context is not the ISR but the CAN main
function. The implementation of all callback functions shall be done as if the call
context was the ISR.

For further details see also description of the CAN main functions
Can_MainFunction_Read, Can_MainFunction_Write, Can_MainFunction_BusOff and
Can_MainFunction_Wakeup.

7.9 Reentrancy issues

A routine must satisfy the following conditions to be reentrant:
1. It uses all shared variables in an atomic way, unless each is allocated to a

specific instance of the function.
2. It does not call non-reentrant functions.
3. It does not use the hardware in a non-atomic way.

Transmit requests are simply forwarded by the CanIf module inside the function
CanIf_Transmit.
The function CanIf_Transmit is re-entrant. Therefore the function Can_Write needs to
be implemented thread-safe (for example by using mutexes):
Further (preemptive) calls will return with CAN_BUSY when the write can't be
performed re-entrant. (example: write to different hardware TX Handles allowed,
write to same TX Handles not allowed)
In case of CAN_BUSY the CanIf module queues that request. (same behavior as if
all hardware objects are busy).

Can_EnableCanInterrupts and Can_DisableCanInterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant.

All other services don't need to be implemented as reentrant functions.

The CAN main functions (i.e. Can_MainFunction_Read) shall not be interrupted by
themselves. Therefore these CAN main functions are not reentrant.

7.10 Error classification

CAN104: The Can module shall be able to detect the following errors and exceptions
depending on its configuration (development/production)

Type or error Relevance Related error code Value

[hex]
API Service called with
wrong parameter

Development CAN_E_PARAM_POINTER 0x01
CAN_E_PARAM_HANDLE 0x02

40 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN_E_PARAM_DLC 0x03
CAN_E_PARAM_CONTROLLER 0x04

API Service used without
initialization

Development CAN_E_UNINIT 0x05

Invalid transition for the
current mode

Development CAN_E_TRANSITION 0x06

Received CAN message
is lost

Development CAN_E_DATALOST 0x07

7.10.1 Development Errors

CAN026: The Can module shall indicate errors that are caused by erroneous usage
of the Can module API. This covers API parameter checks and call sequence errors.

CAN028: The Can module shall call the Development Error Tracer when DET is
switched on and the Can module detects an error.

CAN091: After return of the DET the Can module’s function that raised the
development error shall return immediately.

CAN089: The Can module’s environment shall indicate development errors only in
the return values of a function of the Can module when DET is switched on and the
function provides a return value. The returned value is CAN_NOT_OK.

CAN080: Development error values are of type uint8.

7.10.2 Production Errors

The Can module does not call the Diagnostic Event Manager, because there is no
production error code defined for the Can module.

7.10.3 Return Values

CAN_BUSY is reported via return value of the function Can_Write. The CanIf module
reacts according the sequence diagrams specified for the CanIf module.

CAN_NOT_OK is reported via return value in case of a wakeup during transition to
sleep mode.

Bus-off and Wake-up events are forwarded via notification callback functions.

7.11 Error detection

CAN082: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CanDevErrorDetection (see chapter 10) shall activate or
deactivate the detection of all development errors.

41 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN083: If the CanDevErrorDetection switch is enabled API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.10.

CAN084: The detection of production code errors cannot be switched off.

7.12 Error notification

CAN027: Detected development errors shall be reported to the Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch
CanDevErrorDetection is set (see chapter 10).

CAN424: No code for catching development errors shall be generated, when
development errors are switched off.

7.13 Version Check

CAN111: Can.c shall check if the correct version of Can.h is included. This shall be
done by a preprocessor check of the version numbers
CAN_SW_MAJOR_VERSION, CAN_SW_MINOR_VERSION and
CAN_SW_PATCH_VERSION.

7.14 Debugging

CAN365: Each variable that shall be accessible by AUTOSAR Debugging, shall be
defined as global variable.

CAN366: All type definitions of variables which shall be debugged, shall be
accessible by the header file Can.h.

CAN367: The declaration of variables in the header file shall be such, that it is
possible to calculate the size of the variables by C-"sizeof" operation.

42 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

8 API specification

The prefix of the function names may be changed in an implementation with several
Can modules as described in CAN284.

8.1 Imported types

In this chapter all types included from the following files are listed:

CAN222:

Module Imported Type
CanIf CanIf_ControllerModeType
ComStack_Types PduIdType
Dem Dem_EventIdType
EcuM EcuM_WakeupSourceType

CounterType
StatusType

Os

TickRefType
Std_ReturnType Std_Types
Std_VersionInfoType

8.2 Type definitions

8.2.1 Can_ConfigType

CAN413:

Name: Can_ConfigType
Type: Structure

Implementation specific. Range:
This is the type of the external data structure containing the overall initialization
data for the CAN driver and SFR settings affecting all controllers. Furthermore it
contains pointers to controller configuration structures. The contents of the
initialization data structure are CAN hardware specific.

Description:

8.2.2 Can_ControllerBaudrateConfigType

CAN414:

Can_ControllerBaudrateConfigType Name:
Structure Type:
Implementation specific. Range:
This is the type of the external data structure containing the bit timing related
initialization data for one CAN controller. The contents of the initialization data
structure are CAN hardware specific.

Description:

43 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

8.2.3 Can_PduType

CAN415:

Can_PduType Name:
Structure Type:
PduIdType swPduHandle
uint8 length --
Can_IdType id --

Element:

uint8* sdu --
This type is used to provide ID, DLC and SDU from CAN interface to CAN driver. Description:

8.2.4 Can_IdType

CAN416:

Can_IdType Name:
Type: uint16, uint32

Standard 0..0x7FF Range:
Extended 0..0xFFFFFFFF
Represents the Identifier of an L-PDU. For extended IDs the most significant bit is
set.

Description:

8.2.5 Can_HwHandleType

CAN429:

Name: Can_HwHandleType
Type: uint8, uint16

Standard 0..0x0FF Range:
Extended 0..0xFFFF
Represents the hardware object handles of a CAN hardware unit. For CAN
hardware units with more than 255 HW objects use extended range.

Description:

8.2.6 Can_StateTransitionType

CAN417:

Name: Can_StateTransitionType
Type: Enumeration

CAN_T_START CAN controller transition value to request state STARTED.
CAN_T_STOP CAN controller transition value to request state STOPPED.
CAN_T_SLEEP CAN controller transition value to request state SLEEP.

Range:

CAN_T_WAKEUP CAN controller transition value to request state STOPPED
from state SLEEP.

