
CS193p
Spring 2010

Wednesday, April 7, 2010

Announcements
Get your Axess situation right.

If you have not turned in homework, e-mail us.
As they say in Air Traffic Control: state your intentions.

Homework
Any questions about the homework?

Wednesday, April 7, 2010

Communication

E-mail
Questions are best sent to cs193p@cs.stanford.edu
Sending directly to instructor or TA’s risks slow response.

Web Site
Very Important!
http://cs193p.stanford.edu
All lectures, assignments, code, etc. will be there.
This site will be your best friend when it comes to getting info.

Wednesday, April 7, 2010

mailto:cs193p@cs.stanford.edu
mailto:cs193p@cs.stanford.edu
http://cs193p.stanford.edu
http://cs193p.stanford.edu

Today’s Topics

Foundation Framework
NSArray, NSDictionary, NSSet
NSUserDefaults, etc.

Objective-C
Protocols and Delegates

Memory Management
Allocating and initializing objects
Reference Counting

Demo!

Wednesday, April 7, 2010

NSArray
NSArray
Ordered collection of objects
Cannot be modified once created
Important methods:
- (int)count
- (id)objectAtIndex:(int)index
- (void)makeObjectsPerformSelector:(SEL)aSelector
- (NSArray *)sortedArrayUsingSelector:(SEL)aSelector

NSMutableArray
Modifiable version of NSArray
- (void)addObject:(id)object
- (void)insertObject:(id)object atIndex:(int)index
- (void)removeObjectAtIndex:(int)index
- (void)replaceObjectAtIndex:(int)index withObject:(id)object

Wednesday, April 7, 2010

NSDictionary
NSDictionary
Cannot be modified once created!
Look up a value using a key (aka a “hash table”)
A key must implement - (NSUInteger)hash and - (BOOL)isEqual:(NSObject *)obj
Usually keys are NSString objects (since that implements those two)
Important methods:
- (int)count
- (id)objectForKey:(id)key
- (NSArray *)allKeys
- (NSArray *)allValues

NSMutableDictionary
Modifiable version of NSDictionary
- (void)setObject:(id)object forKey:(id)key
- (void)removeObjectForKey:(id)key
- (void)addEntriesFromDictionary:(NSDictionary *)dictionary

Wednesday, April 7, 2010

NSSet
NSSet
Unordered collection of objects without duplicates
Cannot be modified once created
Important methods:
- (int)count

- (BOOL)containsObject:(id)object
- (id)anyObject
- (void)makeObjectsPerformSelector:(SEL)aSelector

- (id)member:(id)object (uses isEqual: and returns a matching object)

NSMutableSet
Modifiable version of NSSet
- (void)addObject:(id)object
- (void)removeObject:(id)object
- (void)unionSet:(NSSet *)otherSet

- (void)minusSet:(NSSet *)otherSet
- (void)intersectSet:(NSSet *)otherSet

Wednesday, April 7, 2010

Enumeration
NSArray of NSString objects

NSArray *myArray = ...; // known to only have NSString objects inside
for (NSString *string in myArray) {
 double value = [string doubleValue]; // crash if not NSString
}

NSArray of id

NSArray *myArray = ...; // no idea what kind of objects are inside
for (id obj in myArray) {
 < do something with obj here, but make sure you don’t
 send it a message it doesn’t respond to >
 if ([obj isKindOfClass:[NSString class]]) {
 // send NSString messages to obj with impunity!
 }
}

Wednesday, April 7, 2010

Enumeration
NSDictionary’s keys

NSDictionary *myDict = ...;
for (id key in [myDict allKeys]) {
 < do something with the key >
}

NSDictionary’s values

NSDictionary *myDict = ...;
for (id value in [myDict allValues]) {
 < do something with the value >
}

Wednesday, April 7, 2010

Property Lists
The term “Property List” just means “one of the
collection classes which contains only more collection
classes (nothing else).”
NSArray, NSDictionary, NSNumber, NSString, NSDate, NSData

So an NSArray is a Property List as long as all the
objects in it are also Property Lists.

An NSDictionary is a Property List as long as all the
keys and all the values are Property Lists.

Why make this distinction? The SDK has a number of
methods here and there which read/write Property Lists.

