
 Jenkins User Conference San Francisco, Oct 2nd 2011

Continuous Deployment with
Gerrit and Jenkins

R. Tyler Croy
Lookout, Inc.

http://mylookout.com/about/jobs

 Jenkins User Conference San Francisco, Oct 2nd 2011

Who is this guy?

 Jenkins User Conference San Francisco, Oct 2nd 2011

I work here

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 4

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 5

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 6

 Jenkins User Conference San Francisco, Oct 2nd 2011

● Brief overview of Continuous Deployment

● Meet Gerrit

● A Basic Commit-to-Deploy Pipeline

● Multiple branches with Gerrit + Jenkins

● The Human Factor

● Pro-tips/best practices

 Jenkins User Conference San Francisco, Oct 2nd 2011

Continuous Deployment

 Jenkins User Conference San Francisco, Oct 2nd 2011

What it isn't

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 10

 Jenkins User Conference San Francisco, Oct 2nd 2011

What it is

 Jenkins User Conference San Francisco, Oct 2nd 2011

Who is using it?

 Jenkins User Conference San Francisco, Oct 2nd 2011

Why Code Review?

 Jenkins User Conference San Francisco, Oct 2nd 2011

Why Code Review?

 Jenkins User Conference San Francisco, Oct 2nd 2011

Meet Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 16

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 17

As a code review tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 18

As a code review tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a Git repository server

~ % git checkout -b change-4

Switched to a new branch 'change-4'

~ % git fetch gerrit refs/changes/04/4/1

From gerrit:ttyclock

 * branch refs/changes/04/4/1 -> FETCH_HEAD

~ % git cherry-pick FETCH_HEAD

Finished one cherry-pick.

[change-4 1d4351c] Greatly improve the stability of tty-
clock

 1 files changed, 3 insertions(+), 0 deletions(-)

~ %

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

 Jenkins User Conference San Francisco, Oct 2nd 2011

Code Review “Points”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Code Review “Points”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Changes in Gerrit

Change 123

Patchset 1

Patchset 2

Commit 41dbe5

Commit cdeb34

 Jenkins User Conference San Francisco, Oct 2nd 2011

Changes in Gerrit

Change 123

Patchset 1

Patchset 2

Commit 41dbe5

Commit cdeb34

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 28

 Jenkins User Conference San Francisco, Oct 2nd 2011

Developer Workflow

 Jenkins User Conference San Francisco, Oct 2nd 2011

The Gerrit Flow

gerrit upstream

dev-adev-b

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch
% git checkout -b topic-branch

work

Push
to

Gerrit
% git push gerrit HEAD:refs/for/master

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch
% git checkout -b topic-branch

work

Push
to

Gerrit
% git push gerrit HEAD:refs/for/master

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

rejected

approved/
submitted

rebased!

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

rejected

approved/
submitted

rebased!

 Jenkins User Conference San Francisco, Oct 2nd 2011

Your development workflow in commands

● git checkout -b local-topic-branch

● work work work
● git rebase -i upstream/master # fix up commits

● git push gerrit HEAD:refs/for/master

● Create new commits based on reviews
● git rebase -i upstream/master # squash up

● git push gerrit HEAD:refs/for/master

 Jenkins User Conference San Francisco, Oct 2nd 2011

REBASE IS SCARY
(but necessary)

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch
% git rebase upstream/master

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch

C

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch

C

% git rebase -i upstream/master

Change-Id: Icde43 Change-Id: I51bdc2

 Jenkins User Conference San Francisco, Oct 2nd 2011

~ % git rebase -i origin/master

pick e59df21 Greatly improve the stability of tty-clock

squash 6c1ffe1 Fix some whitespace

[detached HEAD 785692b] Greatly improve the stability of tty-clock

 1 files changed, 2 insertions(+), 0 deletions(-)

Successfully rebased and updated refs/heads/change-4.

~ %

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

DE

C

upstream/master

local-topic-branch

C

Change-Id: Icde43

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

DE

C

upstream/master

local-topic-branch

C

Change-Id: Icde43

 Jenkins User Conference San Francisco, Oct 2nd 2011

Gerrit Trigger Plugin

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a role account

~ % ssh gerrit gerrit create-account

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 45

gerrit

Jenkins

Streamed events
over SSH

Commands sent
over SSH

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 46

 Jenkins User Conference San Francisco, Oct 2nd 2011

A simple pipeline

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

Flow of changes

Verification
Job

Build Fails!
(-1, Not Verified)

Success!
(+1, Verified)

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

Flow of changes

Verification
Job

Build Fails!
(-1, Not Verified)

Success!
(+1, Verified)

