

Contents

Overview 1

ADO .NET Overview 2

.NET Data Providers 5

Demonstration: Retrieving Data Using
ADO .NET 18

The DataSet Object 19

Practice: Using DataSets 35

Data Designers and Data Binding 37

XML Integration 45

Demonstration: Using XML Schema 55

Lab 8.1: Creating Applications That Use
ADO .NET 56

Review 69

Module 8: Using
ADO .NET

This course is based on the prerelease version (Beta 2) of Microsoft® Visual
Studio® .NET Enterprise Edition. Content in the final release of the course may be
different from the content included in this prerelease version. All labs in the course are to
be completed with the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express writ ten permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 8: Using ADO .NET iii

Instructor Notes

This module provides students with the knowledge needed to create high-
performance data access applications in Microsoft® Visual Basic ® .NET.

It begins with a discussion about the need for ADO .NET and the benefits it
brings to the development environment. Students will then learn about
ADO .NET providers and the objects they supply.

Students will then learn about the DataSet object. Students will learn how to
add, update, and delete data by using it. Students will then learn how to use data
designers and data binding in Microsoft Windows® Forms and Web Forms.
Finally, students learn how Extensible Markup Language (XML) integrates
with ADO .NET.

After completing this module, students will be able to:

n List the benefits of ADO .NET.

n Create applications by using ADO .NET.

n List the main ADO .NET objects and their functions.

n Use Microsoft Visual Studio® .NET data designers and data binding.

n Explain how XML integrates with ADO .NET.

Presentation:
120 Minutes

Lab:
60 Minutes

iv Module 8: Using ADO .NET

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_08.ppt

n Module 8, “Using ADO .NET”

n Lab 8.1, Creating Applications That Use ADO .NET

Preparation Tasks
To prepare for this module:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the practice.

n Complete the lab.

 Module 8: Using ADO .NET v

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Retrieving Data Using ADO .NET
å To prepare for the demonstration

1. Open the DataReaderDemo.sln solution in the install folder\DemoCode\
Mod08\DataReader\Starter folder.

2. View the code behind the Display button, and explain the variable
declarations.

å To add code to the form

1. Locate the comment “Add code to open connection,” and add the following
lines of code:

conSQL.ConnectionString = "data source=localhost;initial
 catalog=cargo;integrated security=true;"
conSQL.Open()

2. Locate the comment “Add code to set CommandText and Connection

properties of the command,” and add the following lines of code:

comSQL.CommandText = "Select FirstName, LastName from
Customers"
comSQL.Connection = conSQL

3. Locate the comment “Add code to execute the command,” and add the

following line of code:

readerSQL = comSQL.ExecuteReader()

4. Locate the comment “Add code to loop through the records, add each to the
listbox,” and add the following lines of code:

Do While readerSQL.Read
lstCustomers.Items.Add
(readerSQL.Item("FirstName").ToString & " " &
readerSQL.Item("LastName").ToString)
Loop

å To test the code

1. Run the application, and click Display. You should see a list of customers in
the Cargo database.

2. Quit the application, and quit Visual Studio .NET.

vi Module 8: Using ADO .NET

Using the Data Form Wizard
å To run the wizard

1. Open Visual Studio .NET, and create a new Windows application project in
the install folder\DemoCode\Mod08\DataFormWizard folder.

2. In the Solution Explorer, click WindowsApplication1. On the Project menu,
click Add New Item, select Data Form Wizard, and click Open.

3. Run the wizard, using the information provided in the following table.
Where no details are specified, use the defaults.

Setting Value

New dataset name dsCargo

Which connection should the wizard
use?

New Connection

 Server name localhost

 Log on Integrated security

 Database name Cargo

Which items do you want to access? Customers
Invoices

Relationship name CustInvRel

 Parent table Customers

 Key CustomerID

 Child table Invoices

 Key CustomerID

How do you want to display your data? Single record in individual controls

4. Save the project.

å To test the form
1. In the project Properties window, change the Startup object to DataForm1.

2. Run the application.

3. Click Load to load the data into the form.

4. Change the CompanyName field to Microsoft, and then click Update.

5. Click Add, and enter some sample data (use 2222 for the CustomerID).
Move away from that record, and verify that there are now 22 records in the
form.

6. Move back to your new record, and click Delete. Verify that there are now
21 records in the form.

7. Quit the application.

 Module 8: Using ADO .NET vii

Using XML Schema
å To add the XML file to the project

1. Open the XMLDataDemo.sln solution in the install folder\DemoCode\
Mod08\XMLData\Starter folder.

2. In the Solution Explorer, click XMLDataDemo. On the Project menu,
click Add Existing Item . Change the Files of type to Data Files (*.xsd,
*.xml), select Customers.xml, and then click Open.