Wednesday, April 7, 2010

Other Foundation
NSUserDefaults
- (void)setDouble:(double)aDouble forKey:(NSString *)key
- (NSInteger)integerForKey:(NSString *)key
- (void)setObject:(id)obj forKey:(NSString *)key
 (obj must be a Property List)
- (NSArray *)arrayForKey:(NSString *)key
 (if the object stored for that key is not an NSArray, this returns nil)

- (void)synchronize // writes to permanent storage

NSNotification
NSTimer
NSThread
NSFileManager
Undo Manager

Wednesday, April 7, 2010

Protocols
Very similar to @interface, but no implementation

@protocol Foo
- (void)doSomething;
@optional
- (int)getSomething;
@required
- (NSArray *)getManySomethings:(int)howMany;
@end

Classes then proclaim they implement a protocol
@interface MyClass : NSObject <Foo>
 ...
@end

Wednesday, April 7, 2010

Protocols
Declaring arguments to require a protocol
- (void)giveMeTheObject:(id <Foo>)anObjectImplementingFoo

Declaring variables to require a protocol
id <Foo> obj = [[MyClass alloc] init];
[obj doSomething]; // will not warn (and should be okay)

Compiler will warn of misbehavior
Class says it implements protocol Foo, but doesn’t implement required methods
Assigning an object which does not implement Foo to a variable like obj above
Passing an object which does not implement Foo through an argument
which requires it (like above)

Wednesday, April 7, 2010

Delegate
Very common in SDK to have a property which is a “delegate”

Used to pass off responsibility to another object

The property will be declared (approximately) like this ...

@property id <MyClassDelegate> delegate;

Convenient for maintaining MVC boundaries but
still have documented interfaces between things
For example, the UITableView delegates both the provision of the data
and the content of what is drawn to other objects while implementing
the core of the user interaction itself

Wednesday, April 7, 2010

Creating Objects
Allocating and initializing
Send + (id)alloc to the class
Send appropriate initializer to what you get back
alloc allocates space for the instance variables
Default initializer (for NSObject and subclasses) is
- (id) init
NSObject’s init sets all instance variables to zero
Subclasses of NSObject might define new
initializers with more arguments
Initializers with fewer args should call those with more args (usually)

CalculatorBrain *brain = [[CalculatorBrain alloc] init];

UIView *view = [[UIView alloc] initWithFrame:aRect];
UIView *view = [[UIView alloc] init]; // some default frame

MyClass *obj = [MyClass alloc]; // ack! no init! don’t do this!

Wednesday, April 7, 2010

Creating Objects
Goofy implementation of initializers

#import <UIKit/UIKit.h>

@implementation MyView

- (id)initWithFrame:(CGRect)aRect
{
 if (self = [super initWithFrame:aRect]) {
 // initialize my class here
 }
 return self;
}

@end

initWithFrame: is UIView’s “designated initializer”
so we, as a subclass, must call it in our DI.
We don’t have to override it, but we should

if it makes any sense whatsoever to our class.

Wednesday, April 7, 2010

Creating Objects
Asking other objects to create an object for you
NSString *s = [otherString stringByAppendingString:@”hi”];

NSString *lowerString = [string lowercaseString];

NSDate *date = [NSDate date]; // returns the date/time now

NSArray *keys = [dictionary allKeys];

NSNumber *n = [NSNumber numberWithFloat:9.0];

Wednesday, April 7, 2010

Memory Management
When does the memory get freed?

Garbage Collection!

NO, sorry.

Reference Counting

Wednesday, April 7, 2010

Reference Counting
Objects take ownership for other objects.

Multiple owners is okay.

Mechanism for taking “temporary” ownership.

When last object gives up ownership, deallocate.

Wednesday, April 7, 2010

Object Ownership
When you call alloc, you take ownership.

When you ask another object to create an object for you,
you are not taking ownership (with a couple of exceptions).

But if you want to access that object outside the
method you are in, you must take ownership.

You take ownership by sending the object you
want to own the message “retain.”

When you are done owning the object, send it “release.”
If you are the last owner, object will be freed.
Messages sent to that object after that will crash your application.

Wednesday, April 7, 2010

autorelease
What if you want to give an object to someone?
Usually you are doing this by returning it from one of your methods.

Before you return it to them, send the object
the message “autorelease” first.

UIKit will automatically send it release at some
later time (but not until call stack unwinds).
We’ll talk more about how this works when we get to threads.

All those NSString, NSArray, etc. methods are
returning “autoreleased” objects.