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

gerrit upstream

dev-adev-b

Release
Build

Release
Test

Release
Deploy

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

upstream

Release
Build

Release
Test

Release
Deploy

Downstream Job

Downstream Job

Production machines

rsync/
cap/
scp/
mvn

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

upstream

Release
Build

Release
Test

Release
Deploy

Downstream Job

Downstream Job

Production machines

rsync/
cap/
scp/
mvn

 Jenkins User Conference San Francisco, Oct 2nd 2011

Multiple Branches

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating the branches in Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating the branches in Gerrit

~ % git push gerrit release-1.0

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the developer point of view

~ % git checkout -b relfix –track
upstream/release-1.0

~ % # work work work

~ % git add/commit

~ % git push gerrit HEAD:refs/for/release-1.0

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the Jenkins point of view

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the Jenkins point of view

 Jenkins User Conference San Francisco, Oct 2nd 2011

 Jenkins User Conference San Francisco, Oct 2nd 2011

The Human Factor

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with changes “in review”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

~ % git checkout -b topic-with-17

~ % git fetch gerrit refs/changes/17/17/1

~ % git cherry-pick FETCH_HEAD

~ % # work work commit work work commit

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

C1

A B

C1 D E

Developer 1

Developer 2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

C2

A B

C1 D E

Developer 1

Developer 2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

A B

C1 D E

Upstream

Developer 2

B C2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

~ $ git rebase gerrit/master

First, rewinding head to replay your work on top of it...

Applying: Unused variable

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merging ttyclock.c

CONFLICT (content): Merge conflict in ttyclock.c

Failed to merge in the changes.

Patch failed at 0001 Unused variable

When you have resolved this problem run "git rebase --continue".

If you would prefer to skip this patch, instead run "git rebase
--skip".

To restore the original branch and stop rebasing run "git rebase
--abort".

~ $ git rebase --skip

HEAD is now at edff388 Unused variable

Applying: Local change

~ $

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

A B

D E

Upstream

Developer 2

C2

C2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Picking up changes

A B

C1

A B

C1

Developer 1

Developer 2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Picking up changes

A B

C1

A B

C2

Developer 1

Developer 2

 Jenkins User Conference San Francisco, Oct 2nd 2011

Performing manual verification by QA

 Jenkins User Conference San Francisco, Oct 2nd 2011

Manual verification

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 75

Kick-off deployments with the Promoted
Builds plugin

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 76

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 77

 Jenkins User Conference San Francisco, Oct 2nd 2011

Pro Tips

 Jenkins User Conference San Francisco, Oct 2nd 2011

Use “squash” or “fixup” to condense
changes

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create per-topic/ticket local branches for
clearer isolation of work

 Jenkins User Conference San Francisco, Oct 2nd 2011

Multiple jobs with the same trigger criteria

 Jenkins User Conference San Francisco, Oct 2nd 2011

Investigate the EC2 plugin for burstable
testing capacity

 Jenkins User Conference San Francisco, Oct 2nd 2011

Gotchas and Errata

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 84

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

 Jenkins User Conference San Francisco, Oct 2nd 2011

Thank You To Our Sponsors

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 94

Q&A and Links

● Gerrit: http://code.google.com/p/gerrit
● Gerrit Trigger Plugin:

http://urlenco.de/oyhmac
● These slides (w/ notes):

http://urlenco.de/vhqjl
●

http://code.google.com/p/gerrit
http://urlenco.de/oyhmac
http://urlenco.de/vhqjl
http://code.google.com/p/gerrit
http://urlenco.de/oyhmac
http://urlenco.de/vhqjl

 Jenkins User Conference San Francisco, Oct 2nd 2011

Continuous Deployment with
Gerrit and Jenkins

R. Tyler Croy
Lookout, Inc.

http://mylookout.com/about/jobs

Hello, and welcome to my talk Continuous Deployment
with Gerrit and Jenkins. Unfortunately I have less
than 45 minutes to cover an incredible amount of
material which means I won't be able to really dive
into any demos.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Who is this guy?

Let me start by quickly introducing myself, since some
of you may not know me, or may not know that you
know me.

 Jenkins User Conference San Francisco, Oct 2nd 2011

I work here

I work at Lookout Mobile Security, that's not really
relevant to my talk per se. I'm proud of the work
we've done with Gerrit and Jenkins, much of which
was the inspiration for this talk.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 4

For quite a while I have acted as the voice of the
@jenkinsci twitter account, trying to do some initial
front-line support and evangelism for Jenkins.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 5

I also write for the Jenkins blog, folks new to the
project might not remember the blog titled
“Continuous Blog” which slowly morphed into
“Hudson Labs” and ultimately become the center of
the Jenkins project.