3. Open Customers.xml and review the data extracted from the Cargo database.

å To generate a schema

1. On the XML menu, click Create Schema.

2. Point out that an xmlns attribute has been added to the root element
identifying the schema.

3. Review both the Schema view and XML view of Customers.xsd.

4. In the Schema view, change the data type for the ID attribute to integer.
Show the corresponding change in the XML view.

å To validate data

1. In the XML view of Customers.xml, rename the <Pword> element
belonging to the first customer to <Password>. Remember to also change
the closing tag.

2. On the XML menu, click Validate XML Data.

3. Review the tasks created in the Task List and explain the meaning of each
one.

4. Change the element name back to <Pword>.

5. On the XML menu, click Validate XML Data. Point out that the message
in the status bar stating that no validation errors were found.

Delivery Tip
Ensure that you add the
item to the project, not to the
solution, or the
demonstration will not
function as documented.

viii Module 8: Using ADO .NET

Module Strategy
Use the following strategy to present this module:

n ADO .NET Overview

This lesson provides an overview of ADO .NET, including the advantages it
provides. Some students who are familiar with the Microsoft .NET
Framework will be aware of these benefits, but others will need to know
why ADO .NET is worth learning.

n .NET Data Providers

This lesson introduces the four main objects within the data providers. The
first two objects this lesson describes, Connection and Command, are
similar to their Microsoft ActiveX® Data Objects (ADO) counterparts, but
be sure to point out the differences needed in the code.

The third object, the DataReader, is similar to the default ADO cursor, the
firehose cursor. Students often find this similarity helpful when they are
learning about the DataReader.

The fourth object, the DataAdapter, is primarily used to populate DataSets
and to update the data source from DataSets. Simply point out its syntax
here because you will provide a thorough explanation of its uses in the next
lesson.

n The DataSet Object

This lesson begins with a review of disconnected data. Again, if students
seem to be aware of the issues, then only explain the topic briefly.

This lesson then describes how to use the main objects within a DataSet:
DataTable objects and DataRelation objects. Students might try to equate
a DataSet with an ADO Recordset, and you need to ensure that they
understand that a DataSet contains a collection of tables that are sometimes
related.

Finally, you will explain how to update data in the DataSet and how to
propagate those changes to the data source. Students need to be aware that
the data is disconnected, which means that any changes the students make
are local and that they need to explicitly pass the changes back to the source.

n Data Designers and Data Binding

This lesson covers some of the new graphical user interface (GUI) features
for data access in Visual Basic .NET. Remind students that all of these
features simply automate the coding that they have learned so far, and that
they can create things by using the tools and then customize the code for
their own purposes.

The lesson also covers how to use data binding in both Windows Forms and
Web Forms. These techniques are distinctly different from those of Visual
Basic 6.0, so ensure that you cover the topics adequately.

 Module 8: Using ADO .NET ix

n XML Integration

This lesson relies on the students’ knowledge of XML. Ensure that they
have some understanding of it before embarking on the topics, or you may
confuse them. The main things they need to know are how an XML
document is hierarchical, what it looks like, and why XML is so important
for developers.

The topics about schemas should be relatively easy because students will
either be aware of database or XML schemas, and the importance of
validation. The final topic is only designed to explain the links between
DataSets and XmlDataDocument. Do not get involved in a long discussion
about XmlDataDocument, because it is not necessary to be able to use
ADO .NET.

 Module 8: Using ADO .NET 1

Overview

n ADO .NET Overview

n .NET Data Providers

n The DataSet Object

n Data Designers and Data Binding

n XML Integration

In this module, you will learn how to use ADO .NET from Microsoft®
Visual Basic ® .NET version 7.0. You will learn about the Microsoft .NET
providers included in the .NET Framework and about how to use the DataSet
object. You also will learn how to use the Microsoft Visual Studio® .NET data
designers and how to bind data to Microsoft Windows® Forms and Web Forms.
Finally, you will learn about the integration of Extensible Markup Language
(XML) with ADO .NET.

After completing this module, you will be able to:

n List the benefits of ADO .NET.

n Create applications using ADO .NET.

n List the main ADO .NET objects and their functions.

n Use Visual Studio .NET data designers and data binding.

n Explain how XML integrates with ADO .NET.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to use ADO .NET from
Visual Basic .NET.

2 Module 8: Using ADO .NET

u ADO .NET Overview

n Introduction to ADO .NET

n Benefits of ADO .NET

ActiveX® Data Objects for the .NET Framework (ADO .NET) provide many
enhancements for accessing data in a disconnected environment. ADO .NET
contains objects that are similar to those of ADO, allowing you to update your
skills easily.

In this lesson, you will learn where ADO .NET is within the .NET Framework,
and about the benefits ADO .NET provides.

After completing this lesson, you will be able to:

n Describe the role of ADO .NET in the .NET Framework.

n List the major benefits of ADO .NET.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
ADO .NET provides many
enhancements upon ADO.

