

Contents

Overview 1

Components Overview 2

Creating Serviced Components 11

Demonstration: Creating a Serviced
Component 27

Lab 9.1: Creating a Serviced Component 28

Creating Component Classes 35

Demonstration: Creating a Stopwatch
Component 40
Creating Windows Forms Controls 41

Demonstration: Creating an Enhanced
TextBox 48

Creating Web Forms User Controls 49

Demonstration: Creating a Simple Web
Forms User Control 53

Lab 9.2: Creating a Web Forms User
Control 54

Threading 60

Demonstration: Using the SyncLock
Statement 73

Review 74

Module 9: Developing
Components in Visual
Basic .NET

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Studio® .NET
Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with
the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizT alk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 9: Developing Components in Visual Basic .NET iii

Instructor Notes

This module provides students with the knowledge required to create and use
different types of components by using Microsoft® Visual Basic ® .NET.

In the first lab, students will create a serviced component that retrieves
customer information based on the customer’s e-mail address and password.
The assembly is installed in the Global Assembly Cache (GAC) to avoid a
potential bug in Beta 2. This bug does not allow server-activated applications to
be called successfully without being installed in the GAC. Students will register
this component with Component Services and set constructor string properties
of the component by using the Component Services console. They will then test
the serviced component with a simple Windows-based application.

In the second lab, students will create a Web user control that requests logon
information from a customer. They will place the user control on a Web Form
and use the serviced component that they created in the first lab to retrieve the
customer information so that it can be displayed on a welcome screen.

After completing this module, students will be able to:

n Describe the different types of components that they can create in
Visual Basic .NET.

n Create components that can be used by managed and unmanaged client
applications.

n Create serviced components.

n Create component classes.

n Create Microsoft Windows® Forms controls.

n Create Web Forms user controls.

n Use threading to create multithreaded applications.

Presentation:
90 Minutes

Labs:
90 Minutes

iv Module 9: Developing Components in Visual Basic .NET

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_09.ppt

n Module 9, “Developing Components in Visual Basic .NET”

n Lab 9.1, Creating a Serviced Component

n Lab 9.2, Creating a Web Forms User Control

Preparation Tasks
To prepare for this module:

n Read all of the materials for this module.

n Complete the labs.

 Module 9: Developing Components in Visual Basic .NET v

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Creating a Serviced Component
å To examine the object pooling application
1. Open Microsoft Visual Studio® .NET.

2. Open the ObjectPoolingComponent.sln project in the
install folder\DemoCode\Mod09\ObjectPoolingComponent folder.

3. View the code for the Pooling class, particularly noting the Imports
statement, class-level attributes, and the purpose of each class member.

4. View the code for the NoPooling class, and point out that the class is almost
identical to the Pooling class, except that it does not use object pooling.

5. View the code for the Report class, and point out the GetReport method
and the GetSharedProperty method of the modCommon module.

6. View the AssemblyInfo.vb file, pointing out the first three assembly
attributes that refer to serviced component applications.

å To create the serviced component application
1. Build the project, and then quit Visual Studio .NET.

2. Open Windows Explorer, and then move to the install folder\
DemoCode\Mod09\ObjectPoolingComponent\bin folder.

3. To avoid a bug in Beta 2, you need to register the assembly in the GAC to
create a server-activated application. Open a Command window, type
“%ProgramFiles% \Microsoft.NET\FrameworkSDK\Bin\gacutil.exe” -i
and then drag the objPooling.dll file from Windows Explorer to the
command line.

4. Execute the command. This should display a successful message in the
Command window.

5. In the Command window, type
“%Windir%\Microsoft.NET\Framework\v1.0.2914\Regsvcs.exe” and
then drag the objPooling.dll file from Windows Explorer to the command
line.

6. Execute the command. This should display a successful registration
message in the Command window.

å To examine the serviced component application

1. Open the Component Services console, and analyze the Object Pooling
application.

2. View the properties for the NoPool and Pool components, pointing out the
Object Pooling settings on the Activation tab of each component.

vi Module 9: Developing Components in Visual Basic .NET

å To view the test harness

1. Open Visual Studio .NET.

2. Open the TestPooling.sln project in the install folder\DemoCode\Mod09\
ObjectPoolingComponent\TestPooling VB.NET folder.

3. Add a project reference to install folder\DemoCode\Mod09\
ObjectPoolingComponent\bin\objPooling.dll.

4. View the form code, examining each method.

å To test the component

1. Run the project.

2. Create pooled objects and step through the code, explaining the messages
that appear.

3. Create unpooled objects and step through the code, explaining the messages
that appear.

4. Quit the application.

5. Run the project again, and show that this time there are no new objects
created.

6. Quit the application, and then quit Visual Studio .NET.

7. If you have time, you can also show students the Visual Basic 6.0 test
harness in the install folder\DemoCode\Mod09\ObjectPoolingComponent\
TestPooling VB6 folder. Note that you must shut down the Component
Services application before running the Visual Basic 6.0 test harness to
clean up the object pool used by the previous test harness application. You
will also notice that the messages displayed while you debug the code may
differ from those seen in Visual Basic .NET. This is not an error;
Visual Basic 6.0 creates and uses objects differently than
Visual Basic .NET.

If you have previously run this demonstration on the same machine,
you may find that the serviced component is already installed. Remove the
Object Pooling application from the Component Services console before re-
running this demonstration.

Creating a Stopwatch Component
å To examine the Stopwatch component class
1. Open Visual Studio .NET.

2. Open the ComponentClasses.sln project in the install folder\
DemoCode\Mod09\Stopwatch\Starter folder.

3. View the design window for the Stopwatch component class and point out
the localTimer control and its properties.

4. View the code for the Stopwatch component class, and explain each
member of the class. Specifically point out the attributes used in the
property definitions.

Important

 Module 9: Developing Components in Visual Basic .NET vii

å To create a Toolbox icon for the component

1. Modify the class definition to read as follows:

<ToolboxBitmap("")> _
Public Class Stopwatch

2. In Solution Explorer, drag the TIMER01.ICO file and place it between the

string quotes in the ToolboxBitmap("") code. Point out that adding the
bitmap as an assembly resource may be a better approach as it will not rely
on the icon file being available in the correct location. However, for this
demonstration, this approach is acceptable.

å To build the component

1. Build the project.

2. Close the project.

å To modify the test harness

1. Open the TestComponentClasses.sln project in the install folder\
DemoCode\Mod09\Stopwatch\Starter \TestStopwatch folder.

2. On the Toolbox, click the General tab.

3. On the Tools menu, click Customize Toolbox, and then click the .NET
Framework Components tab.

4. Click Browse to browse for ComponentClasses.dll in the install folder\
DemoCode\Mod09\Stopwatch\Starter \bin folder, and then click Open.
Click the Stopwatch component, and then click OK.

5. In the design window, open Form1, and then drag the Stopwatch
component from the Toolbox to the form.

6. In the Properties window for the component, change the name of the
component to sWatch and set the EnabledEvents property to True. Point
out the property description provided by the Description attribute.

7. Examine the code in the form.

å To test the component

1. Run the project, ensuring that the Output window is visible in the
background.

2. Click Start Stopwatch, and point out the events being displayed in the
Output window. Click Tick Events to turn off the events.

3. Click Stop Stopwatch to display the amount of time that has passed since
the Start method was called on the Stopwatch component.

4. Quit the application, and then quit Visual Studio .NET.

If you have previously run this demonstration on the same computer,
you may find that the Stopwatch component is already available in the Toolbox.
To ensure that the demonstration functions correctly, reset the Toolbox by using
the Customize Toolbox dialog box.

Important

viii Module 9: Developing Components in Visual Basic .NET

Creating an Enhanced TextBox
å To view the code

1. Open Visual Studio .NET.

2. Open the MyControls.sln project in the install folder\DemoCode\
Mod09\UserTextBox folder.

3. View the code for the MyTextBox class, and examine all members of the
class.

4. Build the project, and then close the project.

å To create the test harness

1. Open the TestControl.sln project in the install folder\DemoCode\
Mod09\UserTextBox\TestControl folder.

2. On the Toolbox, click the General tab.

3. On the Tools menu, click Customize Toolbox. In the Customize Toolbox
dialog box, click the .NET Framework Components tab.

4. Click the Browse button to browse for MyControls.dll in the install folder\
DemoCode\Mod09\UserTextBox\bin folder, and then click Open. Select the
MyTextBox control, and then click OK.

5. Display the test form if it is not already displayed.

6. From the Toolbox, drag MyTextBox onto the form to create an instance of
the MyTextBox control.

7. Rename the control myTB, and then position it next to the MyTextBox
label. Set the Text property of the control to zero.

8. In the Undo button’s Click event handler, uncomment the myTB.Undo
statement.

å To test the control

1. Run the project.

2. Sequentially change the text value for each text box to the following values.

Control Text value

TextBox One

MyTextBox One

TextBox Two

MyTextBox Two

TextBox Three

MyTextBox Three

3. Click the Undo button four times, and view the changes in each text box.

4. Close the form and quit Visual Studio .NET.

 Module 9: Developing Components in Visual Basic .NET ix

Creating a Simple Web Forms User Control
å To create the ASP .NET Web application

1. Open Visual Studio .NET.

2. Create a new ASP .NET Web application called SimpleUserControl in the
http://localhost/2373/DemoCode/Mod09/SimpleUserControl folder.

å To create the user control

1. On the Project menu, click Add Web User Control, and rename the
control SimpleControl.ascx.

2. From the Toolbox, drag a Label control and a TextBox control to the user
control design window.

3. In the Code Editor for the user control, add the following properties, which
correspond to the internal control values.

Public property Corresponding control value

TextValue() As String TextBox1.Text

LabelValue() As String Label1.Text

4. Save the project.

å To use the user control

1. Open WebForm1.aspx in the Design view, and then drag the
SimpleControl.ascx file from Solution Explorer to the top left corner of
WebForm1.

2. In the HTML view of WebForm1.aspx, locate the following code:

<uc1:SimpleControl id="SimpleControl1" runat="server">

3. Add the following attribute to the tag to set the LabelValue property of the
control:

LabelValue="Enter a value:"

4. Return to the Design view, drag a Button control from the Toolbox to the
Web Form, and place it well below the SimpleControl. Change the
following properties of the Button control to the following values.

Button property Value

Text Get Value

(ID) btnGet

5. In the Code Editor for WebForm1, add the following variable declaration
immediately after the button declaration:

Protected WithEvents SimpleControl1 As SimpleControl

6. Create a Click event handler for btnGet and enter the following code:

Response.Write(SimpleControl1.TextValue)

7. Save the project.

x Module 9: Developing Components in Visual Basic .NET

å To test the control

1. Run the project.

2. Type a value into the text box, and then press the Get Value button to
display the result.

3. Quit the application and Visual Studio .NET.

Using the SyncLock Statement
å To examine the object pooling application

1. Open Visual Studio .NET.

2. Open the ThreadingDemo.sln project in the install folder\DemoCode\
Mod09\ThreadingDemo folder.

3. View the code for the frmThreading form, briefly explaining each member.

4. View the code for the ThreadObj class, briefly explaining each member.

å To test the application

1. Run the project.

2. Click the Without SyncLock button and observe that the results do not
match the expected results.

3. Click the With SyncLock button, observe that the results correctly match
those expected, and then quit the application.

4. Re-examine the WithSyncLock code within the ThreadObj class,
clarifying the use of the SyncLock statement that produces the correct
results.

5. Quit Visual Studio .NET.

 Module 9: Developing Components in Visual Basic .NET xi

Module Strategy
Use the following strategy to present this module:

n Components Overview

This lesson provides an overview of creating components with
Visual Basic .NET, and of how they can work with both managed and
unmanaged clients.

Many students will be interested in how a Visual Basic 6.0–based client
application can use a Visual Basic .NET component, so spend some time on
the topic of using components in unmanaged client applications. Strong-
named assemblies are covered in Module 10, “Deploying Applications,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease), but a simple explanation will be required in this lesson.