This was my first big “initiative” at trying to participate
in the Jenkins project without needing to write any
nasty Java code :)

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 6

I also work a lot on Jenkins project infrastructure,
managing machines in order to let kohsuke, andrew
and the rest of the developer community focus on
writing all that Java code!

 Jenkins User Conference San Francisco, Oct 2nd 2011

● Brief overview of Continuous Deployment

● Meet Gerrit

● A Basic Commit-to-Deploy Pipeline

● Multiple branches with Gerrit + Jenkins

● The Human Factor

● Pro-tips/best practices

With the introduction out of the way, here's a brief agenda of what I
hope to cover in this talk

Before diving into Gerrit and Jenkins themselves, I'll discuss some of
the core concepts behind Continuous Deployment, to set the
foundation for why Gerrit and Jenkins are critical to making it work.

We'll step through on a quick tour of what Gerrit is exactly

I'll then show you a basic commit-to-deploy pipeline

We'll then cover using multiple branches with Gerrit

Then we'll finish up with: where people fit into the Continuous
Deployment worldview and some pro-tips

 Jenkins User Conference San Francisco, Oct 2nd 2011

Continuous Deployment

So what is Continuous Deployment?

Unfortunately the term suffers a bit from
buzzwordification, so first I'd like to clarify what it is
not

 Jenkins User Conference San Francisco, Oct 2nd 2011

What it isn't

Continuous Deployment doesn't mean developers are
editing Ruby or Python on production machines

It does not mean that changes immediately get
deployed and are tested on your paying userbase

It also doesn't necessitate constant deployment, if you
development mobile applications or desktop
software, you can strive for Continuous Deployment
while not pushing updates to the Android Market (for
example) every single day

Continuous Deployment is a somewhat subjective
term, but wherever it is being adopted, it is about
stability rather than instability

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 10

Continuous Deployment is not something you put on a
roadmap, accomplish, and then you're done.

Rather, it is an ongoing practice of post-mortems,
analysis, and improvement of the way your
organization writes, tests and deploys your product

 Jenkins User Conference San Francisco, Oct 2nd 2011

What it is

In my opinion, the key take away from Continuous
Deployment is that it is about building pipelines that
streamline the entire engineering organization from
development, to QA, to operations

Most shops that talk about “Continuous
Deployment/Delivery” are really talking about
building a series of funnels for changes to go through
and get vetted at every step of the way.

It is a “pattern” (for lack of a better term) of the rigorous
testing of changes closer to the source (I.e the
developer) in a way that prevents regressions from
appearing further down the pipe, affecting more of
the team.

Continuous Deployment is about arriving at stability
faster and with more consistency

 Jenkins User Conference San Francisco, Oct 2nd 2011

Who is using it?

There are a number of big proponents of Continuous
Deployment, these are just a few that I can easily
name off the top of my head because they're so
outspoken about it.

In reality, there are more organizations practicing some
variation or form continuous deployment than you
might realize.

I'm not here to be the final arbiter of what is and is not
Continuous Deployment, I merely wanted to get a
loose understanding of it under our belts before we
continue

 Jenkins User Conference San Francisco, Oct 2nd 2011

Why Code Review?

“Why Code Review?” Where does it fit into Continuous
Deployment?

I believe the two most compelling arguments for code
review come down: to stability and education.

Reviews don't help eliminate syntax or runtime errors
but it does help prevent logic errors and poor
assumptions from creeping into the project.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Why Code Review?

It is one of the best ways I've seen to introduce more of
your team to more parts of the codebase. By passing
code reviews to developers who might be less
familiar with the code you're working on , they then
must wrap their head around it in order to sufficiently
review the changes.

I view code review very much like I view testing in
general: it's difficult for me to make a concise,
empirical argument for it, but it should be considered
part of the foundation for proper software
engineering.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Meet Gerrit

That said, let's meet Gerrit. Like Jenkins is a tool
written in Java that enforces no such Java
requirements on the user. That is to say, it's a useful
tool regardless of what kind of code you're passing
through it; whether it's PHP, Ruby, C, Java, Erlang,
etc.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 16

To be completely honest, Gerrit itself is not much to
look at.

It has a very spartan, but functional interface. Many
consider this more of a feature than it is a bug.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 17

As a code review tool

The first function that Gerrit will serve in your
organization is as a code review tool, which is pretty
easy to wrap your head around.

Once pushing changes to Gerrit, you can add some
reviewers through the web UI

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 18

As a code review tool

Those reviewers will receive an email asking them to
review the change for you.

The tool offers both unified and side-by-side diff views
with inline commenting. Inline commenting creates
“drafts” so you can walk through the entire change,
hitting “Review” at the end in order to submit your
comments, sending the change's author an email.