Wednesday, April 7, 2010

autorelease
Example

- (Money *)showMeTheMoney:(double)amount
{

Money *theMoney = [[Money alloc] init:amount];
[theMoney autorelease];
return

}
theMoney;

Wednesday, April 7, 2010

autorelease
Example

- (Money *)showMeTheMoney:(double)amount
{

Money *theMoney = [[Money alloc] init:amount];

[theMoney autorelease];return
}

Wednesday, April 7, 2010

autorelease
Mutable collection class autorelease creators
[NSMutableString string];
[NSMutableArray array];
[NSMutableDictionary dictionary];

Create them, load them up, and return them
- (NSString *)showMeTheMoney:(double)amount
{

NSMutableString *s = [NSMutableString string];

return s;
}

[s appendString:@”The Money:“];
[s appendFormat:@” %g“, amount];

Note there is no autorelease here!

Wednesday, April 7, 2010

autorelease
Immutable “with” creators

[NSString stringWith...];
[NSArray arrayWith...];
[NSDictionary dictionaryWith...];

[NSString stringWithFormat:@”%@ %d”, ...];
[NSArray arrayWithObjects:obj1, obj2, nil];
[NSDictionary dictionaryWithObjectsAndKeys:...];
[NSArray arrayWithContentsOfFile:(NSString *)path];
[NSDictionary dictionaryWithContentsOfFile:...];
[NSString stringWithContentsOfFile:encoding:error:];

Wednesday, April 7, 2010

Other Ownership Rules
When you put an object in an NSArray or
NSDictionary, they do take ownership. When
you take an object out, they release ownership.

You also implicitly retain if you copy an object
This is done using the copy method.

Methods whose names start with
alloc, copy or new return an object you own
So you must release it at some point down the road

You should release an object as soon as possible
That is to say, the instant you are done with it.

Wednesday, April 7, 2010

Deallocation
What happens when the last owner releases?

A special method, - (void)dealloc, is called.

You should override this method and release
any instance variables you own.

And then be sure to call [super dealloc] to
let your superclass release it’s owned objects.

NEVER call dealloc. It is called automatically
when the last owner releases.

Wednesday, April 7, 2010

Properties
Remember @property?

Does the @synthesized getter method
return autoreleased object?

NO! That getter is returning an instance variable.
If the caller doesn’t retain it, then when your
object is deallocated, that caller will have a bad
pointer (assuming you properly releases your
instance variables in your dealloc).

Wednesday, April 7, 2010

Properties
Remember @property?

Does the @synthesized setter do a retain when
it is called?

You get to decide:
@property (retain) NSString *name;

- (void)setName:(NSString *)aString
{
 [name release];
 name = [aString retain];

@synthesize will create a setter equivalent to this ...

}

Wednesday, April 7, 2010

Properties
Remember @property?

Does the @synthesized setter do a retain when
it is called?

You get to decide:

- (void)setName:(NSString *)aString
{
 [name release];

@synthesize will create a setter equivalent to this ...

}

@property (copy) NSString *name;

 name = [aString copy];

Wednesday, April 7, 2010

Properties
Remember @property?

Does the @synthesized setter do a retain when
it is called?

You get to decide:

- (void)setName:(NSString *)aString
{

@synthesize will create a setter equivalent to this ...

}
 name = aString;

@property (assign) NSString *name;

Wednesday, April 7, 2010

Wake up!
What about objects that come out of nib files?

They are archived in IB, then unarchived in your running app.

So where do you initialize if not in init?
- (void)awakeFromNib // override this NSObject method
- (void)viewDidLoad // only for UIViewController subclasses

Wednesday, April 7, 2010

viewDidUnload
And what about release-ing IBOutlets in UIViewControllers?

Don’t do it in dealloc because your controller’s views are
allowed to be “unloaded” to save memory when not on-screen.

Create @properties (retain) for all of them and then set them
to nil in the method viewDidUnload ...

@property (retain, nonatomic) IBOutlet UILabel *myOutlet;

- (void)viewDidUnload
{
 self.myOutlet = nil; // this will release because property is retain
 [super viewDidUnload]; // probably not necessary unless you think it is
}

When/if the view is reloaded, your outlets will get hooked
back up and - (void)viewDidLoad will get called (again).

Wednesday, April 7, 2010

Demo
MVC: Collector

NSArray, NSDictionary

Instrospection

@property

Memory Management

Wednesday, April 7, 2010

Homework
Make your CalculatorBrain support variables

Mostly NSArray, NSDictionary work

Some Instrospection

Get Memory Management right!
Not too difficult, but a new concept. Be diligent!

Wednesday, April 7, 2010

Next Week
Custom Views, Navigation Controllers

Wednesday, April 7, 2010