Description: State transitions that are used by the function CAN_SetControllerMode

44 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

8.2.7 Can_ReturnType

CAN039:

Name: Can_ReturnType

Enumeration Type:
CAN_OK success
CAN_NOT_OK error occurred or wakeup event occurred during sleep

transition

Range:

CAN_BUSY transmit request could not be processed because no transmit
object was available

Description: Return values of CAN driver API .

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete hardware unit

8.3.1.1 Can_Init

CAN223:

Can_Init Service name:
void Can_Init(
 const Can_ConfigType* Config
)

Syntax:

0x00 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Non Reentrant
Parameters (in): Config Pointer to driver configuration.
Parameters
(inout):

None

None Parameters (out):
None Return value:
This function initializes the module. Description:

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

CAN174: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_TRANSITION if the driver is not in state
CAN_UNINIT.

CAN408: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_TRANSITION if the CAN controllers are not in
state UNINIT.

45 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN175: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_PARAM_POINTER if a NULL pointer was
given as config parameter.

8.3.1.2 Can_GetVersionInfo

CAN224:

Service name: Can_GetVersionInfo
Syntax: void Can_GetVersionInfo(

 Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x07
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
versioninfo Parameters (out): Pointer to where to store the version information of this module.

Return value: None
Description: This function returns the version information of this module.

CAN105: The function Can_GetVersionInfo shall return the version information of
this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

CAN251: If source code for caller and callee is available, the function
Can_GetVersionInfo should be realized as a macro, defined in the Can module’s
header file.

CAN177: If development error detection for the Can module is enabled: The function
Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if the
parameter versionInfo is a null pointer.

CAN252: The function Can_GetVersionInfo shall be pre compile time configurable
(On/Off) by the configuration parameter: CanVersionInfoApi.

8.3.2 Services affecting one single CAN Controller

8.3.2.1 Can_InitController

CAN229:

Can_InitController Service name:
Syntax: void Can_InitController(

 uint8 Controller,
 const Can_ControllerBaudrateConfigType* Config
)

46 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

0x02 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
Controller CAN controller to be initialized

Parameters (in):
Config --
None Parameters

(inout):
None Parameters (out):
None Return value:
This function initializes the bit timing related settings of a CAN controller. Description:

The function Can_InitController re-initializes the CAN controller and the controller
specific settings (see CAN062).

Different sets of static configuration may have been configured. The parameter
*Config points to the hardware specific structure that describes the configuration (see
CAN291).

Global CAN Hardware Unit settings must not be changed. Only a subset of
parameters may be changed during runtime (see chapter 10). For further
explanation, see also chapter 7.4

The CAN controller must be in state STOPPED when this function is called (see
CAN256 and CAN260).

The CAN controller is in state STOPPED after (re-)initialization (see CAN259).

CAN187: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN188: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_POINTER if the parameter
Config is an null pointer.

CAN189: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_CONTROLLER if the
parameter Controller is out of range.

CAN190: If development error detection for the Can module is enabled: if the
controller is not in state STOPPED, the function Can_InitController shall raise the
error CAN_E_TRANSITION.

8.3.2.2 Can_SetControllerMode

CAN230:

Service name: Can_SetControllerMode
Syntax: Can_ReturnType Can_SetControllerMode(

 uint8 Controller,
 Can_StateTransitionType Transition
)

47 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Service ID[hex]: 0x03
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

Controller CAN controller for which the status shall be changed
Parameters (in):

Transition Transition value to request new CAN controller state
None Parameters

(inout):
None Parameters (out):
Can_ReturnType CAN_OK: request accepted

CAN_NOT_OK: request not accepted, a development error
occurred

Return value:

This function performs software triggered state transitions of the CAN controller
State machine.

Description:

CAN017: The function Can_SetControllerMode shall perform software triggered state
transitions of the CAN controller State machine. See also [BSW12169]

CAN384: Each time the CAN controller state machine is triggered with the state
transition value CAN_T_START, the function Can_SetControllerMode shall re-
initialize the CAN controller with the same controller configuration set previously used
by functions Can_InitController or Can_Init.

Refer to CAN048 for the case of a wakeup event from CAN bus occurred during
sleep transition.

CAN294: The function Can_SetControllerMode shall disable the wake-up interrupt,
while checking the wake-up status.

CAN196: The function Can_SetControllerMode shall enable interrupts that are
needed in the new state.
CAN425: Enabling of CAN interrupts shall not be executed, when CAN interrupts
have been disabled by function Can_DisableControllerInterrupts.

CAN197: The function Can_SetControllerMode shall disable interrupts that are not
allowed in the new state.
CAN426: Disabling of CAN interrupts shall not be executed, when CAN interrupts
have been disabled by function Can_DisableControllerInterrupts.

Caveat:
The behavior of the transmit operation is undefined when the 'software' state in the
CanIf module is already CANIF_CS_STARTED, but the CAN controller is not yet in
operational mode.

The CanIf module must ensure that the function is not called before the previous call
of Can_SetControllerMode returned.

The CanIf module is responsible not to initiate invalid transitions.

CAN198: If development error detection for the Can module is enabled: if the module
is not yet initialized, the function Can_SetControllerMode shall raise development
error CAN_E_UNINIT and return CAN_NOT_OK.

48 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN199: If development error detection for the Can module is enabled: if the
parameter Controller is out of range, the function Can_SetControllerMode shall
raise development error CAN_E_PARAM_CONTROLLER and return
CAN_NOT_OK.

CAN200: If development error detection for the Can module is enabled: if an invalid
transition has been requested, the function Can_SetControllerMode shall raise the
error CAN_E_TRANSITION and return CAN_NOT_OK.

8.3.2.3 Can_DisableControllerInterrupts

CAN231:

Can_DisableControllerInterrupts Service name:
void Can_DisableControllerInterrupts(
 uint8 Controller
)

Syntax:

0x04 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Controller CAN controller for which interrupts shall be disabled. Parameters (in):
None Parameters

(inout):
Parameters (out): None
Return value: None
Description: This function disables all interrupts for this CAN controller.

CAN049: The function Can_DisableControllerInterrupts shall access the CAN
controller registers to disable all interrupts for that CAN controller only, if interrupts for
that CAN Controller are enabled.

CAN202: When Can_DisableControllerInterrupts has been called several times,
Can_EnableControllerInterrupts must be called as many times before the interrupts
are re-enabled.

Implementation note:
The function Can_DisableControllerInterrupts can increase a counter on every
execution that indicates how many Can_EnableControllerInterrupts need to be called
before the interrupts will be enabled (incremental disable).