The lesson ends with an overview of Microsoft .NET Remoting. Do not
discuss this topic in detail. Instead, refer students to the Visual Studio .NET
documentation or other to courses, such as Module 13, “Remoting and Web
Services,” in Course 2349A, Programming the .NET Framework with C#
(Prerelease) .

n Creating Serviced Components

This lesson relies on the students’ knowledge of MTS or Component
Services. Ensure that all students have some awareness of these
technologies, and briefly review the overall purpose of serviced components,
such as providing predefined functionality for developers to use.

You will then examine several aspects of serviced components, including
transactions, object pooling, constructor strings, and security. Most of these
should not be new to MTS or Component Services developers, but the way
that the information is specified has changed. Object pooling is a significant
enhancement for Visual Basic, and will be new to many students because
previous versions of Visual Basic could not take advantage of this technique.
Use the demonstration at the end of the lesson to reinforce this concept.

End the lesson with an overview of other services provided by Component
Services and of how to configure an assembly to run as a serviced
application. This information will minimize the amount of administration
required when installing Visual Basic .NET serviced applications.

Note that because of a bug with Beta 2, attempting to use a Component
Services application as Server activation causes an error unless the
assembly is installed in the GAC. The demonstrations and labs have been
modified to install the assemblies in the GAC to avoid this error.

n Creating Component Classes

This lesson examines component classes and their uses within a
Visual Basic .NET –based application. Students will learn about the
architecture of a component class and how to create one. Although this is a
small lesson, make sure students recognize the benefits of these types of
components.

xii Module 9: Developing Components in Visual Basic .NET

n Creating Windows Forms Controls

This lesson relies on students having created Windows user controls in
previous versions of Visual Basic. Discuss some of the ways user controls
can be created and how attributes can be specified to assist other developers
who use the user controls.

There are other ways to create controls (such as creating controls from
scratch) that are not covered because of time constraints. Direct students to
the product documentation for further information regarding these topics.

n Creating Web Forms Controls

This lesson examines how to create Web Forms user controls within an
ASP .NET Web application. The lesson is quite short as the creation of
these controls is very similar to the creation of Web Forms and Windows
Forms user controls.

Point out to students that they can also create user controls based on Web
Forms simply by copying the controls from the Web Form to the Web user
control. There are other types of Web user controls called Custom controls
that are not covered in this course. Refer students to the online help
documentation for more information.

n Threading

This lesson examines basic concepts of using threading in a
Visual Basic .NET–based application. Most Visual Basic students are not
familiar with threads, so be sure to explain the basic concepts first. Discuss
the advantages of using threading and how to create and use threads in a
Visual Basic .NET –based application.

The lesson ends by raising some of the issues that students must be aware of
when using threads. Be sure to point out that threading is a powerful yet
potentially dangerous technique, and that students can choose whether or
not to use it in their applications.

 Module 9: Developing Components in Visual Basic .NET 1

Overview

n Components Overview

n Creating Serviced Components

n Creating Component Classes

n Creating Windows Forms Controls

n Creating Web Forms User Controls

n Threading

As a Microsoft® Visual Basic ® developer, you probably already know how to
develop and use components in your applications. In Visual Basic .NET version
7.0, you can use the new design-time features to easily create components and
extend their functionality.

After completing this module, you will be able to:

n Describe the different types of components that you can create in
Visual Basic .NET.

n Create components that can be used by managed and unmanaged client
applications.

n Create serviced components.

n Create component classes.

n Create Microsoft Windows® Forms controls.

n Create Web user controls.

n Use threading to create multithreaded applications.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to create components
in Visual Basic .NET.

2 Module 9: Developing Components in Visual Basic .NET

u Components Overview

n Types of Components

n Using Modules As Components

n Using Classes As Components

n Using Components in Unmanaged Client Applications

n .NET Remoting Overview

In Visual Basic .NET, you can create several types of components that are
accessible from both managed client applications (those built on the services of
the Microsoft .NET Framework common language runtime) and unmanaged
client applications (for example, client applications created in Visual Basic 6.0).

After you complete this lesson, you will be able to:

n Describe the types of components that you can create in Visual Basic .NET.

n Use modules and classes as components.

n Use Visual Basic .NET–based components in unmanaged environments.

n Explain the key concepts of .NET Remoting.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson explains the
types of components that
you can create in a
Visual Basic .NET– based
application and how you can
make them visible to
unmanaged client
applications. It also provides
an overview of .NET
Remoting for component
communication.

 Module 9: Developing Components in Visual Basic .NET 3

Types of Components

n Structures

n Modules

n Classes

n Component Classes

n Serviced Components

n User Controls

l Windows Forms user controls

l Web Forms user controls

In Visual Basic .NET, you can create several different types of components,
including:

n Structures

n Modules

n Classes

n Component classes

n Serviced components

n User controls

Structures
You can use structures as components by declaring them as public when you
define them. Structures support many features of classes, including properties,
methods, and events, but are value types, so memory management is handled
more efficiently. Structures do not support inheritance.

Modules
You can use modules as components by declaring them as public when you
define them. Declaring modules as public allows you to create code libraries
that contain routines that are useful to multiple applications. You can also use
modules to create reusable functions that do not apply to a particular component,
class, or structure.

If you have used the GlobalMultiUse or GlobalSingleUse classes in previous
versions of Visual Basic, the concept of a code library is not new to you. These
classes provide the same functionality in Visual Basic .NET; the client code
does not need to qualify these classes by the class name to call the functions.

Topic Objective
To explain the different
types of components that
you can create in
Visual Basic .NET.

Lead-in
You can create several
types of components in a
Visual Basic .NET– based
application.

Delivery Tip
Point out that this module
focuses on how to create
and use component classes,
serviced components, and
user controls. The other
component types are
mentioned for reference
purposes.

4 Module 9: Developing Components in Visual Basic .NET

Classes
You can use classes as components by declaring them as public within an
assembly. You can use public classes from any .NET-based client application
by adding a reference to the component assembly. You can extend the
functionality of classes through mechanisms such as properties, methods, and
events. Classes are also extensible through inheritance, which allows
applications to reuse existing logic from these components.

Component Classes
A class becomes a component when it conforms to a standard for component
interaction. This standard is provided through the IComponent interface. Any
class that implements the IComponent interface is a component. Component
classes allow you to open your class in a visual designer, and they allow your
class to be sited onto other visual designers.

Serviced Components
Serviced components are derived directly or indirectly from the
System.EnterpriseServices.ServicedComponent class. Classes configured in
this manner are hosted by a Component Services application and can
automatically use the services provided by Component Services.

User Controls
User controls are components that are created by a developer to be contained
within Windows Forms or Web Forms. Each user control has its own set of
properties, methods, and events that make it suitable for a particular purpose.
You can manipulate user controls in the Windows Forms and Web Forms
designers and write code to add user controls dynamically at run time, just as
you can for the controls provided as part of the .NET Framework.

In this module, you will learn how to create and use component classes,
serviced components, and user controls. For more information about structures,
modules, and classes, see Module 5, “Object-Oriented Programming in
Visual Basic .NET,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

Note

 Module 9: Developing Components in Visual Basic .NET 5

Using Modules As Components

n Declare the Module As Public

n Reference and Import the Assembly into Client Code

Public Module MyMathFunctions
Public Function Square(ByVal lng As Integer) As Long

Return (lng * lng)
End Function

...
End Module

'Client code
Imports MyAssembly
...
Dim x As Long = Square(20)

Public Module MyMathFunctions
Public Function Square(ByVal lng As Integer) As Long

Return (lng * lng)
End Function

...
End Module

'Client code
Imports MyAssembly
...
Dim x As Long = Square(20)

In Visual Basic .NET, you can use modules as components outside of the
assembly in which they are defined. To make this possible, declare the module
as public when you define it. You then need to create a reference in the client
assembly to the component assembly and use the Imports statement to allow
access to the module methods.

The following example shows how to create a public module named
MyMathFunctions that defines the function Square. This module is defined
within the MyAssembly assembly. The module can then be used as a component
in client code, as shown in the second part of the example.

Public Module MyMathFunctions
 Public Function Square(ByVal lng As Long) As Long
 Return (lng * lng)
 End Function
 ...
End Module

'Client code
Imports MyAssembly
...
Dim x As Long = Square(20)

For more information about assemblies, see Module 10, “Deploying
Applications,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease). For the purposes of this module, you can think
of them as similar to Visual Basic 6.0 Microsoft ActiveX® dynamic -link
libraries (DLLs).

Topic Objective
To explain how to use
modules as components.

Lead-in
In Visual Basic .NET, you
can use modules as
components outside of the
assembly in which they are
defined.

Note

6 Module 9: Developing Components in Visual Basic .NET

Using Classes As Components

n Declare the Class As Public

n Reference and Import the Assembly into Client Code

Public Class Account
Public Sub Debit(ByVal AccountId As Long, Amount As Double)

'Perform debit action
End Sub

Public Sub Credit(ByVal AccountId As Long, Amount As Double)
'Perform credit action

End Sub
End Class

'Client code
Imports MyAssembly
Dim x As New Account()
x.Debit(1021, 1000)

Public Class Account
Public Sub Debit(ByVal AccountId As Long, Amount As Double)

'Perform debit action
End Sub

Public Sub Credit(ByVal AccountId As Long, Amount As Double)
'Perform credit action

End Sub
End Class

'Client code
Imports MyAssembly
Dim x As New Account()
x.Debit(1021, 1000)

You can use classes as components outside of the assembly in which they are
defined by marking the class as public. You then reference the component
assembly from the client assembly, and use the Imports statement to allow
direct access to the class.

The following example shows how to create a public class called Account that
defines the Debit and Credit methods. This class is defined in the
MyAssembly assembly. A separate client assembly then references the
assembly, and the class can then be used to created object instances.

Public Class Account
 Public Sub Debit(ByVal AccountId As Long, Amount As Double)
 'Perform debit action
 End Sub
 Public Sub Credit(ByVal AccountId As Long, Amount As Double)
 'Perform credit action
 End Sub
End Class

'Client code
Imports MyAssembly
Dim x As New Account()
x.Debit(1021, 1000)

Topic Objective
To explain how to use
classes as components.

Lead-in
In Visual Basic .NET, you
can use classes as
components.

 Module 9: Developing Components in Visual Basic .NET 7

Using Components in Unmanaged Client Applications

n Setting Assembly Properties

l Generate a strong name

l Select Register for COM Interop in Build options

n Exposing Class Members to COM and Component
Services

l Define and implement interfaces

l Use the ClassInterface attribute with AutoDual value

l Use the COMClass attribute

You can create Visual Basic .NET components that can be used by unmanaged
client applications. This interoperability allows you to use Component Services
features such as object pooling and transactions. In order to expose your
components to COM and Component Services, you must set specific assembly
properties and create your classes appropriately.

Setting Assembly Properties
You must provide your assembly with a strong name if you want the assembly
to be accessible to unmanaged code. To create a strong-named assembly, use a
private and public key pair when you build the application, so that the assembly
is guaranteed to be unique and cannot be inappropriately altered after you build
it.

Naming Your Assembly
You can generate a strong name for your assembly by editing the Strong Name
section of the Common Properties folder in the assembly property pages. The
Generate Key button creates a key file called KeyFile.snk and links it to your
project. Your assembly will then be strong-named the next time you build it.
This option will be automatically selected if you choose to Register for COM
Interop as described in the next paragraph.

For more information about creating strong-named assemblies, see
Module 10, “Deploying Applications,” in Course 2373A, Programming with
Microsoft Visual Basic .NET (Prerelease).

Topic Objective
To explain how to create
components that can be
used by unmanaged client
applications, such as
Visual Basic 6.0– based
clients.

Lead-in
You can use COM to make
all Visual Basic .NET
components accessible from
unmanaged clients, if you
follow some simple steps.

Delivery Tip
Remind students that
assemblies and strong
names will be covered in
Module 10, “Deploying
Applications,” in Course
2373A, Programming with
Microsoft Visual Basic .NET
(Prerelease).