 Module 8: Using ADO .NET 3

Introduction to ADO .NET

ASP .NET Windows Forms

Class Framework

Common Language Runtime

System Services

DataDataXMLDrawing ADO .NET

ADO .NET is a set of classes that allow .NET -based applications to read and
update information in databases and other data stores. You can access these
classes through the System.Data namespace provided by the .NET Framework.

ADO .NET provides consistent access to a wide variety of data sources,
including Microsoft SQL Server™ databases, OLE DB–compliant databases,
non-relational sources such as Microsoft Exchange Server, and XML
documents.

Earlier data access methods, such as Data Access Object (DAO), concentrate on
tightly coupled, connected data environments. One of the main purposes of
ADO .NET is to enhance the disconnected data capabilities. Many of the
common ADO objects that you have worked with correlate to ADO .NET
objects, although there are also many new classes to enhance the data access
model.

ADO .NET uses .NET data providers to link your applications to data
sources. .NET data providers are similar to the OLE DB providers used in ADO,
although they are primarily concerned with moving data into and out of a
database rather than providing interfaces over all of a database’s functionality.

ADO .NET includes two .NET data providers:

n .NET data provider for SQL Server

For use with SQL Server 7.0 and later.

n .NET data provider for OLE DB

For use with data sources exposed by OLE DB.

The ADO .NET data providers contain tools to allow you to read, update, add,
and delete data in multitier environments. Most of the objects in the two
libraries are similar and are identified by the prefix on their name. For example,
SqlDataReader and OleDbDataReader both provide a stream of records from
a data source.

Topic Objective
To discuss ADO .NET and
its place in the .NET
Framework.

Lead-in
ADO .NET is a component
of the .NET Framework.

4 Module 8: Using ADO .NET

Benefits of ADO .NET

n Similar to ADO

n Designed for Disconnected Data

n Intrinsic to the .NET Framework

n Supports XML

ADO .NET provides many benefits to experienced Visual Basic developers,
including:

n Similar programming model to that of ADO

This makes it easy for Visual Basic developers who are familiar with ADO
to update their skills. You can still use ADO in Visual Basic .NET, so you
can keep existing code, but use the features of ADO .NET in new projects.

n Designed for disconnected data

ADO .NET is designed for working with disconnected data in a multitier
environment. It uses XML as the format for transmitting disconnected data,
which makes it easier to communicate with client applications that are not
based on Windows.

n Intrinsic to the .NET Framework

Because ADO .NET is intrinsic to the .NET Framework, you have all the
advantages of using the .NET Framework, including ease of cross-language
development.

n Supports XML

ADO and XML have previously been incompatible: ADO was based on
relational data, and XML is based on hierarchical data. ADO .NET brings
together these two data access techniques and allows you to integrate
hierarchical and relational data, as well as alternate between XML and
relational programming models.

Topic Objective
To discuss the benefits of
using ADO .NET.

Lead-in
ADO .NET provides
many benefits to the
Visual Basic .NET
developer.

Delivery Tip
You may find that you need
to expand on the problems
that were faced when
transmitting data as COM
objects, such as
dependency on a Windows-
based client over a local
area network.

 Module 8: Using ADO .NET 5

u .NET Data Providers

n Using the Connection Object

n Using the Command Object

n Using the Command Object with Stored Procedures

n Using the DataReader Object

n Using the DataAdapter Object

The .NET data providers allow access to specific types of data sources. You can
use the System.Data.SQLClient namespace to access SQL Server 7.0 and later
databases, and the System.Data.OLEDB namespace to access any data source
exposed through OLE DB.

Each of these providers contains four main objects that you can use to connect
to a data source, read the data, and manipulate the data prior to updating the
source.

After completing this lesson, you will be able to:

n Use the Connection object to connect to a database.

n Use the Command object to execute commands and, optionally, to return
data from a data source.

n Use the DataReader object to create a read-only data stream.

n Use the DataAdapter object to exchange data between a data source and a
DataSet.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
The .NET Data Providers
allow access to specific
types of data sources.

6 Module 8: Using ADO .NET

Using the Connection Object

n SqlConnection

n OleDbConnection

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _

"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _

"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim conAccess As OleDb.OleDbConnection
conAccess = New OleDb.OleDbConnection()
conAccess.ConnectionString = "Provider=

Microsoft.Jet.OLEDB.4.0;Data Source=c:\NWind.MDB"
conAccess.Open()

Dim conAccess As OleDb.OleDbConnection
conAccess = New OleDb.OleDbConnection()
conAccess.ConnectionString = "Provider=

Microsoft.Jet.OLEDB.4.0;Data Source=c:\NWind.MDB"
conAccess.Open()

To connect to a database, you set the connection type, specify the data source,
and connect to the data source. When you are finished working with the data,
you close the connection.

1. Set the connection type.

You can use the Connection object to connect to a specific data source.
You can use either the SqlConnection object to connect to SQL Server
databases or the OleDbConnection object to connect to other types of data
sources.

2. Specify the data source.

After you set the connection type, you use a ConnectionString to specify
the source database and other information used to establish the connection.
The format of these strings differs slightly between the SqlClient
namespace and the OleDb namespace.