CAN204: The Can module shall track all individual enabling and disabling of
interrupts in other functions (i.e. Can_SetControllerMode) , so that the correct
interrupt enable state can be restored.

Implementation example:
- in 'interrupts enabled mode': For each interrupt state change does not only modify
the interrupt enable bit, but also a software flag.
- in 'interrupts disabled mode': only the software flag is modified.

49 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

- Can_DisableControllerInterrupts and Can_EnableControllerInterrupts do not modify
the software flags.

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

- Can_EnableControllerInterrupts reads the software flags to re-enable the correct
interrupts.

CAN205: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN206: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error
CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

8.3.2.4 Can_EnableControllerInterrupts

CAN232:

Service name: Can_EnableControllerInterrupts

void Can_EnableControllerInterrupts(
 uint8 Controller
)

Syntax:

0x05 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Controller CAN controller for which interrupts shall be re-enabled Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
This function enables all allowed interrupts. Description:

CAN050: The function Can_EnableControllerInterrupts shall enable all interrupts that
must be enabled according the current software status.

CAN202 applies to this function.

CAN208: The function Can_EnableControllerInterrupts shall perform no action when
Can_DisableControllerInterrupts has not been called before.

See also implementation example for Can_DisableControllerInterrupts.

CAN209: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN210: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error
CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

8.3.2.5 Can_CheckWakeup

CAN360:

50 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Service name: Can_CheckWakeup
Syntax: Can_ReturnType Can_CheckWakeup(

 uint8 Controller
)

Service ID[hex]: 0x0b
Synchronous Sync/Async:
Non Reentrant Reentrancy:

Parameters (in): Controller Controller to be checked for a wakeup.
Parameters
(inout):

None

None Parameters (out):
Can_ReturnType CAN_OK: A wakeup was detected for the given controller.

CAN_NOT_OK: No wakeup was detected for the given controller.
Return value:

This function checks if a wakeup has occurred for the given controller. Description:

CAN361: The function Can_CheckWakeup shall check if the requested CAN
controller has detected a wakeup. If a wakeup event was successfully detected since
the last go to SLEEP, the function shall return CAN_OK, otherwise CAN_NOT_OK.

CAN362: If development error detection for the Can module is enabled: The function
Can_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN363: If development error detection for the Can module is enabled: The function
Can_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if the
parameter Controller is out of range.

8.3.3 Services affecting a Hardware Handle

8.3.3.1 Can_Write

CAN233:

Can_Write Service name:
Can_ReturnType Can_Write(
 Can_HwHandleType Hth,
 const Can_PduType* PduInfo
)

Syntax:

0x06 Service ID[hex]:
Synchronous Sync/Async:
Reentrant (thread-safe) Reentrancy:
Hth information which HW-transmit handle shall be used for transmit.

Implicitly this is also the information about the controller to use
because the Hth numbers are unique inside one hardware unit. Parameters (in):

PduInfo Pointer to SDU user memory, DLC and Identifier.
None Parameters

(inout):
None Parameters (out):
Can_ReturnType CAN_OK: Write command has been accepted

CAN_NOT_OK: development error occurred
CAN_BUSY: No TX hardware buffer available or pre-emptive call
of Can_Write that can't be implemented re-entrant

Return value:

Description: --

51 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

The function Can_Write first checks if the hardware transmit object that is identified
by the HTH is free and if another Can_Write is ongoing for the same HTH.

CAN212: The function Can_Write shall perform following actions if the hardware
transmit object is free:
 The mutex for that HTH is set to 'signaled'
 the ID, DLC and SDU are put in a format appropriate for the hardware (if

necessary) and copied in the appropriate hardware registers/buffers.
 All necessary control operations to initiate the transmit are done
 The mutex for that HTH is released
 The function returns with CAN_OK

CAN213: The function Can_Write shall perform no actions if the hardware transmit
object is busy with another transmit request for an L-PDU that has higher priority
than that for the current request:
 The transmission of the L-PDU with higher priority shall not be cancelled and the

function Can_Write is left without any actions.
 The function Can_Write shall return CAN_BUSY

CAN215: The function Can_Write shall perform following actions if the hardware
transmit object is busy with another transmit request for an L-PDU that has lower
priority than that for the current request:
 The transmission of the L-PDU with lower priority shall be cancelled

(asynchronously) in case transmit cancellation functionality is enabled. Compare
to chapter 7.5.1.2.

 The function CAN_Write shall return CAN_BUSY

CAN434: The function Can_Write shall perform following actions if the hardware
transmit object is busy with another transmit request for an L-PDU that has identical
priority than that for the current request:
 The transmission of the L-PDU with identical priority shall be cancelled

(asynchronously) in case CanIdenticalIdCancellation is enabled. Compare to
chapter 7.5.1.2.

 The transmission of the L-PDU with identical priority shall not be cancelled in
case CanIdenticalIdCancellation is disabled and the function Can_Write is left
without any actions.

 The function CAN_Write shall return CAN_BUSY

CAN214: The function Can_Write shall return CAN_BUSY if a preemptive call of
Can_Write has been issued, that could not be handled reentrant (i.e. a call with the
same HTH).

CAN275: The function Can_Write shall be non-blocking.

CAN216: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_UNINIT and shall return CAN_NOT_OK if the
driver is not yet initialized.

52 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN217: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_HANDLE and shall return
CAN_NOT_OK if the parameter Hth is not a configured Hardware Transmit Handle.

CAN218: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_DLC and shall return
CAN_NOT_OK if the length is more than 8 byte.

CAN219: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_POINTER and shall return
CAN_NOT_OK if the parameter PduInfo or the SDU pointer inside PduInfo is a null-
pointer.

8.4 Call-back notifications

This chapter lists all functions provided by the Can module to lower layer modules.
The lower layer module of Can module is the SPI module. The SPI module, which is
part of the MCAL, may used to exchange data between the microcontroller and an
external CAN controller.

The Can module does not provide callback functions. Only synchronous MCAL API
may used to access external CAN controllers.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

CAN431: If these main functions are called from the BSW Scheduler and the Can
module is not initialized, then it shall return immediately without performing any
functionality and without raising a production error.

CAN110: There is no requirement regarding the execution order of the CAN main
processing functions.

8.5.1.1 Can_MainFunction_Write

CAN225:

Can_MainFunction_Write Service name:
void Can_MainFunction_Write(
 void
)

Syntax:

0x01 Service ID[hex]:
FIXED_CYCLIC Timing:

Description: This function performs the polling of TX confirmation and TX cancellation
confirmation when CAN_TX_PROCESSING is set to POLLING.