Note

8 Module 9: Developing Components in Visual Basic .NET

Registering Your Assembly
You can automatically register an assembly for COM interoperability in the
Configuration Properties section of the assembly property pages. The Build
section provides a Register for COM Interop check box. If you select this
check box, your assembly is registered with COM when it is next built. If you
subsequently rebuild your assembly after the initial registration, it will first be
unregistered before being re-registered. This process ensures that the registry
does not contain outdated information.

Exposing Class Members to COM and Component
Services
Creating a class that has public properties and methods does not make the class
members accessible to COM and Component Services. Unless you expose the
class members, the class itself will be accessible, but the methods will not be
accessible except through late binding. You can expose the class members and
enable early binding by:

n Defining a public interface.

n Using the ClassInterface attribute.

n Using the COMClass attribute.

Defining a Public Interface
Defining a public interface and implementing it within your public class allows
unmanaged client applications to view and bind to the methods of the interface.
This approach provides the most consistent and safe way to expose components
to COM because use of interfaces prevents many problems associated with
versioning.

The following code shows how to create a public interface and then use the
interface in a class that will be accessible to unmanaged client applications
through COM:

Public Interface IVisible
 Sub PerformAction()
End Interface

Public Class VisibleClass
 Implements IVisible
 Public Sub PerformAction() _
 Implements IVisible.PerformAction
 'Perform your action
 End Sub
End Class

 Module 9: Developing Components in Visual Basic .NET 9

Using the ClassInterface Attribute
The System.Runtime.InteropServices namespace provides the ClassInterface
attribute. This attribute allows you to create a class with a dual interface so that
all members of the class (and base classes) are automatically accessible to
unmanaged client applications through COM. The following code shows how
to use the ClassInterface attribute:

Imports System.Runtime.InteropServices
<ClassInterface(ClassInterfaceType.AutoDual)> _
Public Class VisibleClass
 Public Sub PerformAction()
 'Perform your action
 End Sub
End Class

Using the COMClass Attribute
The Microsoft.VisualBasic namespace provides the COMClass attribute that
you can use within a class to expose all of the public class members to COM.
Visual Basic .NET provides a class template item called COM Class that you
can add to any type of project that uses the COMClass attribute. Any assembly
that contains this type of class will register itself when it is built and
subsequently rebuilt.

All three approaches can cause versioning problems if public method
signatures are altered between versions. For this reason, implementing
interfaces is the preferred approach because new interfaces with new method
signatures can be created without causing versioning difficulties.

Delivery Tip
Verify that students
understand what dual
interfaces are, and give a
brief explanation if required.

Caution

10 Module 9: Developing Components in Visual Basic .NET

.NET Remoting Overview

Marshal By Value

Client Code

Server
Proxy Channel

Formatter

Remoting Boundary

Server AppDomain

Client Code

Marshal By Reference

Server
Object
Copy

Client AppDomain

Channel

Formatter

Server
Object

Channel

Formatter

Previous versions of Visual Basic use COM and the distributed version of COM
(DCOM) to communicate with components in different processes or on
different computers. Visual Basic .NET uses .NET Remoting to allow
communication between client and server applications across application
domains.

The .NET Framework provides several services that are used in remoting:

n Communication channels are responsible for transporting messages to and
from remote applications by using either a binary format over a
Transmission Control Protocol (TCP) channel or Extensible Markup
Language (XML) over a Hypertext Transfer Protocol (HTTP) channel.

n Formatters that encode and decode messages before they are transported by
the channel.

n Proxies that forward remote method calls to the proper object.

n Remote object activation and lifetime support for marshal-by-reference
objects that execute on the server.

n Marshal-by-value objects that are copied by the .NET Framework into the
process space on the client to reduce cross-process or cross-computer round
trips.

For more information about .NET Remoting, see “.NET Remoting
Technical Overview” in the Microsoft Visual Studio® .NET documentation.

Topic Objective
To provide an overview
of .NET Remoting.

Lead-in
The .NET Framework
provides several services
that are used in remoting.

Delivery Tip
Point out that this topic only
presents an overview.
Module 13, “Remoting and
Web Services,” in Course
2349A, Programming
the .NET Framework with
C# (Prerelease), covers this
topic in more depth.

Note

 Module 9: Developing Components in Visual Basic .NET 11

u Creating Serviced Components

n Hosting Components in Component Services

n Using Transactions

n Using Object Pooling

n Using Constructor Strings

n Using Security

n Using Other Component Services

n Configuring Assemblies for Component Services

After completing this lesson, you will be able to:

n Describe the requirements for hosting .NET-based components in a
Component Services application.

n Enable transaction processing in your components.

n Use object pooling to improve performance for objects that need extra
resources.

n Use security attributes to specify how components interact with Component
Services security.

n Add constructors to control how a component is initialized.

n Explain how to use other Component Services, such as Just-In-Time
activation, from Visual Basic .NET components.

n Set assembly-level attributes to improve the installation of your application.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines .NET
components that are hosted
by Component Services.

12 Module 9: Developing Components in Visual Basic .NET

Hosting Components in Component Services

n Add a Reference to System.EnterpriseServices in Your
Assembly

n The System.EnterpriseServices Namespace Provides:

l ContextUtil class

l ServicedComponent class

l Assembly, class, and method attributes

You must add a project reference to the System.EnterpriseServices namespace
if you want to host a Visual Basic .NET component in a Component Services
application. This namespace provides the main classes, interfaces, and attributes
for communicating with Component Services.

The System.EnterpriseServices namespace provides the following features.

Feature Usage

ContextUtil class Use this class to participate in transactions and to interact with

security information.

The functionality of this class is similar to the functionality of the
ObjectContext class in Visual Basic 6.0.

ServicedComponent
class

All component classes that need to be hosted within a Component
Services application must inherit this class.

This class defines the base type for all context bound types and
implements methods similar to those found in the
IObjectControl interface used in Visual Basic 6.0–based
Component Services applications.

Assembly, class, and
method attributes

You can define several assembly attributes for Component
Services interrogation in the AssemblyInfo.vb file. These values
are used to set the application name and description and other
values when the application is installed as a Component Services
application.

Several class and method attributes are also defined by the
System.EnterpriseServices namespace, including
TransactionAttribute, AutoCompleteAttribute,
ObjectPoolingAttribute , and ConstructionEnablesAttribute .

The “Attribute” part of an attribute name is optional, so, for example,
you can use either AutoComplete or AutoCompleteAttribute in your code.

Topic Objective
To explain the requirements
for hosting components in
Component Services.

Lead-in
To enable components to be
hosted in Component
Services, the .NET
Framework provides several
items that you need to
include in your assembly
and classes.

Note

 Module 9: Developing Components in Visual Basic .NET 13

Using Transactions

n Transaction Attribute Specifies How a Class Participates in
Transactions

n ContextUtil Class Provides Transaction Voting

n AutoComplete Attribute Avoids Using the SetAbort,
SetComplete, and ContextUtil Methods

<Transaction(TransactionOption.Required)> Public Class Account
Inherits ServicedComponent

Public Sub Debit(...)
'Perform debit action
ContextUtil.SetComplete()

End Sub

<AutoComplete()> Public Sub Credit(...)
'Perform credit action
'No SetComplete because AutoComplete is on

End Sub
End Class

<Transaction(TransactionOption.Required)> Public Class Account
Inherits ServicedComponent

Public Sub Debit(...)
'Perform debit action
ContextUtil.SetComplete()

End Sub

<AutoComplete()> Public Sub Credit(...)
'Perform credit action
'No SetComplete because AutoComplete is on

End Sub
End Class

Transactions are often required to maintain data integrity and to synchronize
updates to data in multiple data sources. You can enable transaction processing
in serviced components by including the appropriate attributes and classes in
your component code.

Transaction Attribute Options
You use the Transaction attribute to specify how a class participates in
transactions. You can set transaction support to the one of the following options.

Option Effect

Disabled The class instance will not use transactions and will ignore any

transactions from parent objects.

NotSupported The class instance will not be created within the context of a
transaction.

Required The class instance will enlist in an existing transaction that is
supplied by the calling object’s context. If no transaction exists,
one will be created.

RequiresNew The class instance will always create a new transaction regardless
of any transactions already created by calling objects.

Supported The class instance will enlist in a transaction if provided by the
calling object’s context but will not create a transaction if one
does not already exist.

Topic Objective
To examine how
components can utilize
Component Services
transactions.

Lead-in
Various objects and
attributes enable
Visual Basic .NET
components to use
Component Services
transactions.

14 Module 9: Developing Components in Visual Basic .NET

Using the Transaction Attribute
The following example defines an Account class and sets the Transaction
attribute as Required.

<Transaction(TransactionOption.Required)> Public Class Account
 Inherits ServicedComponent

 Public Sub Debit(ByVal id As Integer, _
 ByVal amount As Double)
 'Debit code
 End Sub
End Class

Transaction Voting Options
You can vote for a transaction outcome by using methods of the ContextUtil
class, which is supplied by the System.EnterpriseServices namespace. This
static class provides many methods and properties that will be familiar to you if
you have created components that use MTS or Component Services. Several of
the common methods are outlined below.

ContextUtil method Use this method to:

SetAbort Vote for the failure of a transaction. The transaction can

only succeed if all objects involved in the transaction vote
unanimously for success. This method also allows the
object to be deactivated after the method call is complete.

SetComplete Vote for the success of a transaction. If all objects involved
in the transaction vote for success, then the transaction can
be completed. This method also allows the object to be
deactivated after the method call is complete.

EnableCommit Vote for a successful completion of the transaction, while
not allowing the object to be deactivated after the method
call is complete.

This is useful if you want to maintain state across multiple
method calls, but you do not need further action to
successfully complete the transaction if so requested by the
top-level serviced component.

DisableCommit Vote for an unsuccessful completion of the transaction,
while not allowing the object to be deactivated after the
method call is complete.

This is useful if you want to maintain state across multiple
method calls and you need other actions to occur before the
transaction can be successfully completed.

 Module 9: Developing Components in Visual Basic .NET 15

Using the ContextUtil Class
The following example shows how to use the ContextUtil class to complete or
abort transactions in the Debit method of the Account class, based on any
exceptions encountered.

Public Sub Debit(ByVal id As Integer, ByVal amount As Double)
 Try
 'Perform update to database
 ...
 ContextUtil.SetComplete()
 Catch ex As Exception
 ContextUtil.SetAbort()
 Throw ex
 End Try
End Sub

Processing Transactions
To avoid using the SetAbort and SetComplete methods of ContextUtil, you
can set the AutoComplete attribute of specific methods of the component. If no
exceptions occur during the method execution, the object behaves as if
SetComplete has been called. If exceptions do occur, the object behaves as if
SetAbort has been called.

Using the AutoComplete Attribute
The following example shows how to use the AutoComplete attribute:

<AutoComplete()>Public Sub Credit(_
 ByVal fromAccount As Integer, ByVal amount As Double)
 'Perform update to database
 …
 'No SetComplete or SetAbort is required
End Sub

16 Module 9: Developing Components in Visual Basic .NET

Using Object Pooling

n Object Pooling Allows Objects to Be Created in
Advance

n ObjectPooling Attribute Specifies MinPoolSize and
MaxPoolSize

n ServicedComponent Provides CanBePooled Method

<ObjectPooling(Enabled:=True, MinPoolSize:=5, _
MaxPoolSize:=50)> _

Public Class Account
Inherits ServicedComponent
...

Public Overrides Function CanBePooled() As Boolean
Return True

End Function
End Class

<ObjectPooling(Enabled:=True, MinPoolSize:=5, _
MaxPoolSize:=50)> _

Public Class Account
Inherits ServicedComponent
...

Public Overrides Function CanBePooled() As Boolean
Return True

End Function
End Class

In Visual Basic .NET, you use the ObjectPooling attribute and the
ServicedComponent base class to create serviced components that use object
pooling.

