G N
b
D

v,

3

\
N
Y"" R ‘

- e, .‘\

g ,
Ve
3 ,‘ ,:{4_‘-7‘5 : - y

. g S

&

Automotive Functional Safety %

IVEUIRER S

TUV Rheinland
Industrial Services

. B Q000 _ ng -uwiE
~/=t:IjJﬁE§$3kik%:}ﬁ urml.org.cn

1 \—

dll

Functional
Safety
Security

SIRARBEAL
- WERRERASY
PRSP

5 ®
TUVRheinland

www;ti; \g.-'é:om“
ID 060000000

ASPICE

- BzRE

* TE’-@ J wWETA’:Li

. + W N ol
INEZSEE . (SESATOUNA

i }—;_‘zl:lﬁl:l-LAiIE T T . AS PIC E'I«AiIE

R - £18
urml.arg.cn

Software architecture design

Objective of this Lecture

1.
2
3.
4
5

Reasonable classification of function groups

Reasonable distribution of function blocks

Figure out different ASIL level function blocks

Consider 1SO26262 requirements at software architecture level

Work out safety mechanism at software architecture level

PO@O0_ *up -BiE
= © uml.org.on

Q@09 _ %% -2
Lecture Agenda ekt

e Software Architecture Introduction

e Software Architecture requirements from 1SO26262

e Data flow analysis and Control flow analysis

e Safety Critical Analysis(SCA)

e ASIL Decomposition

e Coexistence of Software Components

e Interference between Software Components

e Dependent Failure Analysis

e Software Safety Analysis

e Mechanism for error detection and handling at Software architecture Level

e Verification of the software architectural design

What’s Software architecture? L e Oyt

Static aspect

Dynamic aspect

- :) Q009 xuz -EE
Current Problems in Automotive Domain um'-mg-cn

NGRSV © No base for software change impact analysis
architecture

» Wrong ASIL decomposition, e.g. ASIL-SWC receive
the safety related input data from QM-SWC

Incomplete g Wrong freedom of interference
Interface

» No base for software safety analysis]

« All SWC are ASIL x, over-design, over engineering.

 Tips: balance your efforts on SW architecture phase

Rough :
Architecture and SW unit phase

. . O o, JB .
Notations for Software architecture —7900%0 Jnh o

U1SO 26262-8, table 1

la | Informal notations ++ ++ + +
Figure
1b | Semi-formal notations + ++ ++ ++
s N — SEIF =RAVE=—2\ ——
« ZHEBFTEEEIEN BRIENENATE
Task Safety Task
+id :int + NoOfDiags : Int
+ priority : int + ExTime : byte
+ preemptive: bool < —— + ExSafApp() : boal
+ execute():bool + ExDiag() : bool
+ stop():bool

UML class diagram

. . . . CO®ad w -8
Principles for software architecture design ~FP9%0 e

Methods ASIL
A|l B | C|D

la [Hierarchical structure of software components ++ | ++ | ++ | ++
1b |Restricted size of software componentss: ++ | ++ | ++ | ++
1c |Restricted size of interfaces= + |+ |+ |+
1d [High cohesion within each software componenty + | ++ | ++ |+
le |Restricted coupling between software componentsa b.c + | ++ | ++ |+
1f |Appropriate scheduling properties ++ | ++ | ++ | ++
1g |Restricted use of interruptsa ¢ + | + | + | ++
a Inmethods 1b, 1c, 1e and 1g "restricted" means to minimize in balance with other design considerations.
b Methods 1d and le can, for example, be achieved by separation of concerns which refers to the ability to identify,
encapsulate, and manipulate those parts of software that are relevant to a particular concept, goal, task, or purpose.
¢ Method le addresses the limitation of the external coupling of software components.
d Any interrupts used have to be priority-based.

p— CO®ad w .8
ASIL Decomposition 79090 Sename

Decomposition of ASIL D Decomposition of ASIL C

[ASIIl_D } [ASILC }

|
[ASIZ C(DH ASILA(D)}[SA.L } [A5|z B(Cﬂ{ASlZA(Cﬂ [5.4.11 }

'LASIL B(D) ! also possible

or Decomposition of ASIL B

[ASILD } [ASILB }

I I
v v v v v v

[ASlLB(Dﬂ{ASlLB(Dﬁ gji [ASILA(B)}+[ASILA(B)} [5.4.11]