53 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN031: The function Can_MainFunction_Write shall perform the polling of TX
confirmation and TX cancellation confirmation when CanTxProcessing is set to
POLLING.

CAN178: The Can module may implement the function Can_MainFunction_Write as
empty define in case no polling at all is used.

CAN179: If development error detection for the module Can is enabled: The function
Can_MainFunction_Write shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

8.5.1.2 Can_MainFunction_Read

CAN226:

Can_MainFunction_Read Service name:
void Can_MainFunction_Read(
 void
)

Syntax:

0x08 Service ID[hex]:
Timing: FIXED_CYCLIC
Description: This function performs the polling of RX indications when

CAN_RX_PROCESSING is set to POLLING.

CAN108: The function Can_MainFunction_Read shall perform the polling of RX
indications when CanRxProcessing is set to POLLING.

CAN180: The Can module may implement the function Can_MainFunction_Read as
empty define in case no polling at all is used.

CAN181: If development error detection for the Can module is enabled: The function
Can_MainFunction_Read shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

8.5.1.3 Can_MainFunction_BusOff

CAN227:

Can_MainFunction_BusOff Service name:
void Can_MainFunction_BusOff(
 void
)

Syntax:

0x09 Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of bus-off events that are configured statically as
'to be polled'.

Description:

CAN109: The function Can_MainFunction_BusOff shall perform the polling of bus-off
events that are configured statically as 'to be polled'.

54 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN183: The Can module may implement the function Can_MainFunction_BusOff
as empty define in case no polling at all is used.

CAN184: If development error detection for the Can module is enabled: The function
Can_MainFunction_BusOff shall raise the error CAN_E_UNINIT if the driver is not
yet initialized.

8.5.1.4 Can_MainFunction_Wakeup

CAN228:

Can_MainFunction_Wakeup Service name:
void Can_MainFunction_Wakeup(
 void
)

Syntax:

0x0a Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of wake-up events that are configured statically
as 'to be polled'.

Description:

CAN112: The function Can_MainFunction_Wakeup shall perform the polling of
wake-up events that are configured statically as 'to be polled'.

CAN185: The Can module may implement the function Can_MainFunction_Wakeup
as empty define in case no polling at all is used.

CAN186: If development error detection for the Can module is enabled: The function
Can_MainFunction_Wakeup shall raise the error CAN_E_UNINIT if the driver is not
yet initialized.

8.5.1.5 Can_MainFunction_Mode

CAN368:

Can_MainFunction_Mode Service name:
void Can_MainFunction_Mode(
 void
)

Syntax:

0x0c Service ID[hex]:
FIXED_CYCLIC Timing:
This function performs the polling of CAN controller mode transitions. Description:

CAN369: The function Can_MainFunction_Mode shall implement the polling of CAN
status register flags to detect transition of CAN Controller state. Compare to chapter
7.3.2.

55 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN379: If development error detection for the Can module is enabled: The function
Can_MainFunction_Mode shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module. All callback functions that are called by the Can module are implemented
in the CanIf module. These callback functions are not configurable.

CAN234:

API function Description
CanIf_TxConfirmation This service confirms a previously successfully processed transmission

of a CAN TxPDU.
CanIf_ControllerModeIndication This service indicates a controller state transition referring to the

corresponding CAN controller.
GetCounterValue This service reads the current count value of a counter (returning either

the hardware timer ticks if counter is driven by hardware or the software
ticks when user drives counter).

CanIf_ControllerBusOff This service indicates a Controller BusOff event referring to the
corresponding CAN Controller.

CanIf_RxIndication This service indicates a successful reception of a received CAN Rx L-
PDU to the CanIf after passing all filters and validation checks.

8.6.2 Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of
the module.

CAN235:

API function Description
Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used by

BSW modules). The interface has an asynchronous behavior, because
the processing of the event is done within the DEM main function.

EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also
be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

CanIf_CancelTxConfirmation This service confirms a previously successfully performed cancellation
of a pending Tx L-PDU transmit request.

Det_ReportError Service to report development errors.

56 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

8.6.3 Configurable interfaces

There is no configurable target for the Can module. The Can module always reports
to CanIf module.

57 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

9 Sequence diagrams

9.1 Interaction between Can and CanIf module

For sequence diagrams see the CanIf module Specification [5].
There are described the sequences for Transmission, Reception and Error Handling.

9.2 Wakeup sequence

For Wakeup sequence diagrams refer to Specification of ECU State Manager [7].

58 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification Chapter 10.1 describes fundamentals. It also
specifies a template (table) you shall use for the parameter specification. We intend
to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Can
module.

Chapter 10.3 specifies published information of the Can module.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

59 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

- all configuration parameters are kept in containers.

- (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:

- the general section

- the configuration parameter section

- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

x

Loadable – the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

L

Multiple – the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

M

-- The configuration parameter shall never be of configuration class Post Build.

60 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

The described parameters are input for the Can module configurator.

CAN022: The code configuration of the Can module is CAN controller specific. If the
CAN controller is sited on-chip, the code generation tool for the Can module is
µController specific. If the CAN controller is an external device, the generation tool
must not be µController specific.

CAN047: The configuration data shall be human readable.

CAN024: The valid values that can be configured are hardware dependent.
Therefore the rules and constraints can't be given in the standard. The configuration
tool is responsible to do a static configuration checking, also regarding dependencies
between modules (i.e. Port driver, MCU driver etc.)

10.2.1 Variants

The Can module provides two variants of configuration sets:

CAN220: VARIANT-PRE-COMPILE: Only pre-compile configuration parameters.

CAN221: VARIANT-POST-BUILD: Mix of pre compile- and post build time
configuration parameters.