What Is Object Pooling?
Object pooling allows a preset number of objects to be created in advance, so
they are ready for use by client requests when the application first starts up.
When a client application requests an object, one is taken from the pool of
available objects and is used for that request. When the request is finished, the
object is placed back in the pool for use by other client requests.

You can use pooling to improve the performance of objects that require
significant periods of time to acquire resources and complete an operation.
Objects that do not require such resources will not benefit significantly from
object pooling.

Topic Objective
To examine how
components can use object
pooling.

Lead-in
Various attributes and
interfaces enable
Visual Basic .NET
components to use object
pooling.

 Module 9: Developing Components in Visual Basic .NET 17

Enabling Object Pooling
You specify the ObjectPooling attribute so that Component Services can place
the component in an object pool. You can also specify optional arguments to
the attribute that set the MinPoolSize and MaxPoolSize values of the pool.

n MinPoolSize

To set the minimum number of objects to be created in advance in the pool,
use the MinPoolSize argument.

n MaxPoolSize

To set the maximum number of objects that can be created in the pool, use
the MaxPoolSize argument.

• If no objects are available in the pool when a request is received, the
pool can create another object instance if this preset maximum number
of objects has not already been reached.

• If the maximum number of objects have already been created and are
currently unavailable, requests will begin queuing for the next available
object.

Returning Objects to the Object Pool
Use the CanBePooled method to specify whether your component can be
returned to the object pool. Objects can only be returned to the pool when they
are deactivated. This happens when the SetComplete or SetAbort methods are
called when the object is transactional, or if a Dispose method is explicitly
called if the object is not transactional.

n True

If your component supports object pooling and can safely be returned to the
pool, the CanBePooled method should return True.

n False

If your component does not support object pooling, or if the current instance
cannot be returned to the pool, the CanBePooled method should return
False.

If object pooling is disabled for a component, the CanBePooled method
will not be executed.

Note

18 Module 9: Developing Components in Visual Basic .NET

Using the CanBePooled Method
The following example shows how to create an object pool for the Account
object with a minimum of five objects and a maximum of 50 at any one time.
The CanBePooled method returns True to inform Component Services that the
object can be returned to the pool.

<ObjectPooling(Enabled:=True, MinPoolSize:=5,MaxPoolSize:=50)>
Public Class Account
 Inherits ServicedComponent

 Public Sub Debit(ByVal id As Integer, _
 ByVal amount As Double)
 ...
 End Sub

 Public Overrides Function CanBePooled() As Boolean
 Return True
 End Function
End Class

 Module 9: Developing Components in Visual Basic .NET 19

Using Constructor Strings

n Specify the ConstructionEnables Attribute to Indicate a
Construction String Is Required

n Override the Construct Method to Retrieve Information

<ConstructionEnables(True)>Public Class Account
Inherits ServicedComponent
Public Overrides Sub Construct(ByVal s As String)

'Called after class constructor
'Use passed in string

End Sub
End Class

<ConstructionEnables(True)>Public Class Account
Inherits ServicedComponent
Public Overrides Sub Construct(ByVal s As String)

'Called after class constructor
'Use passed in string

End Sub
End Class

You can use a constructor string to control how serviced components are
initialized. This allows you to specify any initial information the object needs,
such as a database connection string, by using the Component Services
management console. You can use the ConstructionEnables attribute to enable
this process in a serviced component. Your Visual Basic .NET component can
then receive this constructor information because the inherited
ServicedComponent class provides the overridable Construct method.

Using the ConstructionEnables Attribute
You specify the ConstructionEnables attribute at the class level so that a
constructor string can be passed to the object during object construction. You
can modify this value when the component is installed as a Component Services
application using the Component Services management console.

Using the Construct Method
You override the Construct method of the ServicedComponent base class to
receive the string value sent to the component during construction.

The following example shows how to enable a constructor, override the
Construct method, and pass in a constructor string stored in a local variable.

<ConstructionEnables(True)>Public Class Account
 Inherits ServicedComponent

 Private strValue As String

 Public Overrides Sub Construct(ByVal s As String)
 'Called after class constructor
 strValue = s
 End Sub
End Class

Topic Objective
To explain how components
can utilize constructor
strings.

Lead-in
Component Services
provides constructor strings
to serviced components that
are accessible in
Visual Basic .NET
components through
the .NET Framework.

20 Module 9: Developing Components in Visual Basic .NET

Using Security

n Security Configuration Attributes Enable Security and
Role Configuration

n SecurityCallContext Class Provides Role Checking and
Caller Information

<ComponentAccessControl(True), SecurityRole("Manager")> _
Public Class Account

Inherits ServicedComponent

Public Function GetDetails() As String
With SecurityCallContext.CurrentCall

If .IsCallerInRole("Manager") Then
Return .OriginalCaller.AccountName

End If
End With

End Function
End Class

<ComponentAccessControl(True), SecurityRole("Manager")> _
Public Class Account

Inherits ServicedComponent
Public Function GetDetails() As String

With SecurityCallContext.CurrentCall
If .IsCallerInRole("Manager") Then

Return .OriginalCaller.AccountName
End If

End With
End Function

End Class

When working with serviced components, you can use pre-defined attributes
and objects to configure and test security options.

Security Attribute Options
You can set security option by using attributes in your classes. Component
Services will use these attributes when configuring your components as
described in the following table.

Attribute Usage

ApplicationAccessControl Use this assembly-level attribute to explicitly enable or

disable application-level access checking.

ComponentAccessControl Use this component-level attribute to explicitly enable
or disable component -level access checking.

SecurityRole Use this attribute at the assembly level to add a role to
the application. Use the attribute at the component
level to add a role to the application and link it to the
particular component.

Topic Objective
To explain how Component
Services security is
accessible in
Visual Basic .NET
components.

Lead-in
Component Services
provide security information
that Visual Basic .NET
components can use.

 Module 9: Developing Components in Visual Basic .NET 21

Setting Security Options
The following example shows how to set the assembly-level
ApplicationAccessControl attribute, enable security for the Account
component, and create the Manager role, which will be linked to the Account
component:

<Assembly: ApplicationAccessControl(True)>
<ComponentAccessControl(True), SecurityRole("Manager")> _
Public Class Account
 Inherits ServicedComponent
 ...
End Class

Retrieving Secur ity Information
You can discover security information about the caller of a serviced component
by using the SecurityCallContext class. This class provides information
regarding the chain of callers leading up to the current method call. The static
CurrentCall property of the SecurityCallContext class provides access to the
following methods and properties.

Method or property Usage

DirectCaller property Retrieves information about the last user or application

in the caller chain that directly called a me thod.

The property returns an instance of the SecurityIdentity
class that you can use to determine information about the
identity, such as the AccountName.

OriginalCaller property Retrieves information about the first user or application
in the caller chain that made the original request for the
required action.

The property also returns an instance of the
SecurityIdentity class.

IsCallerInRole method Tests whether a caller belongs to a particular role;
returns a Boolean value.

IsUserInRole method Tests whether the user belongs to a particular role;
returns a Boolean value

22 Module 9: Developing Components in Visual Basic .NET

Using the SecurityCallContext Class
The following example shows how use SecurityCallContext to determine
whether security is enabled, check whether a caller is in the Manager role, and
return the AccountName string from the OriginalCaller property, which is a
SecurityIdentity instance.

<ComponentAccessControl(True), SecurityRole("Manager")> _
Public Class Account
 Inherits ServicedComponent

 Public Function GetDetails() As String
 If ContextUtil.IsSecurityEnabled Then
 With SecurityCallContext.CurrentCall
 If .IsCallerInRole("Manager") Then
 Return .OriginalCaller.AccountName
 End If
 End With
 End If
 End Function
End Class

Delivery Tip
Point out that the example in
the student notes uses the
IsSecurityEnabled property
of the ContextUtil object to
avoid any exceptions
caused by security being
turned off for this
component. This is the
same technique used
previously with MTS and
Visual Basic 6.0.

 Module 9: Developing Components in Visual Basic .NET 23

Using Other Component Services

n Other Component Services Include:

l Just-in-time activation

l Queued components

l Shared properties

l Synchronization

Component Services provides a series of other services that you can use from
Visual Basic .NET components.

Just-in-Time Activation
When just-in-time (JIT) activation is enabled, an object is automatically
instantiated when a method is called on a serviced component (activation), and
then automatically deactivated when the method is complete (deactivation).
When this optio n is enabled, an object does not maintain state across method
calls, and this increases the performance and scalability of the application.

You can override the Activate and Deactivate methods inherited from the
ServicedComponent class to perform custom functionality during JIT. If
object pooling is enabled, the activation occurs when an existing object has
been taken from the pool, and the deactivation occurs when the object is placed
back in the pool.

JIT is automatically enabled if a component is transactional, and it cannot be
disabled. You can manually enable or disable JIT for non-transactional
components by using the JustInTimeActivation attribute.

Queued Components
Queued components provide asynchronous communication. This allows client
applications to send requests to queued components without waiting for a
response. The requests are “recorded” and sent to the server, where they are
queued until the application is ready to use the requests. These requests are then
“played back” to the application as if they were being sent from a regular client.

You can mark an application for queuing by using the assembly-level
ApplicationQueuing attribute. Mark individual components with the
InterfaceQueuing attribute.

Topic Objective
To provide an overview of
the remaining services
provided by Component
Services.

Lead-in
Component Services
provides several other
services that you can use in
Visual Basic .NET
components.

24 Module 9: Developing Components in Visual Basic .NET

Shared Properties
You can use the Shared Property Manger (SPM) components to share
information among multiple objects within the same application process. Use
the SPM components as you use them from components created in
Visual Basic 6.0.

Synchronization
Distributed applications can receive simultaneous calls from multiple clients.
Managing these simultaneous requests involves complex program logic to
ensure that resources are accessed safely and correctly. Component Services
provides this service automatically to components that use transactions. You
can also use the Synchronization attribute to specify this behavior.

 Module 9: Developing Components in Visual Basic .NET 25

Configuring Assemblies for Component Services

n Setting Assembly Attributes

l ApplicationName

l Description

l ApplicationActivation: library or server application

n Using Regsvcs to Register and Create Component
Services Applications

l Regsvcs.exe myApplication.dll

n Using Lazy Registration

l Application registered on first use by client

You can specify some assembly level attributes that provide information when
your assembly is installed as a Component Services application. The
information is stored in the AssemblyInfo.vb file that is part of your
Visual Basic .NET project.

Assembly attribute Usage

ApplicationName If you use this attribute to specify the name of the

application, a Component Services application with the
same name when your assembly is deployed and installed.

Description Use this attribute to set the Component Services application
description value when the assembly is deployed and
installed.

ApplicationActivation Use this attribute to specify whether you want to implement
your Component Services application as either a library or
a server application.

The acceptable values for this attribute are
ActivationOption.Server or ActivationOption.Library.

Setting Assembly Attributes
The following example shows a section of an AssemblyInfo.vb file that
specifies the application name, the description, and information about where the
application should be activated (that is, in a server or library process).

<Assembly: ApplicationName("BankComponent")>
<Assembly: Description("VB .NET Bank Component")>
<Assembly: ApplicationActivation(ActivationOption.Server)>

Topic Objective
To explain how to set the
assembly -level Component
Services attributes and
configure the application.

Lead-in
Setting assembly-level
Component Services
attributes helps define how
your application will behave
when you deploy it under
Component Services.

26 Module 9: Developing Components in Visual Basic .NET

Registering Your Assembly
You can register your assembly with Component Services either manually or
automatically.

n Manual registration

You can use the Regsvcs.exe utility to manually register your assembly.
This utility uses the information provided by your assembly attributes so
that the Component Services application can be created with the correct
default information. The basic syntax for using Regsvcs.exe is shown in the
following example:

.NET Framework Install path/Regsvcs.exe myApplication.dll

n Automatic registration

If you do not register your application manually, registration will
automatically occur when a client application attempts to create an instance
of a managed class that inherits from the ServicedComponent class. All of
the ServicedComponent classes within your assembly will then be
registered as part of the Component Services application. This is known as
Lazy Registration.