Precondition of ASIL Decomposition:
* Redundant
* Independent

o, o 2 O0a0Q w -8
Wrong Decomposition Implementation 1900 M

Signal SWC-1 Signal SWC-1
Processing QM (D) Processing QM (D)

N l

SWC-2
ASIL D (D)

SWC-2
ASIL D (D)

- For example the SWC-2 receives the safety related input signals
from the QM Software Unit.

» Corruption of the input signals by the QM (D) unit could lead
to a common cause fault of SWC-1 and SCW-2.

» Possible impact on safety!

11

OnC . . CO®ad w .8
Criticality Analysis 79090 Sename

1. Implicit safety goal and safety requirement
2. Clear software architecture
3. ldentify the software components related to safety goal

4. Classify the software components relevance to the safety path

Motivation for interference safety and non-safe.29eo%, ««x =
software

Interrupts

RAM
Global
Variables

that there is no negative impact on the safe program, data or operations by non-safe

If safe and non-safe software have access to the same resources, it must be guaranteed
software.

Freedom from interference
e

. . C®aO? w .8
Dependent Failure Analysis B Ll Yt

Independence is threatened by common cause failures and cascading
failures, while freedom from interference is only threatened by cascading
failures

Both systematic failures and random hardware failures have the potential to
be dependent failures

R - £18
urml.arg.cn

Safety Analysis

. PO@O% _ wnrg -#iE
Safety Analysis can: e

1. Identify or confirm the safety-related parts of software

2. Support the specification and verify the efficiency of the safety
mechanisms

3. Support the analysis of Interference and dependent failure between
software components

Process of SWFMEA ik

1. Have a clear idea of the function of SW
2. Classify the SW components according to the function of SW
3. Figure out the failure modes, corresponding effect and cause

4. Check whether the cause is covered by current test action or safety mechanism

0O _ wng -&E

Mechanisms for error detection at SW architectu o o

Table 4 — Mechanisms for error detection at the software architectural level

Methods Aslk

A B C D
1a |Range checks of input and output data ++ ++ ++ ++
1b | Plausibility check?® + + + 34
1c | Detection of data errorsP - + + +
1d | External monitoring facility© o + + ++
1e | Control flow monitoring o % g oore
1f | Diverse software design o o + ++

@ Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing signals from
different sources.

b Types of methods that may be used to detect data errors include error detecting codes and multiple data storage.

¢ An external monitoring facility can be, for example, an ASIC or another software element performing a watchdog function.

OO0 wnw® -&E

Mechanisms for error handling at SW architectummg.m

Table 5 — Mechanisms for error handling at the software architectural level

ASIL
Methods
A B C D
1a | Static recovery mechanism? - + - +
1b | Graceful degradation® + + g ++
1¢c | Independent parallel redundancy® o} o} + ++
1d | Correcting codes for data + + + +

@ Static recovery mechanisms can include the use of recovery blocks, backward recovery, forward recovery and recovery through
repetition.

b Graceful degradation at the software level refers to prioritizing functions to minimize the adverse effects of potential failures on
functional safety.

¢ Independent parallel redundancy can be realized as dissimilar software in each parallel path.

QO _ ke -#@

Verification of the software architectural design 29050 he

Table 6 — Methods for the verification of the software architectural design

Methods AsIL

A B C D
1a | Walk-through of the design? ++ + o} o}
1b | Inspection of the design@ + ++ ++ +F
1c | Simulation of dynamic parts of the design® # ¥ & 2
1d | Prototype generation o} o} ¥ ++
1e | Formal verification 0 o} F +
1f | Control flow analysis® + + ++ ++
1g |Data flow analysis® + + F ++
@ |nthe case of model-based development these methods can be applied to the model.
b Method 1c requires the usage of executable models for the dynamic parts of the software architecture.
¢ Control and data flow analysis may be limited to safety-related components and their interfaces.