61 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Can :EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = *

CanFilterMask :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanHardwareObject :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanController :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanGeneral :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

CanFilterMaskRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

CanControllerRef :
EcucReferenceDef

+container

CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

+container +subContainer
+subContainer

+destination +reference

+reference+subContainer +subContainer

CanControllerBaudrateConfig :
+destinationEcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

Figure 10-1: Can Module Configuration Layout

62 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CanController :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanControllerActivation :
EcucBooleanParamDef

CanControllerId :
EcucIntegerParamDef

max = 255
min = 0
symbolicNameValue = true
lowerMultiplicity = 1
upperMultipl icity = 1

CanFilterMask :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

Can :EcucModuleDef

lowerMultiplicity = 0
upperMultipl icity = *

CanRxProcessing :
EcucEnumerationParamDef

INTERRUPT :
EcucEnumerationLiteralDef

POLLING :
EcucEnumerationLiteralDef

CanTxProcessing :
EcucEnumerationParamDef

CanWakeupProcessing :
EcucEnumerationParamDef

CanBusoffProcessing :
EcucEnumerationParamDef

CanConfigSet :
+container EcucParamConfContainerDef

multipleConfigurationContainer = true

+subContainer

CanCpuClockRef :
EcucReferenceDef

CanControllerBaseAddress :
EcucIntegerParamDef

max = 4294967295
min = 0

McuClockReferencePoint :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

(from MCU)

CanWakeupSourceRef :
EcucSymbolicNameReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

CanWakeupSupport :
EcucBooleanParamDef

CanControllerBaudrateConfig :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

EcuMWakeupSource :+parameter
+destination+reference EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

(from EcuM)

+parameter
+destination+reference

+parameter

+subContainer

+parameter

+subContainer

+literal
+parameter

+literal

+literal
+parameter

+literal

+literal

+literal

+literal

+parameter

+literal

+parameter

Figure 10-2: Can Controller Configuration Layout

63 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CanControllerBaudrateConfig :
CanControllerBaudRate :EcucParamConfContainerDef

CanControllerSeg2 :
EcucIntegerParamDef

max = 255
min = 0

CanControllerSeg1 :
EcucIntegerParamDef

max = 255
min = 0

CanControllerPropSeg :
EcucIntegerParamDef

max = 255
min = 0

EcucIntegerParamDef

max = 2000
min = 0

+parameter

lowerMultiplicity = 1
upperMultiplicity = *

+parameter

+parameter

+parameter

CanControllerSyncJumpWidth :
+parameter

EcucIntegerParamDef

max = 255
min = 0

Figure 10-3: Can Controller Baud Rate Configuration Layout

64 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Can :EcucModuleDef

lowerMultiplicity = 0
upperMultipl icity = *

CanGeneral :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1 CanHardwareCancellation :

EcucBooleanParamDef

CanTimeoutDuration :
EcucFloatParamDef

max = 65.535
min = 0.001

CanMultiplexedTransmission :
EcucBooleanParamDef

CanDevErrorDetection :
EcucBooleanParamDef

CanVersionInfoApi :
EcucBooleanParamDef

CanIndex :EcucIntegerParamDef

max = 255
min = 0

CanMainFunctionReadPeriod :
EcucFloatParamDef

max = 65.535
min = 0.001
upperMultiplicity = 1
lowerMultipl icity = 0

CanMainFunctionWritePeriod :
EcucFloatParamDef

max = 65.535
min = 0.001
upperMultiplicity = 1
lowerMultipl icity = 0

CanMainFunctionBusoffPeriod :
EcucFloatParamDef

max = 65.535
min = 0.001
upperMultiplicity = 1
lowerMultipl icity = 0

CanMainFunctionWakeupPeriod :
EcucFloatParamDef

max = 65.535
min = 0.001
upperMultiplicity = 1
lowerMultipl icity = 0

CanMainFunctionModePeriod :
EcucFloatParamDef

max = 65.535
min = 0.001

CanIdenticalIdCancellation :
EcucBooleanParamDef

+container

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10-4: Can General Configuration Layout

65 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CanController :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanFilterMask :
EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

CanFilterMaskValue :
EcucIntegerParamDef

max = 4294967295
min = 0

Figure 10-5: Can Filter Mask Configuration Layout

66 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CanHardwareObject :EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanObjectType :
EcucEnumerationParamDef

CanIdValue :
EcucIntegerParamDef

max = 4294967295
min = 0

CanIdType :EcucEnumerationParamDef

TRANSMIT :
EcucEnumerationLiteralDef

RECEIVE :
EcucEnumerationLiteralDef

Can :EcucModuleDef

CanObjectId :
EcucIntegerParamDef

max = 65535
min = 0
symbolicNameValue = true
lowerMultiplicity = 1
upperMultiplicity = 1

STANDARD :
EcucEnumerationLiteralDef

EXTENDED :
EcucEnumerationLiteralDef

MIXED :
EcucEnumerationLiteralDef

CanFilterMaskRef :
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

CanFilterMask :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

lowerMultiplicity = 0
upperMultiplicity = *

CanControllerRef :
EcucReferenceDef

CanController :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

CanConfigSet :
EcucParamConfContainerDef

multipleConfigurationContainer = true

CanHandleType :
EcucEnumerationParamDef

BASIC :
EcucEnumerationLiteralDef

FULL :
EcucEnumerationLiteralDef

+literal+literal +literal +literal

+container

+parameter +parameter

+subContainer +parameter

+reference +parameter+reference
+parameter

+literal

+destination

+destination

+subContainer

+literal

+literal

Figure 10-6: Can Hardware Object Configuration Layout

67 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

10.2.2 Can

Can Module Name
This container holds the configuration of a single
CAN Driver.

Module Description

Included Containers
Container
Name

Multiplicity Scope / Dependency

CanConfigSe
t

1 This is the multiple configuration set container for CAN Driver

CanGeneral 1 This container contains the parameters related each CAN Driver Unit.

10.2.3 CanGeneral

SWS Item CAN328_Conf :
Container Name CanGeneral{CanDriverGeneralConfiguration}

This container contains the parameters related each CAN Driver Unit. Description
Configuration Parameters

SWS Item CAN064_Conf :
N CanDevErrorDetection {CAN_DEV_ERROR_DETECT} ame

Switches the Development Error Detection and Notification ON
or OFF.