3. Connect to the data source.

Each object supports an Open method that opens the connection after the
connection properties have been set, and a Close method that closes the
connection to the database after all transactions have cleared.

SqlConnection
The SqlConnection object is optimized for SQL Server 7.0 and later databases
by bypassing the OLE DB layer. It is recommended that you use this object, not
OleDbConnection, when working with these types of data sources.

Topic Objective
To introduce the ADO .NET
Connection object.

Lead-in
You can use the
Connection object to
connect to a specific data
source.

 Module 8: Using ADO .NET 7

The SQL Client .NET Data Provider supports a ConnectionString format that
is similar to ADO connection strings. This consists of name-value pairs
providing the information required when connecting to the data source. The
following table lists the most commonly used pairs.

Keyword name Description Default value

Connection Timeout
(or Connect Timeout)

Length of time to wait for a
connection to succeed before
returning an error

15 seconds

Initial Catalog Name of the database None

User ID SQL Server logon account
(if using SQL Server security)

None

Password
(or Pwd)

SQL Server password
(if using SQL Server security)

None

Data Source
(or Server
or Address
or Addr
or Network Address)

Name or network address of SQL
Server

None

Integrated Security
(or Trusted_Connection)

Whether the connection is a secure
connection

False

The following example shows how to connect to a SQL Server database by
using the SQL Client .NET Data Provider:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

OleDbConnection
The OleDbConnection object exposes methods similar to those of the
SqlConnection object, but certain data sources will not support all the available
methods of the OleDbConnection class.

The OLE DB .NET Data Provider uses a ConnectionString that is identical to
that of ADO, except that the Provider keyword is now required, and the URL,
Remote Provider, and Remote Server keywords are no longer supported.

The following example shows how to connect to a SQL Server database by
using the OLE DB .NET Data Provider:

Dim conAccess As OleDb.OleDbConnection
conAccess = New OleDb.OleDbConnection()
conAccess.ConnectionString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\NWind.MDB"
conAccess.Open()

The examples in the remainder of this module use the SQL Client
namespace. For more information about the OLE DB namespace, search for
“OleDBConnection” in the Visual Basic .NET documentation.

Delivery Tip
If you demonstrate this
code, ensure that
NWind.mdb is in the
specified path.

Note

8 Module 8: Using ADO .NET

Using the Command Object

n Two Ways to Create a
Command:

l Command constructor

l CreateCommand
method

Dim commSQL As SqlClient.SqlCommand
commSQL = New SqlClient.SqlCommand()
commSQL.Connection = conSQL
commSQL.CommandText = "Select Count(*) from Authors"
MessageBox.Show(commSQL.ExecuteScalar().ToString)

Dim commSQL As SqlClient.SqlCommand
commSQL = New SqlClient.SqlCommand()
commSQL.Connection = conSQL
commSQL.CommandText = "Select Count(*) from Authors"
MessageBox.Show(commSQL.ExecuteScalar().ToString)

n Three Ways to Execute a
Command:

l ExecuteReader

l ExecuteScalar

l ExecuteNonQuery

l ExecuteXMLReader

You can use the ADO .NET Command object to execute commands and,
optionally, to return data from a data source. You can use the SqlCommand
with SQL Server databases and the OleDbCommand with all other types of
data sources.

Creating Commands
You can create a command in one of two ways:

n Use the Command constructor, passing the Connection name as an
argument.

n Use the CreateCommand method of the Connection object.

You can use the CommandText property of the Command object to set and
retrieve the SQL statement being executed. You can use any valid SQL
statement with the specified data source, including data manipulation, definition,
and control statements.

Topic Objective
To introduce the ADO .NET
Command object.

Lead-in
Once you have established
a connection to your data
source, you can use the
Command object to
execute SQL statements.

 Module 8: Using ADO .NET 9

Executing Commands
You can only execute a Command within a valid and open connection. The
Command object provides three methods that you can use to execute
commands:

n ExecuteReader

Use this method when the query will return a stream of data such as a Select
statement returning a set of records. This method returns the records in a
SqlDataReader or OleDbDataReader object.

n ExecuteScalar

Use this method when the query will return a singleton value; for example, a
Select statement returning an aggregate value. It executes the query and
returns the first column of the first row in the result set, ignoring any other
data that is returned. This method requires less code than using the
ExecuteReader method and accessing a single value from the
SqlDataReader object.

n ExecuteNonQuery

Use this method when the query will not return a result; for example, an
Insert statement.

n ExecuteXMLReader

Use this method when the query includes a valid FOR XML clause. This is
only valid when using the SQLCommand object.

The following example shows how to use the Command object to query a
database and retrieve data:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim commSQL As SqlClient.SqlCommand
commSQL = New SqlClient.SqlCommand()
commSQL.Connection = conSQL
commSQL.CommandText = "Select Count(*) from Authors"
MessageBox.Show(commSQL.ExecuteScalar().ToString)

This code determines how many rows are present in the Authors table of the
Pubs database and displays the result.