If you've worked with Review Board or Reitveld, this
should all be very familiar to you

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a Git repository server

~ % git checkout -b change-4

Switched to a new branch 'change-4'

~ % git fetch gerrit refs/changes/04/4/1

From gerrit:ttyclock

 * branch refs/changes/04/4/1 -> FETCH_HEAD

~ % git cherry-pick FETCH_HEAD

Finished one cherry-pick.

[change-4 1d4351c] Greatly improve the stability of tty-
clock

 1 files changed, 3 insertions(+), 0 deletions(-)

~ %

The most compelling not-so-hidden-feature of Gerrit is
that it is quite literally a Git server.

This means you can push and pull changes from Gerrit
just as you could to and from GitHub or Gitorious.

This opens up a world of possibilities for integrating
other tools, deployment/staging scripts and the rest
of the greater Git ecosystem.

The commands on this slide are literally fetching a
specific version of a specific change and cherry-
picking it locally for review/testing/etc.

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

Gerrit is very useful as a collaboration tool. I've noticed
in the Gerrit deployments that I've performed that
groups of developers will start to have deeper
discussions around API design, testing approaches
and everything in between, all in the Gerrit
commentary system.

In the Continuous Deployment context, I think this is
very valuable as you can get feedback on designs
sooner rather than later.

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

One approach that I like to take with this, is to push an
initial version of an API, for example, into Gerrit to
solicit feedback.

As my colleagues review my work, we can
collaboratively polish the change further, before it
ever hits the upstream repository

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

Outside of the diff commentary system itself, there's a
wider scope where discussion can carry on with
regards to the change, wherein developers and QA
can throw their 2 cents (next)

 Jenkins User Conference San Francisco, Oct 2nd 2011

As a collaboration tool

Adding comments which address the change as a
whole, instead of jumping down to the more granular
line-by-line diff commentary level

 Jenkins User Conference San Francisco, Oct 2nd 2011

Code Review “Points”

Contrary to what you might think when you first use
Gerrit, the “points-system” when reviewing changes
isn't additive.

For example, every change requires at least a +1
Verified and a +2 Code Review. In this case, a
couple of +1 reviews do not combine to a +2 and
enable the change to be submitted.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Code Review “Points”

While it might seem a little counter-intuitive, it's useful
to use the points-system combined with the ACLs
that Gerrit offers to reserve the more authoritative
“+2” permission for tech leads, for example.

In our engineering group, which actually give all
developers the full range of Code Review
permissions and leave it to individuals' judgment to
determine whether a change is truly “ready to go.”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Changes in Gerrit

Change 123

Patchset 1

Patchset 2

Commit 41dbe5

Commit cdeb34

Changes that are submitted in Gerrit are modeled as
follows.

When you first create a commit locally, a commit-msg
hook that you've copied down from Gerrit will run,
giving that commit a specific “Change-Id”. I won't
discuss it right now, but details on this commit-msg
hook can be found in the Gerrit documentation.

This change ID allows Gerrit to track iterations of the
same logical change across multiple “patchsets”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Changes in Gerrit

Change 123

Patchset 1

Patchset 2

Commit 41dbe5

Commit cdeb34

A patchset is simply a Git commit with additional meta-
data attached, which can be reviewed and displayed
all as part of the same Change in Gerritt: (next)

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 28

In this case, the original author has pushed three
patchsets to Gerrit. Preserving that Change-Id
through reworks of a particular change is necessary
in order for Gerrit to group the three separate commit
objects together under what specific Change.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Developer Workflow

 Jenkins User Conference San Francisco, Oct 2nd 2011

The Gerrit Flow

gerrit upstream

dev-adev-b

The most effective workflow with Gerrit is using it either
as your central repository or as the final gate-keeper
before code enters your central repository.

At Lookout we use the model above, once code is
approved in Gerrit, it is then pushed along to the
upstream repository. This gives us a little more
redundancy and allows us to take advantage of
some of the features of GitHub:FI (Firewall Install).

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch
% git checkout -b topic-branch

work

Push
to

Gerrit
% git push gerrit HEAD:refs/for/master

What this workflow looks like for an individual
developer, is that he/she will create a local topic
branch to work in, probably something they should
already be doing.

Then they do work, commiting logically grouped
changes together, ultimately pushing them to Gerrit.

The “push” command here might look confusing if
you're not especially familiar with how git-push(1)
operates.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch
% git checkout -b topic-branch

work

Push
to

Gerrit
% git push gerrit HEAD:refs/for/master

What this statement effectively means is that all my
local commits between the remote “master” branch
and “HEAD” (the tip of my local topic branch) will be
pushed to Gerrit.