Description

1 Multiplicity
EcucBooleanParamDef Type
-- Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time
scope: Can module Scope / Dependency

CAN069_Conf : SWS Item
CanHardwareCancellation {CAN_HW_TRANSMIT_CANCELLATION}N ame
Specifies if hardware cancellation shall be supported.ON or OFF Description
1 Multiplicity
EcucBooleanParamDef Type
-- Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time
scope: Can module, CanIf module
dependency: CanIf module is configured to support hardware
cancellation

Scope / Dependency

SWS Item CAN378_Conf :
N ame CanIdenticalIdCancellation {CAN_IDENTICAL_ID_CANCELLATION}

Enables/disables cancellation of pending PDUs with identical ID. Description
1 Multiplicity

Type EcucBooleanParamDef
68 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

SWS Item CAN320_Conf :
N ame CanIndex
Description Specifies the InstanceId of this module instance. If

only one instance is present it shall have the Id 0.
1 Multiplicity

Type EcucIntegerParamDef
Range 0 .. 255

-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN355_Conf :
N CanMainFunctionBusoffPeriod ame
Description This parameter describes the period for cyclic call to

Can_MainFunction_Busoff. Unit is seconds.
Multiplicity 0..1
Type EcucFloatParamDef

0.0010 .. 65.535 Range
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN376_Conf :

CanMainFunctionModePeriod N ame
Description This parameter describes the period for cyclic call to

Can_MainFunction_Mode. Unit is seconds.
1 Multiplicity
EcucFloatParamDef Type

Range 0.0010 .. 65.535
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN356_Conf :

CanMainFunctionReadPeriod N ame
Description This parameter describes the period for cyclic call to

Can_MainFunction_Read. Unit is seconds.
0..1 Multiplicity
EcucFloatParamDef Type

Range 0.0010 .. 65.535
Default value --

Pre-compile time X All Variants ConfigurationClass
Link time --

69 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Post-build time --
Scope / Dependency

SWS Item CAN357_Conf :

CanMainFunctionWakeupPeriod N ame
Description This parameter describes the period for cyclic call to

Can_MainFunction_Wakeup. Unit is seconds.
0..1 Multiplicity
EcucFloatParamDef Type

Range 0.0010 .. 65.535
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN358_Conf :

CanMainFunctionWritePeriod N ame
Description This parameter describes the period for cyclic call to

Can_MainFunction_Write. Unit is seconds.
0..1 Multiplicity
EcucFloatParamDef Type

Range 0.0010 .. 65.535
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN095_Conf :

CanMultiplexedTransmission
{CAN_MULTIPLEXED_TRANSMISSION}

N ame

Description Specifies if multiplexed transmission shall be supported.ON or OFF
1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Can module, CanIf module

dependency: CAN Hardware Unit supports multiplexed transmission

SWS Item CAN113_Conf :
N CanTimeoutDuration {CAN_TIMEOUT_DURATION} ame
Description Specifies the maximum time for blocking function until a

timeout is detected. Unit is seconds.
Multiplicity 1
Type EcucFloatParamDef

0.0010 .. 65.535 Range
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: Can module

70 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

SWS Item CAN106_Conf :
N CanVersionInfoApi {CAN_VERSION_INFO_API} ame
Description Switches the Can_GetVersionInfo() API ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef

-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

SWS Item CAN430_Conf :
N CanSupportTTCANRef ame
Description The parameter refers to CanIfSupportTTCAN parameter

in the CAN Interface Module configuration. The
CanIfSupportTTCAN parameter defines whether TTCAN
is supported.

Multiplicity 1
Type Reference to [CanIfPrivateConfiguration]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.4 CanController

SWS Item CAN354_Conf :
Container Name CanController{CanController}

This container contains the configuration parameters of the CAN
controller(s).

Description

Configuration Parameters

SWS Item CAN314_Conf :

CanBusoffProcessing {CAN_BUSOFF_PROCESSING} N ame
Enables / disables API Can_MainFunction_BusOff() for
handling busoff events in polling mode.

Description

1 Multiplicity
EcucEnumerationParamDef Type
INTERRUPT Interrupt Mode of operation.Range
POLLING Polling Mode of operation.
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

SWS Item CAN315_Conf :
N ame CanControllerActivation {CAN_CONTROLLER_ACTIVATION}
Description Defines if a CAN controller is used in the configuration.
Multiplicity 1
Type EcucBooleanParamDef
Default value --

71 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: Can module Scope / Dependency

CAN382_Conf : SWS Item
CanControllerBaseAddress
{CAN_CONTROLLER_BASE_ADDRESS}

N ame

Specifies the CAN controller base address. Description
Multiplicity 1

EcucIntegerParamDef Type
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
-- Link time

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN316_Conf :
N CanControllerId {CAN_DRIVER_CONTROLLER_ID} ame
Description This parameter provides the controller ID which is unique in a

given CAN Driver. The value for this parameter starts with 0 and
continue without any gaps.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this

parameter)
0 .. 255 Range

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN317_Conf :

CanRxProcessing {CAN_RX_PROCESSING} N ame
Description Enables / disables API Can_MainFunction_Read() for

handling PDU reception events in polling mode.
1 Multiplicity

Type EcucEnumerationParamDef
INTERRUPT Interrupt Mode of

operation.
Range

POLLING Polling Mode of
operation.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN318_Conf :
N ame CanTxProcessing {CAN_TX_PROCESSING}
Description Enables / disables API Can_MainFunction_Write() for

handling PDU transmission events in polling mode.
Multiplicity 1
Type EcucEnumerationParamDef
Range INTERRUPT Interrupt Mode of

operation.
72 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

POLLING Polling Mode of
operation.

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time
Scope / Dependency

CAN319_Conf : SWS Item
N ame CanWakeupProcessing {CAN_WAKEUP_PROCESSING}
Description Enables / disables API Can_MainFunction_Wakeup() for

handling wakeup events in polling mode.
1 Multiplicity
EcucEnumerationParamDef Type
INTERRUPT Interrupt Mode of operation.Range
POLLING Polling Mode of operation.

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time
Scope / Dependency

CAN330_Conf : SWS Item
N ame CanWakeupSupport {CAN_WAKEUP_SUPPORT}
Description CAN driver support for wakeup over CAN Bus.

1 Multiplicity
EcucBooleanParamDef Type
-- Default value

X Pre-compile time All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

SWS Item CAN313_Conf :

CanCpuClockRef {CAN_CPU_CLOCK_REFERENCE} N ame
Reference to the CPU clock configuration, which is set in the MCU
driver configuration

Description

Multiplicity 1
Type Reference to [McuClockReferencePoint]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item CAN359_Conf :
N ame CanWakeupSourceRef
Description This parameter contains a reference to the Wakeup Source

for this controller as defined in the ECU State Manager.
Implementation Type: reference to
EcuM_WakeupSourceType

Multiplicity 0..1
Type Reference to [EcuMWakeupSource]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Can module

73 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Included Containers
Container Name Multiplicity Scope / Dependency
CanControllerBaudrateConfi
g

1..*
This container contains bit timing related configuration
parameters of the CAN controller(s).

CanFilterMask 0..*
This container contains the configuration (parameters) of the
CAN Filter Mask(s).

CanTTController 0..1

This container is only included and valid if TTCAN SWS is
used and TTCAN is enabled. This container contains the
configuration parameters of the TTCAN controller(s) (which
are needed in addition to the configuration parameters of the
CAN controller(s)). CanTTController is only included, if the
controller supports TTCAN.