Delivery Tip
Do not go into detail about
the DataReader object at
this time because it will be
covered later in this lesson.

10 Module 8: Using ADO .NET

Using the Command Object with Stored Procedures

1. Create a Command Object

2. Set the CommandType to StoredProcedure

3. Use the Add Method to Create and Set Parameters

4. Use the ParameterDirection Property

5. Call ExecuteReader

6. Use Records, and Then Close DataReader

7. Access Output and Return Parameters

You can also use the Command object to execute stored procedures in a
database. You may need to perform some additional steps when preparing the
Command to allow for the use of parameters in the stored procedure.

Use the following steps to execute a stored procedure with the Command
object:

1. Create a Command object.

2. Set the CommandType property to StoredProcedure.

3. Use the Add method to create and set any parameters.

4. Use the ParameterDirection property to set parameter type.

5. Call the ExecuteReader method.

6. Use the DataReader object to view or manipulate the records, and close it
when finished.

7. Access any output and return parameters.

Topic Objective
To discuss how to use the
Command object to
execute stored procedures.

Lead-in
Many databases will contain
stored procedures that you
want to execute.

Delivery Tip
Talk through these steps
with respect to the code
example below.

 Module 8: Using ADO .NET 11

The following example shows how to execute a stored procedure using
ADO .NET.

Imports System.Data.SqlClient

Private Sub Button1_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button1.Click

 Dim conSQL As SqlClient.SqlConnection
 conSQL = New SqlClient.SqlConnection()
 conSQL.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
 conSQL.Open()

 Dim commSQL As SqlClient.SqlCommand = New SqlCommand()
 commSQL.Connection = conSQL
 commSQL.CommandType = CommandType.StoredProcedure
 commSQL.CommandText = "byroyalty"

 Dim paramSQL As New SqlClient.sqlParameter(_
 "@percentage", SqlDbType.Int)
 paramSQL.Direction = ParameterDirection.Input
 paramSQL.Value = "30"
 commSQL.Parameters.Add(paramSQL)

 Dim datRead As SqlClient.SqlDataReader
 datRead = commSQL.ExecuteReader()
 Do While datRead.Read()
 MessageBox.Show(datRead(0).ToString)
 Loop
 datRead.Close()
End Sub

If you are running a query that will only return one row, you can improve
the performance of your application by returning this data as output parameters
from a stored procedure.

Delivery Tip
Do not go into detail about
the DataReader object at
this point because it will be
covered later in this lesson.

Tip

12 Module 8: Using ADO .NET

Using the DataReader Object

n Reading Data

n Retrieving Data

n Returning Multiple Result Sets

Dim commSQL As SqlClient.SqlCommand = New _
SqlClient.SqlCommand()

commSQL.Connection = conSQL
commSQL.CommandText ="Select au_lname,au_fname from authors"
Dim datRead As SqlClient.SqlDataReader
datRead = commSQL.ExecuteReader()
Do Until datRead.Read = False

MessageBox.Show(datRead.GetString(1) & " "
& datRead.GetString(0))

Loop
datRead.Close()

Dim commSQL As SqlClient.SqlCommand = New _
SqlClient.SqlCommand()

commSQL.Connection = conSQL
commSQL.CommandText ="Select au_lname,au_fname from authors"
Dim datRead As SqlClient.SqlDataReader
datRead = commSQL.ExecuteReader()
Do Until datRead.Read = False

MessageBox.Show(datRead.GetString(1) & " "
& datRead.GetString(0))

Loop
datRead.Close()

You can use the DataReader object to create a read-only, forward-only stream
of data. This is an efficient method for accessing data that you only need to read
through once. You can improve application performance by using this object
because it holds only a single row of data at a time in memory instead of
caching the entire set of records.

There are two versions of this object:

n SqlDataReader for SQL Server databases

n OleDbDataReader for other data sources

The SqlDataReader object contains some methods that are not available to the
OleDbDataReader. These are GetSQLtype methods that you can use to
retrieve SQL Server–specific data type columns from the data source.

Reading Data
You can instantiate the DataReader object by using the ExecuteReader
method of the Command object. After you create the DataReader, you can
call the Read method to obtain data in the rows. You can access the columns by
name, ordinal number, or native type in conjunction with ordinal number.

You must ensure that you use the Close method of the DataReader object
before accessing any output or return parameters from a stored procedure.

Topic Objective
To discuss how to use the
DataReader object.

Lead-in
The DataReader object
gives you fast, efficient
access to a stream of data.