Gerrit uses a special staging area
“refs/for/<branchname>” in order to segment
changes in review. I'll discuss this a bit more later.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

rejected

approved/
submitted

rebased!

Once in Gerrit, those changes can go one of two ways.
Either those reviewing can approve and submit the
change, which will actually integrate the change in
the specified branch in Git.

Or if the change needs some fixes, it's bounced back
to the original developer to make changes and
submit a new “patchset”; basically a version 2 of that
change.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Flow of changes

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

rejected

approved/
submitted

rebased!

It's worth mentioning that the original author of a
change doesn't necessarily need to be the one who
makes those incremental fixes.

If the original author is out of the office, another
developer can cherry-pick(1) that change from Gerrit,
 make the necessary fixes and push to Gerrit,
creating a patchset #2.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Your development workflow in commands

● git checkout -b local-topic-branch

● work work work
● git rebase -i upstream/master # fix up commits

● git push gerrit HEAD:refs/for/master

● Create new commits based on reviews
● git rebase -i upstream/master # squash up

● git push gerrit HEAD:refs/for/master

Working with Gerrit means you're likely going to have
to get comfortable with a couple more commands
than you're currently using.

Most notably, you will start to become good friends with
git-rebase(1)

 Jenkins User Conference San Francisco, Oct 2nd 2011

REBASE IS SCARY
(but necessary)

Which is scary, rebase is a very powerful tool. It gives
you the power to literally change your local branch's
history. This means you can edit, reword, squash,
delete or split apart commits with rebase.

Let's look a couple examples

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch
% git rebase upstream/master

First a simple non-interactive rebase, in this case we
will quite literally giving our local changes D and E a
“new base”

When we run this rebase command, Git will set D and
E aside, and then “replay” them one by one on top of
“upstream/master” resulting in (next)

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch

C

This new annotated history. This is a great way to
ensure that your local topic branch is both up to date,
but your changes apply cleanly on the latest mainline
branch.

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

D E

C

upstream/master

local-topic-branch

C

% git rebase -i upstream/master

Change-Id: Icde43 Change-Id: I51bdc2

Where rebase gets fun and powerful, especially with
regards to Gerrit is when you use interactive rebase.

Let's say for example, the commit D is submitted to
Gerrit, and E is a minor fix that was prompted by a
code review. I want to squash E into D such that I
can submit a second patchset

 Jenkins User Conference San Francisco, Oct 2nd 2011

~ % git rebase -i origin/master

pick e59df21 Greatly improve the stability of tty-clock

squash 6c1ffe1 Fix some whitespace

[detached HEAD 785692b] Greatly improve the stability of tty-clock

 1 files changed, 2 insertions(+), 0 deletions(-)

Successfully rebased and updated refs/heads/change-4.

~ %

Interactive rebase gives you a dialog, which is really
just your $EDITOR with some prefilled text for you to
edit, which allows you to manipulate your history.

In this case, I will use the “squash” command to
squash the “E” commit upwards into “D”

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

DE

C

upstream/master

local-topic-branch

C

Change-Id: Icde43

After completing the rebase, I now have a single
change in my branch which represents the
culmination of my original work plus the minor fixes
that were needed as a result of the first pass of code
review in Gerrit.

I should note that I also preserved the first commit's
Change-Id in the new squashed commit. This will
allow Gerrit to recognize this new commit “DE” as an
update to the change it already has.

(next)

 Jenkins User Conference San Francisco, Oct 2nd 2011

How it works

A B

A B

DE

C

upstream/master

local-topic-branch

C

Change-Id: Icde43

This style of reworking specific commits at an early
stage in code review becomes invaluable once you
start to move towards a constantly stable mainline
which is key to making Continuous Deployment
work.

With Gerrit and git-rebase(1) there's no reason for bad
commits which break the build or break tests, to ever
hit your master branch

 Jenkins User Conference San Francisco, Oct 2nd 2011

Gerrit Trigger Plugin

Tying Gerrit into Jenkins is the Gerrit Trigger plugin,
which operates as the interface pulling changes from
Gerrit into specific jobs, but also publishing results
back in the form of scoring changes and adding
comments on changes in Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a role account

~ % ssh gerrit gerrit create-account

The plugin will need a role account created in Gerrit so
it can authenticate. Typically you'll be binding Gerrit
to an internal LDAP or Active Directory service, so
this ability to create a role account is necessary to
make the plugin operate properly

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 45

gerrit

Jenkins

Streamed events
over SSH

Commands sent
over SSH

Once the plugin can authenticate and access Gerrit, it
makes use of the events stream that Gerrit provides
over SSH and the basic SSH API that Gerrit offers up
to all users.