10.2.5 CanControllerBaudrateConfig

SWS Item CAN387_Conf :
Container Name CanControllerBaudrateConfig{CanControllerBaudrateConfig}

This container contains bit timing related configuration parameters of the CAN
controller(s).

Description

Configuration Parameters

SWS Item CAN005_Conf :

CanControllerBaudRate {CAN_CONTROLLER_BAUD_RATE} N ame
Description Specifies the baudrate of the controller in kbps.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 2000
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

CAN073_Conf : SWS Item
N ame CanControllerPropSeg {CAN_CONTROLLER_PROP_SEG}
Description Specifies propagation delay in time quantas.

1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 255
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Can module Scope / Dependency

CAN074_Conf : SWS Item
CanControllerSeg1 {CAN_CONTROLLER_PHASE_SEG1} N ame

Description Specifies phase segment 1 in time quantas.
1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 255
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

74 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module

SWS Item CAN075_Conf :

CanControllerSeg2 {CAN_CONTROLLER_PHASE_SEG2} N ame
Description Specifies phase segment 2 in time quantas.

1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 255
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module

SWS Item CAN383_Conf :

CanControllerSyncJumpWidth {CAN_CONTROLLER_SJW} N ame
Description Specifies the synchronization jump width for the controller in

time quantas.
1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 255
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.6 CanHardwareObject

SWS Item CAN324_Conf :
Container Name CanHardwareObject{CanHardwareObject}

This container contains the configuration (parameters) of CAN Hardware
Objects.

Description

Configuration Parameters

SWS Item CAN323_Conf :
N ame CanHandleType {CAN_HANDLE_TYPE}
Description Specifies the type (Full-CAN or Basic-CAN) of a hardware

object.
Multiplicity 1
Type EcucEnumerationParamDef

BASIC For several L-PDUs are hadled by
the hardware object

Range

FULL For only one L-PDU (identifier) is
handled by the hardware object

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
Scope / Dependency scope: CanIf module
75 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

dependency: This configuration element is used as
information for the CAN Interface only. The relevant CAN
driver configuration is done with the filter mask and
identifier.

SWS Item CAN065_Conf :
N ame CanIdType {CAN_ID_TYPE}

Specifies whether the IdValue is of type - standard identifier
- extended identifier - mixed mode ImplementationType:
Can_IdType

Description

Multiplicity 1
Type EcucEnumerationParamDef

EXTENDED All the CANIDs are of type
extended only (29 bit).

MIXED The type of CANIDs can be
both Standard or Extended.

Range

STANDARD All the CANIDs are of type
standard only (11bit).
X VARIANT-PRE-

COMPILE
Pre-compile time

Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Can module, CanIf module Scope / Dependency

CAN325_Conf : SWS Item

N ame CanIdValue {CAN_ID_VALUE}
Specifies (together with the filter mask) the identifiers
range that passes the hardware filter.

Description

1 Multiplicity
Type EcucIntegerParamDef
Range 0 .. 4294967295

-- Default value
Pre-compile time X VARIANT-PRE-

COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: Can module, CanIf module Scope / Dependency

SWS Item CAN326_Conf :

CanObjectId {CAN_OBJECT_HANDLE_ID} N ame
Holds the handle ID of HRH or HTH. The value of this
parameter is unique in a given CAN Driver, and it should start
with 0 and continue without any gaps. The HRH and HTH Ids
are defined under two different name-spaces. Example:
HRH0-0, HRH1-1, HTH0-2, HTH1-3

Description

1 Multiplicity
EcucIntegerParamDef (Symbolic Name generated for this
parameter)

Type

Range 0 .. 65535
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN327_Conf :
N ame CanObjectType {CAN_OBJECT_TYPE}
76 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

Description Specifies if the HardwareObject is used as Transmit or as
Receive object
1 Multiplicity

Type EcucEnumerationParamDef
RECEIVE Receive HOH Range
TRANSMIT Transmit HOH
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Can module, CanIf module

SWS Item CAN322_Conf :
N ame CanControllerRef {CAN_CONTROLLER_REFERENCE}
Description Reference to CAN Controller to which the HOH is associated to.
Multiplicity 1
Type Reference to [CanController]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item CAN321_Conf :
N ame CanFilterMaskRef {CAN_MASK_REFERENCE}

Reference to the filter mask that is used for hardware filtering
together with the CAN_ID_VALUE

Description

0..1 Multiplicity
Type Reference to [CanFilterMask]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

This container is only included and valid if TTCAN SWS is
used and TTCAN is enabled. This container contains the
configuration (parameters) of TTCAN triggers for Hardware
Objects, which are additional to the configuration
(parameters) of CAN Hardware Objects.
CanTTHardwareObjectTrigger is only included, if the
controller supports TTCAN.

CanTTHardwareObjectTrigge
r

0..*

10.2.7 CanFilterMask

CAN351_Conf : SWS Item
CanFilterMask{CanFilterMask} Container Name
This container contains the configuration (parameters) of the CAN Filter
Mask(s).

Description

Configuration Parameters

SWS Item CAN066_Conf :
N CanFilterMaskValue {CAN_FILTER_MASK_VALUE} ame
Description Describes a mask for hardware-based filtering of CAN
77 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

identifiers. The CAN identifiers of incoming messages are
masked with the appropriate CanFilterMaskValue. Bits holding
a 0 mean don't care, i.e. do not compare the message's
identifier in the respective bit position. The mask shall be build
by filling with leading 0. In case of CanIdType EXTENDED or
MIXED a 29 bit mask shall be build. In case of CanIdType
STANDARD a 11 bit mask shall be build

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: Can module, CanIf module
dependency: The filter mask settings must be known by the
CanIf configuration for optimization of the SW filters.

Scope / Dependency

No Included Containers

10.2.8 CanConfigSet

SWS Item CAN343_Conf :
Container Name CanConfigSet [Multi Config Container]

Description
This is the multiple configuration set container for CAN
Driver

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency

CanController 1..*
This container contains the configuration parameters of the CAN
controller(s).

CanHardwareObjec
t

1..*
This container contains the configuration (parameters) of CAN
Hardware Objects.

78 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

10.3 Published Information

[CAN001_PI] The standardized common published parameters as required by
BSW00402 in the SRS General on Basic Software Modules [2] shall be published
within the header file of this module and need to be provided in the BSW Module
Description. The according module abbreviation can be found in the List of Basic
Software Modules [16].

Additional module-specific published parameters are listed below if applicable.