 Module 8: Using ADO .NET 13

The following example shows how to retrieve data by using the DataReader
object:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim commSQL As SqlClient.SqlCommand = New _
SqlClient.SqlCommand()
commSQL.Connection = conSQL
commSQL.CommandText = "Select au_lname, au_fname from authors"

Dim datRead As SqlClient.SqlDataReader
datRead = commSQL.ExecuteReader()
Do Until datRead.Read = False
MessageBox.Show(datRead(1).ToString & " " &
datRead(0).ToString)
Loop
datRead.Close()

Retrieving Data
Because you will often know the data types of your return data, you can use the
Get methods to retrieve data in columns by specifying their data type. This
approach can improve application performance because no type conversion is
required, but your data and output types must be identical.

The following example shows how to use the GetString method to retrieve data.
With GetString, you no longer need the ToString method shown in the
preceding example.

Do Until datRead.Read = False
MessageBox.Show(datRead.GetString(1) & " " &
datRead.GetString(0))
Loop

Returning Multiple Result Sets
Sometimes you will issue commands that return more than one result set. By
default, the DataReader will only read the first result set. You can use the
NextResult method of the DataReader to retrieve the next result set into the
DataReader object. If there are no more result sets, this method returns False.

The following example shows how to create a stored procedure that returns two
result sets from a SQL Server database:

CREATE PROCEDURE MultiResult AS
Select * from authors
Select * from titles
Return 0
GO

14 Module 8: Using ADO .NET

The following example shows how to execute the stored procedure
MultiResult and access the information contained in each result set:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim commSQL As SqlClient.SqlCommand = New _
SqlClient.SqlCommand()
commSQL.Connection = conSQL
commSQL.CommandType = CommandType.StoredProcedure
commSQL.CommandText = "MultiResult"

Dim datRead As SqlClient.SqlDataReader
datRead = commSQL.ExecuteReader()
Do
 Do Until datRead.Read = False
 MessageBox.Show(datRead.GetString(1))
 Loop
Loop While datRead.NextResult

datRead.Close()

 Module 8: Using ADO .NET 15

Using the DataAdapter Object

n Used As a Link Between Data Source and Cached
Tables

Dim adaptSQL As New SqlClient.SqlDataAdapter(_
"Select * from authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

' Manipulate the data locally

adaptSQL.Update (datPubs, "NewTable")

Dim adaptSQL As New SqlClient.SqlDataAdapter(_
"Select * from authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

' Manipulate the data locally

adaptSQL.Update (datPubs, "NewTable")

You can use the DataAdapter object to exchange data between a data source
and a DataSet. You can use it to retrieve appropriate data and insert it into
DataTable objects within a DataSet, and to update changes from the DataSet
back into the data source.

Creating the DataAdapter
There are two ways to create a DataAdapter object:

n Use an existing, open Connection object.

n Open the Connection as needed

Using an Existing Connection Object
Create a Command object within a Connection object, and assign the
SelectCommand property of the previously instantiated DataAdapter object to
that command. This technique is useful if you need to create a Connection
object specifically for the DataAdapter object to use.

Topic Objective
To discuss how to use the
DataAdapter object.

Lead-in
The DataAdapter serves as
the link between a data
source and a DataSet. It is
used to retrieve data and
insert it into DataTable
objects for disconnected
use.

16 Module 8: Using ADO .NET

The following example shows how to use Connection and Command objects
to instantiate a DataAdapter:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim comSQL As SqlClient.SqlCommand
comSQL = New SqlClient.SqlCommand()
comSQL.Connection = conSQL
comSQL.CommandText = "Select * from authors"

Dim adaptSQL As SqlClient.SqlDataAdapter
adaptSQL = New SqlClient.SqlDataAdapter()
adaptSQL.SelectCommand = comSQL

Using a Closed Connection
Instantiate the DataAdapter object, passing a query string and a Connection
object. The DataAdapter will check whether the Connection is open, and, if it
is not open, it will open it for you and close it when your method call is
complete. This method is useful if you have already set the properties of a
Connection object in your application and only need the connection to be
opened to populate the data tables.

The following example shows how to instantiate a DataAdapter object:

Private conSQL as SqlClient.SqlConnection

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
 conSQL = New SqlClient.SqlConnection()
 conSQL.ConnectionString = "Integrated " & _
 "Security=True;Data Source" & _
 "=LocalHost;Initial Catalog=Pubs;"
 End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button1.Click
 Dim adaptSQL As New SqlClient.SqlDataAdapter(_
 "Select * from authors", conSQL)
End Sub

 Module 8: Using ADO .NET 17

Filling the DataTable
After the DataAdapter object is created, you use the Fill method, passing a
DataSet and, optionally, the required DataTable name as parameters. You can
then work with the data in your application, and, if required, you can use the
Update method of the DataAdapter to synchronize those changes back to the
data source.

You can use a single DataAdapter to fill and update multiple DataSets. A
single DataAdapter is linked to a particular DataSet only when a method is
actually being called. The following example shows how to use a DataAdapter
to fill a DataSet :

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim adaptSQL As New SqlClient.SqlDataAdapter("Select * from
authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

'Manipulate the data locally using the DataSet

adaptSQL.Update (datPubs, "NewTable")

18 Module 8: Using ADO .NET

Demonstration: Retrieving Data Using ADO .NET

In this demonstration, you will learn how to retrieve data from a SQL Server
database by using the SQLDataReader object in a Visual Basic .NET–based
application.