 Module 9: Developing Components in Visual Basic .NET 27

Demonstration: Creating a Serviced Component

In this demonstration, you will learn how to create a serviced component that
uses object pooling and how to call the component from a managed client.

Topic Objective
To demonstrate how to
create a serviced
component.

Lead-in
This demonstration shows
how to create a serviced
component.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

28 Module 9: Developing Components in Visual Basic .NET

Lab 9.1: Creating a Serviced Component

Objectives
After completing this lab, you will be able to:

n Create a serviced component.

n Reference a serviced component.

Prerequisites
Before working on this lab, you must be familiar with creating and using
components in MTS or Component Services.

Scenario
In this lab, you will create a serviced component based on a preexisting class.
The class contains a single method that customers use to logon. You will
register this assembly with Component Services and create a test harness
application that references and tests your component. The test harness will use a
preexisting form that allows you to enter a customer’s e-mail address and
password to retrieve the customer details by using the component.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab091\Starter folder, and the solution files are in the
install folder\Labs\Lab091\Solution folder.

Estimated time to complete this lab: 60 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create a
serviced component that
handles customer logon
information.

Explain the lab objectives.

 Module 9: Developing Components in Visual Basic .NET 29

Exercise 1
Creating the Serviced Customer Component

In this exercise, you will create a serviced component. The component is based
on a prewritten interface called ICustomer and a class called Customer that
implements the interface. You will add a reference to the EnterpriseServices
assembly and mark the class as a serviced component that requires transactions
and a construction string. You will add assembly-level attributes that will be
used when you place the component under the control of Component Services.

å To open the CustomerComponent project
1. Open Microsoft Visual Studio .NET.

2. On the File menu, point to Open, and click Project .

3. Set the location to install folder\Labs\Lab091\Ex01\Starter, click
CustomerComponent.sln, and then click Open.

4. Review the Customer.vb code for the ICustomer interface and Customer
class so that you understand the purpose of the LogOn function.

å To reference the EnterpriseServices assembly
1. On the Project menu, click Add Reference .

2. On the .NET tab, in the Component Name list, click
System.EnterpriseServices, click Select, and then click OK.

3. Open the Customer.vb Code Editor. At the start of the code, insert an
Imports statement that references the System.EnterpriseServices
namespace.

å To mark the Customer class as a serviced component

• Between the Public Class Customer definition and the Implements
ICustomer statement, add an Inherits ServicedComponent statement.

å To add transactional behavior to the Customer component

1. Modify the class definition to include the Transactional class attribute,
specifying a value of TransactionOption.Required. This is necessary
because a “Last_Logon” date-time field is updated each time a customer
logs on to the system.

2. In the Try block of the LogOn method, before the statement that executes
Return datCustomer, add a call to ContextUtil.SetComplete.

3. Within the Catch block, before the statement that throws the exception to
the calling application, add a call to ContextUtil.SetAbort.

å To add construction string behavior to the Customer component

1. Modify the class definition to include the ConstructionEnabled class
attribute, specifying a value of True.

2. Override the Construct method of the inherited ServicedComponent class,
and assign the passed in value to the local connString variable.

30 Module 9: Developing Components in Visual Basic .NET

å To add the serviced component assembly attributes

1. Open AssemblyInfo.vb.

2. At the beginning of the file, add an Imports statement that references the
System.EnterpriseServices namespace.

3. Add the following assembly attributes.

Assembly attribute Parameters

ApplicationName “Customers”

Description “Customer Component”

ApplicationActivation ActivationOption.Server

å To generate a key file

1. In Solution Explorer, right-click the CustomerComponent project, and
then click Properties.

2. In the Common Properties folder of the tree view, click the Strong Name
node.

3. Select the Generate strong name using check box, click Generate Key to
create and link the key file to the project, and then click OK.

å To compile the assembly

• On the Build menu, click Build, and then quit Visual Studio .NET.

 Module 9: Developing Components in Visual Basic .NET 31

Exercise 2
Creating the Serviced Component Application

In this exercise, you will place the component under the control of Component
Services and set the construction string for the database connection.

å To create the serviced component application

1. Open a command prompt session, and move to install folder\Labs\
Lab091\Ex01\Starter\bin.

2. Execute the following command to install the assembly into the global
assembly cache. (Note that this step is only required for Beta 2 to fix a
known bug.)

"%ProgramFiles%\Microsoft.NET\FrameworkSDK\Bin\gacutil.exe"
-i CustomerComponent.dll

3. Execute the following command to register the assembly and create the
serviced component application:

"%Windir%\Microsoft.NET\Framework\v1.0.2914\Regsvcs.exe"
CustomerComponent.dll

å To confirm that the assembly is now a serviced component application

1. On the Start menu, point to Programs, point to Administrative Tools, and
then click Component Services.

2. Locate the COM+ applications installed on the local computer.

3. Right-click the Customers application, and then click Properties. Your
screen should appear similar to the following screen shot:

32 Module 9: Developing Components in Visual Basic .NET

4. Confirm that the assembly-level attributes that you specified in your project
have been set in the application.

5. Close the Customers Properties dialog box.

å To set properties for the Customer component

1. Expand the Customers application, and locate
CustomerComponent.Customer within the list of components.

2. Right-click the CustomerComponent.Customer component, and then
click Properties.

3. Click the Transactions tab to view the transactional setting for the class.

4. Click the Activation tab, set the constructor string to the following value,
and then click OK:

Data Source=LocalHost;Initial Catalog=Cargo;Integrated
Security=True;

5. Close the Properties and Component Services windows.

 Module 9: Developing Components in Visual Basic .NET 33

Exercise 3
Testing the Serviced Customer Component

In this exercise, you will modify a prewritten test harness application to
reference the serviced Customer component. You will then test the application.

å To open the test harness project
1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project.

3. Set the location to install folder\Labs\Lab091\Ex03\Starter, click
TestHarness.sln, and then click Open.

å To set a reference to the serviced component assembly
1. On the Project menu, click Add Reference .

2. In the Add Reference dialog box, click Browse, and then locate the
install folder\Labs\Lab091\Ex01\Starter\bin folder.

3. Click CustomerComponent.dll, and then click Open.

4. From the existing list of .NET components, click
System.EnterpriseServices, and then click Select.

5. Click OK to close the Add Reference dialog box.

å To call the Customer object

1. In the frmTestCustomer code window, add an Imports
CustomerComponent statement.

2. Locate the btnLogon_Click method. Within the Try block, declare an
ICustomer variable called cust, and instantiate it by creating a new
Customer object. Your code should look as follows:

Dim cust As ICustomer = New Customer()

3. Call the LogOn method of the cust object, passing in the following values.

Parameter Value

Email txtEmail.Text

Password txtPassword.Text

4. Use the ds Dataset object to store the value returned from the LogOn
method.

34 Module 9: Developing Components in Visual Basic .NET

å To test the application

1. On the Debug menu, click Start.

2. Enter the following values.

TextBox Value

E-mail john@tailspintoys.msn.com

Password password

3. Click Logon, and confirm that a record is successfully retrieved from the
component.

4. Click Close to quit the test harness application.

5. Quit Visual Studio .NET.

 Module 9: Developing Components in Visual Basic .NET 35

u Creating Component Classes

n Architecture of a Component Class

n Creating a Component Class

After completing this lesson, you will be able to:

n Describe the architecture of a component class.

n Create a component class.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines
component classes.

36 Module 9: Developing Components in Visual Basic .NET

Architecture of a Component Class

System.ComponentModel.Component

Predefined Classes

Custom Classes

IComponent
Interface

Base

Class

Deriv
ed

Class
es

Component Classes

In addition to supporting classes and structures, the System namespace
provides a library of components designed to make component development
easy. When you create a component class based on the
ComponentModel.Component base class, you automatically inherit the basic
architecture for your class.

IComponent Interface
The IComponent interface allows you to create custom components or to
configure existing components such as the MessageQueue or Timer
components within the visual designer for your component. After you place any
existing components on your component (siting), you can access them in your
component code in the same way as you can when they are placed in the
component tray of a Windows Form.

ComponentModel.Component Base Class
The ComponentModel.Component base class automatically implements the
IComponent interface and provides all of the necessary code for handling the
siting of components. This is useful because implementing the IComponent
interface directly would require you to manually create the functionality for
handling sited components in addition to the functionality for your component
to be sited on another component.

Topic Objective
To describe the architecture
of a component class.

Lead-in
Component classes offer
several features not
included in standard
Visual Basic .NET classes.

 Module 9: Developing Components in Visual Basic .NET 37

Enhanced Design-Time Features
The IComponent interface provides enhanced design-time features. You can
add your component class to the Toolbox and the component tray of a Windows
Form, a Web Form, or any other item that implements the IContainer interface,
including another component class. Developers using your component can then
use the Properties window to set properties of the component in the same way
that they would for .NET Framework components.

To add a compiled component class to the Toolbox, perform the following steps:

1. On the Tools menu, click Customize Toolbox.

2. In the Customize Toolbox dialog box, click the .NET Framework
Components tab.

3. Browse for the component assembly that you want to add.

4. Select the component from the displayed list of compiled components to add
it to the Toolbox.

38 Module 9: Developing Components in Visual Basic .NET

Creating a Component Class

1. Inherit the System.ComponentModel.Component

l Perform any initialization in constructor

l Override Dispose method

2. Add Any Sited Components

l Use Server Explorer or Toolbox items

3. Create Required Functionality

l Properties, methods, and events

4. Build the Assembly

The procedure for creating a component class with Visual Basic .NET is similar
to the procedure for creating standard classes, but there are a few extra steps.

1. Inherit the System.ComponentModel.Component class.

The Component Class template item contains the required code to inherit
the System.ComponentModel.Component class, including the constructor
code required to add your component class to a container. Add any
initialization code for your component class as part of the construction
process by placing code in the prewritten Sub New method.

You can override the Dispose method of the inherited Component class to
free any resources before the instance of your component is destroyed.

2. Add any sited components.

If your component class requires other components in order to fulfill its
purpose, you can add them within the Design view by dragging them from
the Toolbox or Server Explorer to your component class. These components
can then be programmatically accessed from within the code for your
component class.

3. Create required functionality.

Your component class can provide public properties, methods, and events to
allow the user of your component to interact with it at both design time and
run time.

4. Build the assembly.

Building the assembly enables other managed clients to make a reference to
your component.

Topic Objective
To explain how to create a
component class.

Lead-in
Creating a component class
is similar to creating a
standard class item, but
there are a few extra steps.

Delivery Tip
Point out the sample code in
the student notes, but
explain that a demonstration
immediately follows this
topic.

 Module 9: Developing Components in Visual Basic .NET 39

The following example shows how to create a component class that is derived
from the System.ComponentModel.Component class. It extends the
functionality of the standard Timer class by defining additional properties and
events.

Public Class Hourglass
 Inherits System.ComponentModel.Component

 Public Event Finished()
 Private WithEvents localTimer As System.Timers.Timer

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()

 'Initialize the timer for 1 minute (60000 milliseconds)
 localTimer = New System.Timers.Timer()
 localTimer.Enabled = False
 localTimer.Interval = 60000
 End Sub

 Public Property Enabled() As Boolean
 Get
 Return localTimer.Enabled
 End Get
 Set(ByVal Value As Boolean)
 localTimer.Enabled = Value
 End Set
 End Property

 Private Sub localTimer_Tick(...) Handles localTimer.Tick
 'Raise the finished event after localtimer_Tick is raised
 RaiseEvent Finished()
 End Sub

 Public Overloads Overrides Sub Dispose()
 'Disable the localTimer object
 localTimer.Enabled = False
 localTimer.Dispose()
 MyBase.Dispose()
 End Sub
End Class

When examining the code, note the following:

n The component behaves as an hourglass that raises a Finished event one
minute after it is enabled.

n The component can be turned on by using the Enabled property at design
time or run time.

n The localTimer is initialized as part of the Sub New constructor and set for
a timer interval of 60,000 milliseconds, or one minute.

n The Dispose method is overridden to ensure that the localTimer object is
safely disposed of.