79 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

11 Changes to Release 3

11.1 Deleted SWS Items

SWS Item Rationale
CAN248 Requirement was wrong. CAN174 contains the correct description.

Requirement changed into a implementation hint, because it is not a
requirement for the Can module.

CAN241

CAN292, CAN293 Requirement not necessary for these IR functions.
CAN029, CAN081,
CAN295, CAN296,
CAN297, CAN298,
CAN092, CAN093

Requirements removed, because Can module does not report production
errors to DEM.

CAN063
Requirement was erroneously re-implemented caused by a wrong
metamodel.

CAN247, CAN249
Requirement changed into implementation hint, because these are
requirements to the ECU State Manager.

CAN301
Requirement changed into implementation hint, because it is not
requirement for the Can module.

CAN054, CAN055
General SPAL requirements BSW12058 and BSW12059 does not exist
anymore.
Requirement changed into implementation hint, because it is not a
requirement to the Can module.

CAN243, CAN421

CAN176, CAN192,
CAN201

Requirement removed, because upper layer modules perform timeout
handling.

11.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

CAN013 CAN396 CAN013 was lost by document improvement
process, is taken back to document and
reframed.

CANxxx CANxxx_Conf Item name space of all configuration parameters
changed to CANxxx_Conf to avoid double
defines.

CAN101 CAN402, CAN403 Item split into two items to improve
understanding of multiplexed transmission.

11.3 Changed SWS Items

SWS Item Rationale
CAN049 Rewritten to improve understanding.
CAN262, CAN264,
CAN266, CAN268

Rewritten to support asynchronous state transition concept.

CAN360, CAN361
Can_Cbk_CheckWakeup renamed to Can_CheckWakeup, because it is
not a callback-function. Return type changed from Std_ReturnType to
Can_Type.

CAN230
Meaning of return value changed to support asynchronous state transition
concept.

CAN330_Conf Parameter moved from CanGeneral to CanController container.
CAN314_Conf,
CAN317_Conf,

Scope and dependency to CanIf module removed. Type changed from
derivedEnumerationParamDef to EnumerationParamDef, because there is

80 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

CAN318_Conf,
CAN319_Conf

no dependency to CanIf module.

CAN257, CAN258 Requirement reframed to improve understanding
CAN355_Conf,
CAN356_Conf,
CAN357_Conf,
CAN358_Conf

Multiplicity changed to 0..1, because parameters are not required when
interrupt mode is configured.

CAN321_Conf
Multiplicity changed to 0..1, because CAN Filter mask is not required for
transmit objects.

CAN066_Conf Rewritten to improve understanding
CAN036 Rewritten to be a requirement of Can module.
CAN281 Rewritten to support use of system services

CAN220, CAN221
Rewritten to improve understanding of VARIANT-PRE-COMPILE and
VARIANT-POST-BUILD.

CAN286, CAN215 Rewritten to improve understanding of transmit cancellation.
CAN076 Rewritten to improve understanding of multiplexed transmission.
CAN258, CAN267,
CAN290

Rewritten to support logical sleep mode.

CAN217, CAN218,
CAN219

Missing return value CAN_NOT_OK added in case development error is
detected.

CAN060 Rewritten to improve understanding.
CAN286, CAN400,
CAN215

Items changed to support configuration of cancellation functionality.

11.4 Added SWS Items

SWS Item Rationale
Id number of CanHandleType changed from CAN324_Conf to
CAN323_Conf, because CAN324_Conf was given twice.

CAN323_Conf

CAN365 Item added to support debugging concept.
CAN366 Item added to support debugging concept.
CAN367 Item added to support debugging concept.
CAN368 Item added to support asynchronous state transition concept.
CAN369 Item added to support asynchronous state transition concept.
CAN370 Item added to support asynchronous state transition concept.
CAN371 Item added to support asynchronous state transition concept.
CAN372 Item added to support asynchronous state transition concept.
CAN373 Item added to support asynchronous state transition concept.
CAN376_Conf Item added to support asynchronous state transition concept.
CAN379 Item added to support asynchronous state transition concept.
CAN398 Item added to support asynchronous state transition concept.

Item added to support mapping between CAN controller ID and CAN
controller hardware.

CAN382_Conf

CAN383_Conf Item added to support CAN controller synchronization jump width.
CAN384 Item added to support asynchronous state transition concept.
CAN385, CAN386 Item added to support naming convention for multiple CAN Driver.
CAN387_Conf Item added to multiple CAN configuration sets.
CAN388, CAN389,
CAN390, CAN391,
CAN392, CAN393,
CAN394, CAN397

Items added to describe header file structure.

CAN395 Item added to support CAN_E_DATALOST development error detection.
CAN399, CAN400 Item added to support transmit cancellation.
CAN401 Item added to support multiplexed transmission.
CAN404, CAN405 Item added to support logical sleep mode.
CAN236, CAN237 Item added to limit the support of remote frames.
CAN016 Item added to support [BSW01051] Transmit Confirmation

81 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

Specification of CAN Driver
 V3.0.0

R4.0 Rev 1

82 of 82 Document ID 011: AUTOSAR_SWS_CANDriver
 - AUTOSAR confidential -

CAN406
Item added to support [BSW00435] Module Header File Structure for the
Basic Software Scheduler

CAN407 Item added to support [BSW12461] Responsibility for register initialization
CAN408, CAN409,
CAN410, CAN411,
CAN412

Item added to improve description of invalid state transitions.

CAN413, CAN414,
CAN415, CAN416,
CAN417

Formal item IDs given to the types defined in section 8.2.

CAN418 CAN037 split into atomic SWS items: CAN037 and CAN418
CAN419, CAN420 CAN033 split into atomic SWS items: CAN033, CAN419 and CAN420
CAN422 CAN260 split into atomic SWS items: CAN260 and CAN422
CAN423 CAN279 split into atomic SWS items: CAN279 and CAN423
CAN424 CAN027 split into atomic SWS items: CAN027 and CAN424
CAN425 CAN196 split into atomic SWS items: CAN196 and CAN425
CAN426 CAN197 split into atomic SWS items: CAN197 and CAN426
CAN427, CAN428 Plain text converted into SWS item.
CAN429 Item added for new Can_HwHandle_Type
CAN430_Conf Item added to support TTCAN.

CAN431
Item added to support [BSW00450] Main Function Processing for Un-
Initialized Modules.

CAN378_Conf,
CAN432, CAN433,
CAN434

Items added to support configuration of cancellation functionality.

CAN001_PI Rework of Published Information