Topic Objective
To demonstrate how to
retrieve data from a
SQL Server database by
using ADO .NET.

Lead-in
Having reviewed the code to
retrieve data by using
ADO .NET, you will now see
the code working.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 8: Using ADO .NET 19

u The DataSet Object

n Disconnected Data Review

n The DataSet Object

n Populating DataSets

n Using Relationships in DataSets

n Using Constraints

n Updating Data in the DataSet

n Updating Data at the Source

DataSets are the primary object that you will work with when accessing
disconnected sets of data. They are similar in concept to groups of ADO
disconnec ted recordsets, but in ADO .NET, there are many enhancements,
including the ability to relate tables together.

In this lesson, you will learn how to create DataSets and populate tables within
them. You will also learn how to edit these tables and propagate those changes
to the data source.

After completing this lesson, you will be able to:

n Create DataSets and populate tables within them.

n Edit tables within DataSets.

n Propagate changes to the data source.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
You have just seen how to
populate a DataSet by using
a DataAdapter. Now you to
use this object

20 Module 8: Using ADO .NET

Disconnected Data Review

DAO
Connected environment

DAODAO
Connected environmentConnected environment

RDO
Disconnected environment

RDORDO
Disconnected environmentDisconnected environment

ADO
Connected and

disconnected environments
COM Marshalling

ADOADO
Connected and Connected and

disconnected environmentsdisconnected environments
COM MarshallingCOM Marshalling

ADO .NET
Disconnected architecture

XML format

ADO .NETADO .NET
Disconnected architectureDisconnected architecture

XML formatXML format

Each new data access technology has improved on the concept of disconnected
data, but ADO .NET is the first one to provide a truly enterprise-wide solution.

Problems with Two-Tier Applications
In traditional two-tier applications, a data source connection was often made at
the start of the application and held open until the application ended. This can
cause many problems, including:

n Poor performance

Database connections use valuable system resources, such as memory and
CPU utilization. The database server performance will be affected if a large
number of connections are needlessly held open.

n Limited scalability

Applications that consume a large number of database connections are not
scalable because most data sources can only support a limited number of
connections.

Disconnected Data in RDO and ADO
To overcome these problems, Remote Data Objects (RDO) and ADO
introduced the concept of disconnected data. This was implemented so that you
could retrieve a set of records, disconnect from the data source, and work with
the data locally. You could then reconnect and submit your changes to the
database. The Recordsets were marshaled between the tiers as COM objects,
requiring that both the server and client computer could handle COM
components.

Topic Objective
To review the concepts of
disconnected data, to
ensure understanding for
the rest of this lesson.

Lead-in
Disconnected data is an
important part of
contemporary application
development.

Delivery Tip
The slide associated with
this topic is an animated
slide.
It begins by showing only
the DAO information. The
other boxes are revealed on
subsequent mouse clicks.

 Module 8: Using ADO .NET 21

Disconnected Data in ADO .NET
ADO .NET is designed for use in the Internet world, whereas COM may not be
supported by all tiers, and may not be transmitted through firewalls. The
disconnected architecture has been updated from the previous two-tier, RDO,
and ADO architectures.

ADO .NET uses XML as its transmission format. This is a text-based format,
alleviating the problems associated with the transmission of COM objects and
ensuring true cross-platform interoperability.

ADO .NET provides you with a new object for the caching of data on the client
computer. This object is known as a DataSet. This object is automatically
disconnected from the data source but maintains the ability to later update the
source based on changes made at the client.

Delivery Tip
Students may be concerned
that using a text-based
format for transmission may
compromise security.
Remind them that you can
use Internet standard
security measures such as
Secure Sockets Layer
(SSL), TLS, and Internet
Protocol Security (IPSec) to
ensure the privacy of data.

22 Module 8: Using ADO .NET

The DataSet Object

ConstraintsConstraints ConstraintConstraint

ColumnsColumns ColumnColumn

DataSetDataSet

TablesTables TableTable

Object

Collection

RelationsRelations RelationRelation

RowsRows RowRow

The DataSet object is a disconnected, memory resident cache of data. It is
structured in a similar manner to a database in that it contains DataTable ,
DataRelation, and Constraint objects.

DataSets
A typical use of a DataSet is through Web Services. A client application will
make a request for data to a Web Service that will populate a DataSet (using a
DataAdapter) and return it to the client. The client can then view and modify
the DataSet by using properties and methods that are consistent with database
operations, and then pass it back to the Web Service. The Web Service will then
update the database with the clients’ changes. The DataSet is transmitted
between tiers as XML, which means that it can be also be used by non-
ADO .NET clients.