While it is not particularly relevant to this talk, I highly
recommend exploring what this SSH API can do, as
it is instrumental in integrating other scripts and tools
into Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 46

Depending on how you want to weight successes or
failures of Gerrit Trigger jobs, you can customize the
points it will use.

 Jenkins User Conference San Francisco, Oct 2nd 2011

A simple pipeline

Let's change gears to a simple commit-to-deploy
pipeline

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

Creating a Jenkins verification job is pretty simple if
you're already familiar with the Git plugin. The Gerrit
Trigger plugin builds on top of the Git plugin, so
configuring a Gerrit-driven job requires entering a
few key tokens into the Git SCM configuration

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

In addition to entering the key tokens above, you will
need to click “Advanced” in the Git SCM
configuration section and select the “Gerrit Trigger”
choosing strategy. This will inform the Git plugin how
to fetch the appropriate changes from Gerrit for this
job

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating a Jenkins “verifier” job

Instead of using the “Poll SCM” build trigger, in this
case we'll use a Gerrit Trigger entry which allows us
to configure both the project and the branches this
job should build for.

In this case, we want this job to build and test all the in-
review changes for the ttyclock project across all
branches.

Because this uses the SSH events stream, this job will
fire immediately after a change is submitted for this
project.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

Flow of changes

Verification
Job

Build Fails!
(-1, Not Verified)

Success!
(+1, Verified)

Looking at our flow chart from earlier, we now can add
an additional step to the review process.

Whenever a change is submitted to Gerrit for review, it
will be immediately tested in Jenkins, which will
either mark the job as Verified, or not Verified.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create
Local

Branch

work

Push
to

Gerrit
Review

Fix
commit

Upstream repo

Flow of changes

Verification
Job

Build Fails!
(-1, Not Verified)

Success!
(+1, Verified)

Typically I will not even look at a change until I get an
email from Gerrit indicating that Jenkins has
approved of the change. This means I'm not
interrupted and don't need to context switch until the
change passes this bare minimum criteria for review.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

gerrit upstream

dev-adev-b

Release
Build

Release
Test

Release
Deploy

Once those changes are submitted and integrated into
the upstream “blessed” repository, we can kick off a
more “traditional” set of Jenkins jobs and
downstream jobs which will vet and prepare a
deployment based on these changes

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

upstream

Release
Build

Release
Test

Release
Deploy

Downstream Job

Downstream Job

Production machines

rsync/
cap/
scp/
mvn

The most effective pattern of downstream jobs that I've
seen for changes en route to being deployed, is to
create a stair-case of downstream jobs.

In effect, the first job might build your jar file or APK,
then the next job downstream from that one runs unit
tests, then downstream from that you run integration
tests, at the bottom of the stair-case, provided
everything else has succeeded, you can run a
deployment job.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Deployment

upstream

Release
Build

Release
Test

Release
Deploy

Downstream Job

Downstream Job

Production machines

rsync/
cap/
scp/
mvn

This staggering of jobs allows you to restart the
pipeline more easily if, for example, a machine or
network outage causes any job in the pipeline to fail.

If you entire test-to-deploy pipeline takes over an hour,
this can save a lot of time if you ever need to restart
the process half-way through.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Multiple Branches

Using multiple branches with Gerrit is fairly straight-
forward, and involves the same flow of changes with
some minor tweaks.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating the branches in Gerrit

Gerrit offers two ways to create branches, either you
can create it with the UI in Gerrit itself

 Jenkins User Conference San Francisco, Oct 2nd 2011

Creating the branches in Gerrit

~ % git push gerrit release-1.0

Or, give your users the ability to create branches like
they might with any other Git repository

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the developer point of view

~ % git checkout -b relfix –track
upstream/release-1.0

~ % # work work work

~ % git add/commit

~ % git push gerrit HEAD:refs/for/release-1.0

Once you have a branch created, the developer work
flow is very much the same as for the “master”
branch. You simply specify a different staging area to
push your commits to, here that is “refs/for/release-
1.0” this informs Gerrit that when these changes are
submitted, they should be integrated into the
“release-1.0” branch.

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the Jenkins point of view

In your Jenkins verification jobs, we can either re-use
the same job we already created with the wildcard
paths, or we could explicitly reference the branch
and create a branch-specific job that needs to run
different build steps

 Jenkins User Conference San Francisco, Oct 2nd 2011

From the Jenkins point of view

Gerrit's ability to run changes through different
branches is particularly useful if you have mobile or
desktop software where you might have a
stabilization line of development operating
concurrently with a “next generation” line of
development.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Thus far we've been largely focusing on the developer
workflow and the automation aspect of integrating
Jenkins and Gerrit.

Like almost all things in software development,
continuous deployment cannot always be 100%
automated, there will always be a (next) human
factor.