Delivery Tip
Point out that inheriting from
the Timer class would also
produce a similar
component.

40 Module 9: Developing Components in Visual Basic .NET

Demonstration: Creating a Stopwatch Component

In this demonstration, you will learn how to create a component class that can
be used by another assembly.

Topic Objective
To demonstrate how to
create and use a component
class.

Lead-in
This demonstration shows
how to create a stopwatch
component class and use it
from another application.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 9: Developing Components in Visual Basic .NET 41

u Creating Windows Forms Controls

n Inheriting from the UserControl Class

n Inheriting from a Windows Forms Control

n Providing Control Attributes

In previous versions of Visual Basic, you can create ActiveX controls that can
be reused by different client applications. In Visual Basic. NET, you can also
use inheritance to create controls.

After completing this lesson, you will be able to:

n Create a control based on the System.Windows.Forms.UserControl class.

n Create a control based on an existing Windows Forms control.

n Add attributes to your controls that enable advanced design-time
functionality.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines how
to create Windows Forms
controls in
Visual Basic .NET.

42 Module 9: Developing Components in Visual Basic .NET

Inheriting from the UserControl Class

n Inherit from System.Windows.Forms.UserControl

n Add Required Controls to Designer

n Add Properties and Methods That Correspond to Those
of Constituent Controls

n Add Any Additional Properties and Methods

n No InitProperties, ReadProperties, or WriteProperties

l Property storage is automatic

In previous versions of Visual Basic, you can create a unique new control by
placing one or more existing controls onto a UserControl designer. You can
then create custom properties, methods, and events to set and retrieve values for
the contained controls. This type of control is useful when several forms require
the same layout of controls, such as forms for addresses or contact details.

Adding Required Controls
In Visual Basic .NET, you can create the same type of user controls by
inheriting your control from the System.Windows.Forms.UserControl class,
which is automatic if you create a control using the User Control template item.
You can inherit from this base class to use a designer similar to the one used in
previous versions of Visual Basic. By using this method, you can:

n Place as many controls on the designer as you need to in order to create your
own user control.

n Access these controls within your user control class, because they are
declared as private variables.

n Add your own properties and methods that correspond to the properties and
methods of the constituent controls.

n Add public properties, methods, and events in exactly the same way that
you do for a regular class.

Adding Properties and Methods
In previous versions of Visual Basic, you persist the properties to a
PropertyBag object, so the control retains its settings between design time and
run time. To do this, you write code in the ReadProperties and
WriteProperties events of the UserControl class.

In Visual Basic .NET, this persisting of information is automatic and requires
no extra code.

Topic Objective
To explain how to create a
control that inherits from the
UserControl class.

Lead-in
In Visual Basic .NET, you
can inherit from the
UserControl class to create
the same type of user
controls that you can create
in Visual Basic 6.0.

 Module 9: Developing Components in Visual Basic .NET 43

Example
The following example shows how to create a simple user control that contains
a label and a text box:

Public Class LabelAndTextControl
 Inherits System.Windows.Forms.UserControl

 Public Property TextBoxText() As String
 Get
 Return TextBox1.Text
 End Get
 Set(ByVal Value As String)
 TextBox1.Text = Value
 End Set
 End Property

 Public Property LabelText() As String
 Get
 Return Label1.Text
 End Get
 Set(ByVal Value As String)
 Label1.Text = Value
 End Set
 End Property
 ... 'Windows Form Designer generated code
End Class

The TextBox1 and Label1 controls are privately declared variables within the
user control that are only accessible using the public properties TextBoxText
and LabelText.

44 Module 9: Developing Components in Visual Basic .NET

Inheriting from a Windows Forms Control

n Allows Enhanced Version of a Single Control

n Inherit from Any System.Windows.Forms Control

Public Class MyTextBox
Inherits System.Windows.Forms.TextBox

Private strData As String
Public Property HiddenData() As String

Get
Return strData

End Get
Set(ByVal Value As String)

strData = Value
End Set

End Property
...

End Class

Public Class MyTextBox
Inherits System.Windows.Forms.TextBox

Private strData As String

Public Property HiddenData() As String
Get

Return strData
End Get
Set(ByVal Value As String)

strData = Value
End Set

End Property
...

End Class

In previous versions of Visual Basic, you can create enhanced versions of an
existing control by placing an instance of the control on the UserControl
designer. You can then create public properties, methods, and events that
correspond to the equivalent items of the constituent control, adding any custom
items to create your enhanced behavior.

In Visual Basic .NET, you can create a control that inherits from any
System.Windows.Forms class, such as the TextBox or Label class. Because
this approach uses inheritance, there is no need to create public properties,
methods, and events that map to the constituent control. This greatly reduces
the amount of code required. You only need to create any extra functionality, as
described for user controls in the previous topic.

The following example shows how to create a control that inherits from
SystemWindows.Forms and adds a public property:

Public Class MyTextBox
 Inherits System.Windows.Forms.TextBox

 Private strData As String

 Public Property HiddenData() As String
 Get
 Return strData
 End Get
 Set(ByVal Value As String)
 strData = Value
 End Set
 End Property
 ...
End Class

Topic Objective
To explain how to inherit
from a Windows Forms
control.

Lead-in
Inheritance makes it easy
for you to enhance an
existing control in
Visual Basic .NET.

 Module 9: Developing Components in Visual Basic .NET 45

This code creates a new control that inherits all of the TextBox class
functionality and adds a property called HiddenData.

For some existing controls, you can create a new graphical front end by
overriding the OnPaint method of the base class. However, some controls, such
as the TextBox control, are painted directly by Windows and cannot be
overridden.

Note

46 Module 9: Developing Components in Visual Basic .NET

Providing Control Attributes

n System.ComponentModel Provides Control Attributes

n Class Level – DefaultProperty, DefaultEvent,
ToolboxBitmap

n Property Level – Category, Description, DefaultValue

Imports System.ComponentModel

<ToolboxBitmap("C:\TXTICON.BMP"), DefaultEvent("Click")> _
Public Class MyTextBox

Inherits System.Windows.Forms.UserControl
<Category("Appearance"), _
Description("Stores extra data"), _
DefaultValue("Empty")> _

Public Property HiddenData() As String
...

End Property
...

End Class

Imports System.ComponentModel
<ToolboxBitmap ("C:\TXTICON.BMP"), DefaultEvent("Click")> _
Public Class MyTextBox

Inherits System.Windows.Forms.UserControl
<Category("Appearance"), _
Description("Stores extra data"), _
DefaultValue("Empty")> _

Public Property HiddenData() As String
...

End Property
...

End Class

In previous versions of Visual Basic, you can use the Procedure Attributes
dialog box to set control attributes, such as property descriptions and their
categories, which can be viewed in the Object Browser. You can supply similar
information in Visual Basic .NET by using the attributes provided by the
System.ComponentModel namespace.

Setting Class-level Attributes
You can specify several attributes for the control, including DefaultProperty,
DefaultEvent, and ToolboxBitmap. The following example shows how to set
the ToolboxBitmap and DefaultEvent attributes for the MyTextBox class:

<ToolboxBitmap("C:\TXTICON.BMP"), DefaultEvent("Click")> _
Public Class MyTextBox
 Inherits System.Windows.Forms.UserControl
...
End Sub

Topic Objective
To explain how to use
control attributes.

Lead-in
Control attributes can be
used to supply extra
information about the control
and its properties, methods,
and events.

 Module 9: Developing Components in Visual Basic .NET 47

Setting Property-level Attributes
You can specify property-level attributes for any public properties, including
the Category, Description, and DefaultValue attributes. The following
example shows how to set these attributes for the HiddenData property:

Imports System.ComponentModel

Public Class MyTextBox
 Inherits System.Windows.Forms.UserControl

 <Category("Appearance"), _
 Description("Stores extra data"), _
 DefaultValue("Empty")> _
 Public Property HiddenData() As String
 ...
 End Property
 ...
End Class

48 Module 9: Developing Components in Visual Basic .NET

Demonstration: Creating an Enhanced TextBox

In this demonstration, you will learn how to create a Windows Forms user
control based on the existing TextBox.

Topic Objective
To demonstrate how to
create a control based on an
existing Windows Forms
control.

Lead-in
In this demonstration, you
will learn how to create a
control based on the
Windows Forms TextBox
control.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 9: Developing Components in Visual Basic .NET 49

u Creating Web Forms User Controls

n Extending Existing Controls

n Creating Web User Controls

In Visual Basic .NET, you can create controls for use within ASP .NET Web
Forms.

After completing this lesson, you will be able to:

n Create a Web Forms user control based on other controls in the
System.Web.UI.UserControl class.

n Use a Web Forms user control within a Web Form.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines how
to create Web Forms user
controls in
Visual Basic .NET.

50 Module 9: Developing Components in Visual Basic .NET

Extending Existing Controls

1. Add a Web User Control to an ASP.NET Web Project

2. Use the Toolbox to Drag Existing Controls to the Web
User Control Designer

3. Add Properties and Methods

4. Save the .ascx File

5. Drag the .ascx File from Solution Explorer to the Web
Forms Designer

6. Create Web Form Code as Usual

Creating your own Web user control allows you to extend the controls provided
with ASP .NET. You can extend a single control with added features or create a
new control that is a combination of existing controls.

To create your own Web user control:

1. Add a Web user control to your ASP .NET Web project.

2. Use the Toolbox to drag-and-drop existing Web server controls to the Web
user control designer.

3. Add properties and methods in the code-behind file.

4. Save the .ascx Web user control file.

To use your Web user control:

1. Open your Web Form.

2. Drag the .ascx file from Solution Explorer to the Web Forms Designer.

3. Create any Web Form code that accesses the Web user control, as you
would for existing Web server controls.

4. Test your control by running your application and displaying the Web Form.

Topic Objective
To explain how to create a
Web user control by
extending existing Web
server controls.

Lead-in
You can create your own
Web user controls by
extending the existing Web
server controls provided by
ASP .NET.

 Module 9: Developing Components in Visual Basic .NET 51

Creating Web User Controls

Public MustInherit Class SimpleControl
Inherits System.Web.UI.UserControl

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
Public Property TextValue() As String

Get
Return TextBox1.Text

End Get
Set(ByVal Value As String)

TextBox1.Text = Value
End Set

End Property
End Class

Public MustInherit Class SimpleControl
Inherits System.Web.UI.UserControl

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
Public Property TextValue() As String

Get
Return TextBox1.Text

End Get
Set(ByVal Value As String)

TextBox1.Text = Value
End Set

End Property
End Class

<%@ Control Language="vb" AutoEventWireup="false"
Codebehind="SimpleControl.ascx.vb"
Inherits="MyApp.SimpleControl"%>

<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>

<%@ Control Language="vb" AutoEventWireup="false"
Codebehind="SimpleControl.ascx.vb"
Inherits="MyApp.SimpleControl"%>

<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>

To create a Web user control, you need to create:

1. The graphical layout of the controls in the .ascx file.

2. The code that executes in the.ascx.vb code-behind file.

The following example shows how to create a Web user control based on the
existing TextBox control while inheriting from the UserControl class. It also
provides a custom property for setting the TextBox1.Text value.

The following code is located in the Web user control .ascx file:

<%@ Control Language="vb" AutoEventWireup="false"
 Codebehind="SimpleControl.ascx.vb"
 Inherits="MyApp.SimpleControl"%>
<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>

The example code shows the similarity between Web Forms and Web user
control code, the main difference being the @ Control directive and the lack of
any <html>, <body>, or <form> tags.

Topic Objective
To explain how to create a
simple Web user control.

Lead-in
The code for creating a Web
user control is very similar to
that of a Web Form.

52 Module 9: Developing Components in Visual Basic .NET

The following code is located in the .ascx.vb code-behind file.