 Jenkins User Conference San Francisco, Oct 2nd 2011

The Human Factor

Where do people fit into the equation? The key to
incorporating people into the pipeline is to try to
avoid either single points of failure, or onerous
process onto devs, QA engineers or ops people.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with changes “in review”

The first place people might enter into the pipeline is
working with changes “in review”

Imagine you're working on a rough backend API, and
have enough of it complete for me to start building on
top of it. That is to say the interfaces are put into
place and you can work on some of the front-end in
parallel

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

~ % git checkout -b topic-with-17

~ % git fetch gerrit refs/changes/17/17/1

~ % git cherry-pick FETCH_HEAD

~ % # work work commit work work commit

Since Gerrit is “just” a Git server, I could cherry-pick
your changes directly from Gerrit and start working
on top of it.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

C1

A B

C1 D E

Developer 1

Developer 2

Let's say C1 in this diagram is your rough backend API
change. I've grabbed it from Gerrit, but the work on
C1 might not be “complete.”

A colleague points out some logic errors or missing
tests, which you will need to address before this
change gets sent along to the central repository.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

C2

A B

C1 D E

Developer 1

Developer 2

You perform your changes, reworking that change into
C2.

Now you have C2 and I have C1 (next)

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

A B

C1 D E

Upstream

Developer 2

B C2

And C2 has just been integrated into the upstream
repository.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

~ $ git rebase gerrit/master

First, rewinding head to replay your work on top of it...

Applying: Unused variable

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merging ttyclock.c

CONFLICT (content): Merge conflict in ttyclock.c

Failed to merge in the changes.

Patch failed at 0001 Unused variable

When you have resolved this problem run "git rebase --continue".

If you would prefer to skip this patch, instead run "git rebase
--skip".

To restore the original branch and stop rebasing run "git rebase
--abort".

~ $ git rebase --skip

HEAD is now at edff388 Unused variable

Applying: Local change

~ $

When I run my next git-rebase(1) to come up to speed
with the mainline of development, I'm going to hit this
nasty conflict.

Fortunately, git-rebase(1) offers the “--skip” command,
and since it is replaying my local commits C1, D and
E one by one, when it hits the conflict with C1, I can
just skip over that commit and continue one

 Jenkins User Conference San Francisco, Oct 2nd 2011

Working with “in-review” changes

A B

A B

D E

Upstream

Developer 2

C2

C2

Resulting in this updated local tree

 Jenkins User Conference San Francisco, Oct 2nd 2011

Picking up changes

A B

C1

A B

C1

Developer 1

Developer 2

As I mentioned before, you can also use Gerrit to pick
up where other developers have left off. For example
if Developer 1 was hit by a Bus, Developer 2 can
cherry-pick that change, and continue to make the
necessary changes

 Jenkins User Conference San Francisco, Oct 2nd 2011

Picking up changes

A B

C1

A B

C2

Developer 1

Developer 2

Creating subsequent patchsets for that change, and
re-submitting them to Gerrit

 Jenkins User Conference San Francisco, Oct 2nd 2011

Performing manual verification by QA

Manual verification by QA is feasible with Gerrit and
Jenkins, but not “easy” out of the box in my opinion.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Manual verification

First you need to give your QA group the ability to
verify changes, but then you'll likely need to add
additional tooling around Gerrit and Jenkins to allow
QA to stage or otherwise test a specific change.

If you're pulling specific builds of an APK, this is pretty
easy, but if you're trying to verify a web site, then
you'll need to script up a way for QA to deploy
changes to staging servers directly from Gerrit.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 75

Kick-off deployments with the Promoted
Builds plugin

If you're building a web site, you might see peak load
during a specific part of the day. This might be a time
of day when deployment is less than ideal, so fully
automated deployments are out of the question.

You can solve for this situation by using the Promoted
Builds plugin

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 76

If you use the manual promotion criteria and then
attach the deployment actions to that, you can gate
deployments until somebody from the designated
group clicks the button to say “This is good to go.”

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 77

Using the Promoted Builds plugin, and requiring
Manual Approval means you can create groups of
people responsible for the deployment process, with
a lot of transparency into how it works.

Instead of giving specific engineers the responsibility of
a site deployment with local scripts, this manual
promotion allows multiple people to kick off a
deployment through a centralized interface.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Pro Tips

 Jenkins User Conference San Francisco, Oct 2nd 2011

Use “squash” or “fixup” to condense
changes

Using squash or “fixup” in newer version of Git allows
you to create very concise and logical changes that
will be pushed to Gerrit. Taking advantage of this will
pay even more dividends in the future when
developers might look back and try to figure out why
specific lines were changed the way they were.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Create per-topic/ticket local branches for
clearer isolation of work

Ideally you should already be creating local topic
branches to properly isolate your work. This is
especially necessary with Gerrit since you cannot
push a single commit to Gerrit, but instead you're
always pushing a “range” of commits.