Public MustInherit Class SimpleControl
 Inherits System.Web.UI.UserControl
 Protected WithEvents TextBox1 _
 As System.Web.UI.WebControls.TextBox

 Public Property TextValue() As String
 Get
 Return TextBox1.Text
 End Get
 Set(ByVal Value As String)
 TextBox1.Text = Value
 End Set
 End Property
End Class

The SimpleControl class is similar to most classes in that it allows public
access to private members of the class. However, note that it is through
inheriting the UserControl class that the Web user control functionality is
provided.

 Module 9: Developing Components in Visual Basic .NET 53

Demonstration: Creating a Simple Web Forms User
Control

In this demonstration, you will learn how to create a simple Web Forms user
control that contains a Label and a TextBox as its constituent controls.

Topic Objective
To demonstrate how to
create a Web Forms user
control based on multiple
constituent controls.

Lead-in
This demonstration shows
how to create a simple Web
Forms user control that uses
a Label and a TextBox as
its constituent controls.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

54 Module 9: Developing Components in Visual Basic .NET

Lab 9.2: Creating a Web Forms User Control

Objectives
After completing this lab, you will be able to:

n Create a Web Forms user control.

n Use a Web Forms user control on a Web Form.

Prerequisites
Before working on this lab, you must be familiar with creating Web Form
applications.

Scenario
In this lab, you will create a Web Forms user control that requests logon
information for a customer. The control will retrieve the customer information
by means of the serviced component that you created in the previous lab. You
will then use this control on a Web Form and test the control.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab092\Starter folder, and the solution files are in the
install folder\Labs\Lab092\Solution folder.

Estimated time to complete this lab: 30 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create a
Web Forms user control that
creates a logon screen for
customers.

Explain the lab objectives.

 Module 9: Developing Components in Visual Basic .NET 55

Exercise 1
Creating the LogOn Web Forms User Control

In this exercise, you will open a preexisting Web Forms application that allows
you to logon as a customer of the system. You will create a LogOn Web Forms
user control that uses text boxes and validation controls. This user control
allows users to enter their e-mail address and password and then click a Submit
button.

å To open the existing Web Forms application

1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project.

3. Set the location to Error! Hyperlink reference not valid.install folder\
Labs\Lab092\Ex01\Starter, click LogonControl.sln, and then click Open.

å To create the Web user control interface

1. On the Project menu, click Add Web User Control. Rename the item to
Logon.ascx, and then click Open.

2. From the Web Forms tab of the Toolbox, insert the following controls, and
set their property values as shown.

Control Property name Property value

Label (ID) lblEmail

 Text E-mail:

TextBox (ID) txtEmail

RegularExpressionValidator (ID) revEmail

 ErrorMessage Your e -mail address
is invalid

 ControlToValidate txtEmail

 ValidationExpression Browse and select
Internet E-mail
Address

 Display Dynamic

RequiredFieldValidator (ID) rfvEmail

 ErrorMessage Please enter an
e-mail address

 ControlToValidate txtEmail

 Display Dynamic

Label (ID) lblPassword

 Text Password:

TextBox (ID) txtPassword

 TextMode Password

56 Module 9: Developing Components in Visual Basic .NET

(continued)

Control Property name Property value

RequiredFieldValidator (ID) rfvPassword

 ErrorMessage Please enter a
password

 ControlToValidate txtPassword

 Display Dynamic

Label (ID) lblNotFound

 Text Not found message

 ForeColor Red

 Visible False

Button (ID) btnSubmit

 Text Submit

3. Arrange your controls as shown in the following screen shot:

 Module 9: Developing Components in Visual Basic .NET 57

å To create the Web user control code

1. View the Code Editor for Logon.ascx.

2. Declare an event with the following signature:

Public Event SubmitPressed(ByVal Email As String, _
 ByVal Password As String)

3. Create a Click event handler for the btnSubmit event. In this method, set

the Visible property of the lblNotFound label to False, and raise the
SubmitPressed event, passing the following parameters:

Parameter Value

Email txtEmail.Text

Password txtPassword.Text

4. Create a DisplayMessage subroutine that accepts a single string argument
called Message. Within the subroutine, set the following values for the
lblNotFound label.

Control property Value

Text Message

Visible True

5. Save your project.

58 Module 9: Developing Components in Visual Basic .NET

Exercise 2
Testing the LogOn Web Forms User Control

In this exercise, you will create a simple Web Form that uses the Logon user
control to get customer logon information from the user. This information will
then be passed to the serviced customer component for validation and
information retrieval that you created in an earlier exercise. You will then
redirect the browser to a preexisting Web Form that displays a welcome
message with the customer’s first name.

In case you have not completed the previous exercise, a starter project has been
provided.

å To open the starter project

1. On the File menu, point to Open, and then click Project.

2. Set the location to install folder\Labs\Lab092\Ex02\Starter, click
LogonControl.sln, and then click Open.

å To set a reference to the serviced component assembly

1. On the Project menu, click Add Reference .

2. In the Add Reference dialog box, click Browse, and then locate the
install folder\Labs\Lab091\Ex01\Starter\bin folder.

3. Click CustomerComponent.dll, and then click Open.

4. From the existing list of .NET components, click
System.EnterpriseServices, and then click Select.

5. Click OK to close the Add Reference dialog box, and click OK when
asked if you want to add the reference path to the project.

 Module 9: Developing Components in Visual Basic .NET 59

å To create the logon page

1. On the Project menu, click Add Web Form, and rename the file
LogonPage.aspx.

2. Drag Logon.ascx from Solution Explorer to the LogonPage Web Forms
Designer to create an instance of the control on the Web Form.

3. In the LogonPage code window, add an Imports CustomerComponent
statement.

4. Add the following variable declaration after the Inherits
System.Web.UI.Page statement:

Protected WithEvents Logon1 As Logon

5. Create an event handler procedure for the SubmitPressed event of Logon1,
and add the following code:

Dim ds As DataSet, dr As DataRow

Dim cust As ICustomer = New Customer()
ds = cust.Logon(Email, Password)

If ds.Tables(0).Rows.Count = 0 Then
 Logon1.DisplayMessage _
 ("No match was found. Please reenter your details.")
Else
 dr = ds.Tables(0).Rows(0)
 Session("FirstName") = dr("FirstName")
 Response.Redirect("Welcome.aspx")
End If

6. Save the project.

å To test the application

1. In Solution Explorer, right-click LogonPage.aspx, and then click Set As
Start Page.

2. On the Debug menu, click Start.

3. Click Submit without entering any values in the text boxes to test the
validation controls.

4. Enter the following deliberately incorrect values in the text boxes, and then
click Submit.

Control Value

E-mail john@tailspintoys.msn.com

Password john

5. Confirm that an error message is displayed by the user control.

6. Enter the same e-mail address as in step 4, but use the cor rect password of
password, and then click Submit. Confirm that the welcome message is
displayed and that the customer has been recognized.

7. Quit Microsoft Internet Explorer and Visual Studio .NET.

60 Module 9: Developing Components in Visual Basic .NET

u Threading

n What Is a Thread?

n Advantages of Multithreading

n Creating Threads

n Using Threading

n When to Use Threading

Previous versions of Visual Basic have limited threading support.
Visual Basic .NET allows developers to use the full power of threads when
necessary. When you use threading correctly, you can enhance the performance
of your application and make it more interactive.

After you complete this lesson, you will be able to:

n Explain the basic concepts of threading.

n List the advantages of incorporating multithreading into your applications.

n Create and use threads by using the System.Threading namespace.

n Avoid some potential problems in your multithreaded applications.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Visual Basic .NET allows
developers to use the power
of threading in a way not
previously available in
Visual Basic.

 Module 9: Developing Components in Visual Basic .NET 61

What Is a Thread?

n The Unit of Execution That the CPU Processes

l All application processes contain at least one thread

n Threads Are Scheduled

l The computer appears to perform multiple tasks at one time

l Every thread contains its own call stack and storage

CPU
Process 1

Process 2

Thread 1

Thread 2

Thread 3

Thread 2

Thread Scheduler

Thread 1Thread 3Thread 1Thread 2Thread 3

An application running on a computer is known as a process. Each process gets
work done by using one or more threads. The thread is the unit of execution
that is processed by the CPU of the computer.

Threading Process
A CPU can only execute a single thread at any one instant, so a thread
scheduler allocates a certain amount of CPU time for each thread to get as much
work done as possible before allowing another thread to access the CPU. This
scheduling makes a computer appear to perform multiple tasks at once. In
reality, the following is what happens:

1. Every thread contains its own call stack and storage for local variables. This
information is kept with the thread and passed to the CPU whenever the
thread is scheduled for processing.

2. When the time is up, the thread scheduler removes the thread from the CPU
and stores the call stack and variable information.

The more threads that are running on the system, the less frequently a thread is
scheduled to run in the CPU. This is why a computer can appear to be running
slowly when you have multiple applications open and functioning at the same
time.

Topic Objective
To explain the basic
concepts of threading.

Lead-in
Before examining how
Visual Basic .NET enables
threading, it is important to
understand the basic
concepts of threading.

Delivery Tip
The slide associated with
this topic is an animated
slide. Click the slide to
reveal the following lessons,
showing the iterative
process of the thread
scheduler:
1. Thread 1
2. Thread 2
3. Thread 3
4. Thread 1
5. Thread 2
6. Thread 3

62 Module 9: Developing Components in Visual Basic .NET

Threading Types
Different programming languages support different types of threading:

n Previous versions of Visual Basic support the apartment threading model.

This model places some restrictions on the types of applications that these
versions are best suited for creating. One of these restrictions is that an
object is tied to the thread that it is created on, and cannot be used for object
pooling in Component Services. However, this model makes development
easy because you do not need to be involved with more complex issues such
as synchronization.

n Visual Basic .NET supports the free threading model.

This model allows you to use multithreading and features such as object
pooling or to continue using single threads as you have in applications
created with previous versions of Visual Basic.

 Module 9: Developing Components in Visual Basic .NET 63

Advantages of Multithreading

n Improved User Interface Responsiveness

l Example: a status bar

n No Blocking

n Asynchronous Communication

n No Thread Affinity

l Objects are not tied to one thread

A multithreaded application has several advantages over a single-threaded
application.

Improved User Interface Responsiveness
You can use multiple threads in a single process to improve the responsiveness
of the user interface. The following is an example:

n Use threads for lengthy processing operations, such as using the spelling
checker or reformatting pages. These extra threads can then raise events to
the main user interface thread to update items such as a status bar.

n Assign each thread a priority level so that particular threads can run as a
higher priority than other lower priority threads. In an application that relies
heavily on user interaction, you should run the user interface thread as a
higher priority thread.

No Blocking
Blocking occurs because a call to a single-threaded application must wait until
any previous call by another client application has been fully satisfied before
executing any other code. In server-based applications, blocking will occur if
multiple clients make simultaneous requests of a process and only a single
thread is available.

Multithreaded applications are able to perform actions on different threads
simultaneously (through thread scheduling) without waiting for other threads to
finish their current execution. This allows multiple clients to be handled by
different threads without any blocking in a server-based application.

Topic Objective
To explain the advantages
of multithreading and free
threading.

Lead-in
Multithreading can provide
many benefits to your
applications.

64 Module 9: Developing Components in Visual Basic .NET

Asynchronous Communication
Asynchronous communication is possible in a multithreaded application
because one thread can make a request to another thread. The calling thread can
continue with other processing because the request executes on a separate
thread. An event can be raised when the second thread finishes executing the
requested functionality, informing the first thread that it has completed its work.

No Thread Affinity
Visual Basic .NET uses the free threading model. This model does not restrict
you to using an object only on the thread where it was initially created. You can
create an object on one thread and then pass it to another thread without
difficulty. This improves scalability when used in conjunction with Component
Services and object pooling.

 Module 9: Developing Components in Visual Basic .NET 65

Creating Threads

n Use the System.Threading.Thread Class

l Constructor specifies delegate method

l Methods provide control of thread processing

l Properties provide state and priority information

n Use a Class If Parameters Are Required

l Allow public access to class variables

l Raise an event when finished

The .NET Framework provides a simple way to create and work with multiple
threads.

Using the System.Threading.Thread Class
Use the Thread class to create multiple threads within a Visual Basic .NET–
based application.

Constructing the Thread
When a Thread instance is created, the AddressOf operator passes the
constructor a delegate representing the method to be executed, as shown in the
following example:

Dim th As New Threading.Thread(AddressOf PerformTask)
...
Sub PerformTask()
 ...
End Sub

Topic Objective
To explain how to create
and use threads.

Lead-in
The .NET Framework
provides the
System.Threading.Thread
class, which allows you to
create multiple threads.

Delivery Tip
The next topic, Using
Threading, provides a full
example of threading.

66 Module 9: Developing Components in Visual Basic .NET

Threading Methods
The Thread class also provides several methods to control the processing of a
thread.

Method Purpose

Start Begins execution of the method delegate declared in the thread

constructor.

Abort Explicitly terminates an executing thread.

Sleep Pauses a thread. Specifies the number of milliseconds as the only
parameter. If you pass zero as the parameter, the thread gives up the
remainder of its current time slice. This is similar to DoEvents in
previous versions of Visual Basic.

Suspend Temporarily halts execution of a thread.

Resume Reactivates a suspended thread.

Threading Properties
The Thread class provides properties to retrieve information about the thread
state and to manipulate the thread priority.

Property Purpose

ThreadState Use the ThreadState property to determine the current state of a

thread, such as Running , Suspended, or Aborted.

Priority Modify the priority of a thread by setting its Priority property by
using the ThreadPriority enumeration. The enumeration provides the
following values: AboveNormal, BelowNormal, Highest, Lowest,
and Normal.

If you set thread priorities to a value of Highest, this may affect vital
system processes by depriving them of CPU cycles. Use this setting with
caution.

Creating and Testing Threads
The following example shows how to create a thread, test the state of the thread,
and change its priority:

Dim th As New Threading.Thread(AddressOf PerformTask)
th.Start()
If th.ThreadState = ThreadState.Running Then
 th.Priority = ThreadPriority.AboveNormal
End If

Warning

 Module 9: Developing Components in Visual Basic .NET 67

Using Classes to Supply Parameters
You cannot specify a method delegate that accepts arguments in the thread
constructor. If your procedure requires information to perform its required
action, you can:

n Use classes to provide methods that perform operations on local data.

n Use public properties or variables to supply the local data.

To use classes to supply parameters, you must create an instance of the class
before calling the thread constructor. Use the AddressOf operator to pass a
reference to the method of the class as the constructor parameter. You can then
use the properties or public variables to supply any data required by the method.
When the worker method finishes its execution, you can raise an event to
inform the calling thread that the operation is completed.

Delivery Tip
The next topic, Using
Threading, provides an
example of this approach.

68 Module 9: Developing Components in Visual Basic .NET

Using Threading

Sub Test()
Dim calc As New Calculate()
Dim th As New Threading.Thread(AddressOf calc.LongCalculation)
calc.iValue = 10
AddHandler calc.Complete, AddressOf CalcResult
th.Start()

End Sub
Sub CalcResult(ByVal Result As Integer)

...
End Sub

Sub Test()
Dim calc As New Calculate()
Dim th As New Threading.Thread(AddressOf calc.LongCalculation)

calc.iValue = 10
AddHandler calc.Complete, AddressOf CalcResult
th.Start()

End Sub

Sub CalcResult (ByVal Result As Integer)
...

End Sub

Class Calculate
Public iValue As Integer
Public Event Complete(ByVal Result As Integer)
Public Sub LongCalculation()

'Perform a long calculation based on iValue
...
RaiseEvent Complete(iResult) 'Raise event to signal finish

End Sub
End Class

Class Calculate
Public iValue As Integer
Public Event Complete(ByVal Result As Integer)
Public Sub LongCalculation()

'Perform a long calculation based on iValue
...
RaiseEvent Complete(iResult) 'Raise event to signal finish

End Sub
End Class

This topic shows how to prepare a class for threading, create a thread, start the
thread, and perform calculations on the new thread.

Preparing a Class for Threading
The following example shows how to create a Calculate class and prepare it for
threading by using the Complete event:

Class Calculate
 Public iValue As Integer
 Public Event Complete(ByVal Result As Integer)
 Public Sub LongCalculation()
 'Perform a long calculation based on iValue
 ...
 RaiseEvent Complete(iResult)'Raise event to signal finish
 End Sub
End Class

When examining the previous code, note the following:

n The class provides a LongCalculation worker function, which will be
executed on a separate thread.

n The worker function uses information stored in the public iValue integer
variable to calculate its result.

n The Calculate class provides a Complete event to notify the calling thread
that the calculation is finished.

Topic Objective
To explain a simple example
of threading.

Lead-in
Let’s take a look at a simple
threading example.

 Module 9: Developing Components in Visual Basic .NET 69

Creating and Using a Thread
The following example shows how to create a thread and use threading to
perform calculations:

Sub Test()
 Dim calc As New Calculate()
 Dim th As New Threading.Thread(_
 AddressOf calc.LongCalculation)
 calc.iValue = 10
 AddHandler calc.Complete, AddressOf CalcResult
 th.Start()
End Sub

Sub CalcResult(ByVal Result As Integer)
 'Perform appropriate action when calculation is finished
 ...
End Sub

When examining this code, note the following:

n The Test subroutine instantiates a Calculate object and specifies the
LongCalculation delegate in the Thread constructor.

n A value is assigned to the iValue variable for use by the worker function.

n An event handler is created to detect completion of the calculation.

n The Start method is called on the separate thread to begin the processing of
the calculation.

70 Module 9: Developing Components in Visual Basic .NET

When to Use Threading

n Use Threads Carefully

l Using more threads requires more system resources

n Synchronize Access to Shared Resources

l Prevent two threads from accessing shared data
simultaneously

l Use SyncLock statement to block sections of code
Sub Worker()

SyncLock(theData) 'Lock this object variable
theData.id = iValue
'Perform some lengthy action
iValue = theData.id

End SyncLock 'Unlock the object variable
End Sub

Sub Worker()
SyncLock(theData) 'Lock this object variable

theData.id = iValue
'Perform some lengthy action
iValue = theData.id

End SyncLock 'Unlock the object variable
End Sub

Using multiple threads is a useful programming concept in enterprise
development; however, improper use of threads can cause performance
problems, create inconsistent data, and cause other errors.

System Resources
Threads consume memory and other valuable resources, such as CPU
processing time. If your application creates multiple threads, it may do so at the
expense of other applications or other threads within your own process. The
more threads you create, the longer the delay between CPU time slices for each
thread. If all applications created an excessive number of threads and used them
constantly, the system would spend most of its time swapping threads in and
out of the CPU, since the thread scheduler itself requires the CPU to perform
the swapping logic.

Topic Objective
To explain some of the
potential problems caused
by multithreading.

Lead-in
Using multiple threads
requires you to think
carefully about resources.

Delivery Tip
Point out that incorrect use
of threads can have serious
consequences.

 Module 9: Developing Components in Visual Basic .NET 71

Shared Resources
If multiple threads need to access the same information at the same time, a
concurrency problem may arise. Two threads accessing a shared global resource
may get inconsistent results back from the resource if other threads have altered
the data.

The following is an example of a situation in which this can occur:

n Thread A updates a value on a shared resource such as an integer, setting the
value to 10 before performing some lengthy action.

n Thread B updates the same integer value to 15 during the delay of thread
A’s lengthy action.

n When this action is completed, thread A may read the integer value back
from the resource whose value is now 15.

Synchronizing Shared Resources
You can avoid inconsistent results by locking the resource between the time
that the value is initially set and the time that it is read back. You can use the
SyncLock statement to lock a reference type such as a class, interface, module,
array, or delegate.

The following example defines a shared resource called SharedReference that
exposes an integer variable. The ThreadObj class defines the method that will
be executed by different threads. This method uses the SyncLock statement to
lock the shared resource object while it is in use. The module code shows how
you can test this behavior by creating two threads and two worker objects, and
then starting both threads consecutively.

72 Module 9: Developing Components in Visual Basic .NET

Imports System.Threading

'Shared data
Public Class SharedReference
 Public Id As Integer
End Class

'Class for running on other threads
Public Class ThreadObj
 Private sr As SharedReference
 Private Count As Integer

 'Constructor with reference and Id
 Public Sub New(ByRef sharedRef As SharedReference, _
 ByVal ID As Integer)
 sr = sharedRef
 Count = ID
 End Sub

 'Actual worker method
 Public Sub RunMethod()
 SyncLock (sr) 'Lock sr object
 sr.Id = Count

 'Execute lengthy code
 'sr.Id could have changed without SyncLock

 Count = sr.Id
 End SyncLock 'Release sr object lock
 End Sub
End Class

Module MainModule
 Sub Main()
 'Create shared data object
 Dim sr As New SharedReference()

 'Create two worker objects
 Dim worker1 As New ThreadObj(sr, 1)
 Dim worker2 As New ThreadObj(sr, 2)

 'Create two threads
 Dim t1 As New Thread(AddressOf worker1.RunMethod)
 Dim t2 As New Thread(AddressOf worker2.RunMethod)

 'Start both threads
 t1.Start()
 t2.Start()
 End Sub
End Module

 Module 9: Developing Components in Visual Basic .NET 73

Demonstration: Using the SyncLock Statement

In this demonstration, you will learn how to use the SyncLock statement when
using multiple threads in an application created in Visual Basic .NET.

Topic Objective
To demonstrate how to
synchronize shared
resources by using the
SyncLock statement.

Lead-in
This demonstration shows
how to use the SyncLock
statement to synchronize a
shared resource.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

74 Module 9: Developing Components in Visual Basic .NET

Review

n Components Overview

n Creating Serviced Components

n Creating Component Classes

n Creating Windows Forms Controls

n Creating Web Forms User Controls

n Threading

1. An unmanaged client application uses a class created in Visual Basic .NET
but cannot access any methods of the class. What is the likely cause of this
problem, and how would you fix it?

The class may have public methods defined without using an interface
or any class -level attributes. To solve this problem, create and
implement methods in interfaces rather than classes, use the
ClassInterface attribute, or use the COMClass attribute.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 9: Developing Components in Visual Basic .NET 75

2. Modify the following code to use auto completion of transactions rather
than the explicit SetAbort and SetComplete methods.

<Transaction(TransactionOption.Required)> _
Public Class TestClass
 Public Sub MySub()
 Try
 'Perform action
 ContextUtil.SetComplete()
 Catch ex As Exception
 ContextUtil.SetAbort()
 Throw ex
 End Try
 End Sub
End Class

<Transaction(TransactionOption.Required)> _

Public Class TestClass

 <AutoComplete()>Public Sub MySub()

 'Perform action

 End Sub

End Class

3. Create assembly attributes so Component Services can automatically create
an application named “TestComponents” that runs as server activation.

<Assembly: ApplicationName("TestComponents")>

<Assembly: ApplicationActivation(ActivationOption.Server)>

4. Why would you use the IComponent interface?

The interface enables component classes to site other components and
enables the component class to be sited on other components.

76 Module 9: Developing Components in Visual Basic .NET

5. The following code causes a compilation error. Explain what is causing the
error and how it could be fixed.

Sub Main()
 Dim t As New Thread(AddressOf MySub)
 t.Start(10)
End Sub

Sub MySub(ByVal x As Integer)
 ...
End Sub

The MySub procedure cannot be called directly because it expects an
argument and the Start method of a Thread cannot accept parameters.
To fix this error, you could create the following code:

Sub Main()

 Dim obj As New ThreadObj()

 Dim t As New Thread(AddressOf obj.MySub)

 obj.x = 10

 t.Start()

End Sub

Class ThreadObj

 Public x As Integer

 Sub MySub()

 ...

 End Sub

End Class