Using a local topic branch will prevent other unrelated
changes from accidentally getting pushed.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Multiple jobs with the same trigger criteria

The Gerrit Trigger plugin allows you to create multiple
jobs with the same criteria, and it will automatically
join the results together before publishing results into
Gerrit.

In creating multiple jobs, you can have a unittest,
integration test and a selenium test job all get kicked
off for one change in parallel

This allows you to take advantage of more slaves, and
reduce the amount overall test time per change.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Investigate the EC2 plugin for burstable
testing capacity

I recommend looking into the EC2 plugin for burstable
capacity. If your teams are anything like mine at
Lookout, you will see huge spikes of Gerrit activity
shortly before lunch and around 3-4pm.

Using the EC2 plugin to run your tests will prevent the
Jenkins work queue from backing up and keep the
turn-around time on changes low.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Gotchas and Errata

Unfortunately not everything is perfect and there are
some “gotchas” with using Gerrit and Jenkins for
continuous deployment

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 84

Gerrit, like Jenkins itself, is a constant work in
progress. This means you may hit some bugs or
funky behavior. While the Gerrit community is active,
it cannot really compare to the incredible speed with
which Jenkins bugs are resolved and released.

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

“Dependencies” in Gerrit are a) confusing b) misnamed

Technically “dependencies” map to the parent commits
for the commit in question, developers fresh to Gerrit
can be confused by this.

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

Depending on the “Submit Type” you select for you
Gerrit project dependencies can also mean different
things.

Let's say for example you submit three changes to
Gerrit, A, B and C

If you configure Gerrit to “merge” changes when you
click the “Submit” button, it will gate all three changes
from being submitted until they're all +1 Verified and
+2 Code Reviewed.

 Jenkins User Conference San Francisco, Oct 2nd 2011

“Dependencies” in Gerrit

When all the changes are submittable, Gerrit will
merge them all into the destination branch.

If you choose the “Cherry-Pick” submit type, Gerrit will
actually let you submit your own changes out of
order! This has been filed, but unfortunately has not
yet been fixed.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

By building on top of Git, Gerrit allows a lot of
versatility around tooling. Teams thinking about
switching from another VCS like Subversion to Git
should think about switching to using Gerrit and Git
right off the bat.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

This is exactly what we've done at Lookout. Our
workflow at the time was to commit code to trunk in
Subversion, pass the revision number to another
developer and have them review the changes.
Modifications that needed to be made were then
addressed in subsequent commits.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

Suffice to say, our trunk branch was not terrifically
stable. To make matters worst, we weren't really
using Jenkins either! The initiative to switch to Git
was feature creeped, partly of my own doing, to
include deploying Gerrit, and instrumenting pre-
tested commits with Jenkins.

While some of our projects are not quite “there” as far
as continuous deployment goes, we've seen a solid
reduction in schedule slippage and “fires” in
production.

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

By closing the feedback loop on Gerrit with Jenkins,
you open up a new area of potential for both test
automation but stability by pre-testing commits. The
developer mindset is far more test focused in this
environment. When you don't have Jenkins pre-
testing and vetting every single commit, it is far
easier to think “oops somebody broke the build, they
should fix it. I'm going to lunch.”

 Jenkins User Conference San Francisco, Oct 2nd 2011

Final Thoughts

At the end of the day, both Gerrit and Jenkins are
simply tools. While they're both “best of breed” tools,
they cannot solve all the problems that are needed to
be solved to get a Continuous Deployment pipeline
to work.

They cannot make you or your team submit
constructive criticisms in your code reviews. The
tools will fully allow for bike-shedding and flame
wars. They can however, help prevent you or your
team from submitting code that breaks tests and
destabilizes the tree.

Some amount of training and discussion must
accompany the introduction of these tools to make
them most effective

 Jenkins User Conference San Francisco, Oct 2nd 2011

Thank You To Our Sponsors

Before we get to Q&A, I'd like to take a quick moment
to thank all of our sponsors for this conference,
giving me the opportunity to address you all today.

 Jenkins User Conference San Francisco, Oct 2nd 2011

10/1/11 94

Q&A and Links

● Gerrit: http://code.google.com/p/gerrit
● Gerrit Trigger Plugin:

http://urlenco.de/oyhmac
● These slides (w/ notes):

http://urlenco.de/vhqjl
●

And that is the conclusion of my talk, here are some
relevant links, and I'd be happy to answer any
questions you may have in the time remaining.