DataTables and DataRelations
The DataSet contains the Tables and Relations collections. Using objects
within these two collections, you can build up a group of related tables within
your DataSet. The DataTable object consists of the Columns collection and
the Rows collection. You can use the objects in these collections to manipulate
the fields and query their properties. The Relations collection contains
definitions of all the relationships between the DataTable objects in the
DataSet. You can use these to enforce constraints on your data or to navigate
across tables.

The System.Data Namespace
The System.Data namespace contains the DataSet and its objects because they
are generic ways of handling data. Unlike the Provider objects, there are not
different objects for different data sources.

Topic Objective
To introduce the DataSet
object.

Lead-in
The DataSet object is a
disconnected cache of data.

 Module 8: Using ADO .NET 23

Populating DataSets

n Populating DataSets from an RDBMS

n Programmatically Creating DataSets

Dim adaptSQL As SqlClient.SqlDataAdapter
adaptSQL = New SqlClient.SqlDataAdapter(

"Select * from authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

Dim adaptSQL As SqlClient.SqlDataAdapter
adaptSQL = New SqlClient.SqlDataAdapter(

"Select * from authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

Dim datPubs As DataSet = New DataSet()
Dim tblAuthors As DataTable = New DataTable("authors")
tblAuthors.Columns.Add("AuthorID", System.Type.GetType

("System.Int32"))

Dim datPubs As DataSet = New DataSet()
Dim tblAuthors As DataTable = New DataTable("authors")
tblAuthors.Columns.Add("AuthorID", System.Type.GetType

("System.Int32"))

Because a DataSet is simply a memory resident representation of data, you do
not necessarily need to take it from a traditional data source, such as a relational
database management system (RDBMS) or a message store. You can create it
at run time to manipulate data created within an application, or you can use it to
view XML data.

Populating DataSets from an RDBMS
You use a DataAdapter to access data stored in a database, and store the data
in DataTable objects within a DataSet in your application.

The following example shows how to populate a DataTable called NewTable
with data from a SQL Server database:

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim adaptSQL As SqlClient.SqlDataAdapter
adaptSQL = New SqlClient.SqlDataAdapter("Select * from
authors", conSQL)

Dim datPubs As DataSet = New DataSet()
adaptSQL.Fill(datPubs, "NewTable")

Topic Objective
To discuss how to create
and populate DataSets.

Lead-in
You can populate DataSets
in three different ways.

Delivery Tip
Populating DataSets from
XML data will be covered in
the last lesson of this
module.

24 Module 8: Using ADO .NET

Programmatically Creating DataSets
You sometimes need to work with non-standard data sources. In this situation,
you can programmatically create DataSets, DataTables, DataRelations, and
Constraints, and then populate the tables with your data. This will give you the
ability to use standard ADO .NET functions to access your data.

The following example shows how to create a DataSet containing a DataTable
with three DataColumns. This could then be extended to add more columns,
and then populate them with data.

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim adaptSQL As SqlClient.SqlDataAdapter
adaptSQL = New SqlClient.SqlDataAdapter("Select * from
authors", conSQL)

Dim datPubs As DataSet = New DataSet()
Dim tblAuthors As DataTable = New DataTable("authors")
tblAuthors.Columns.Add("AuthorID", _
System.Type.GetType("System.Int32"))
tblAuthors.Columns.Add("au_lname", _
System.Type.GetType("System.String"))
tblAuthors.Columns.Add("au_fname", _
System.Type.GetType("System.String"))

For Your Information
The addition of data and
constraints to this table will
be covered later in this
lesson.

 Module 8: Using ADO .NET 25

Using Relationships in DataSets

n Creating Relationships

n Accessing Related Data

Dim relPubsTitle As DataRelation = New DataRelation(
"PubsTitles",
datPubs.Tables("Publishers").Columns("pub_id"),
datPubs.Tables("Titles").Columns("pub_id"))

datPubs.Relations.Add(relPubsTitle)

Dim relPubsTitle As DataRelation = New DataRelation(
"PubsTitles",
datPubs.Tables("Publishers").Columns("pub_id"),
datPubs.Tables("Titles").Columns("pub_id"))

datPubs.Relations.Add(relPubsTitle)

Dim PubRow, TitleRow As DataRow, TitleRows() As DataRow

PubRow = datPubs.Tables("Publishers").Rows(0)
TitleRows = PubRow.GetChildRows("PubsTitles")

Dim PubRow, TitleRow As DataRow, TitleRows() As DataRow

PubRow = datPubs.Tables("Publishers").Rows(0)
TitleRows = PubRow.GetChildRows("PubsTitles")

The basis of most RDBMSs is the ability to relate tables to each other.
ADO .NET provides this ability within DataSets through the DataRelation
class.

Each DataRelation object contains an array of DataColumn objects that define
the parent column or columns, or primary key, and the child column or columns,
or foreign key, in the relationship. Referential integrity is maintained by the
relationship, and you can specify how to deal with related changes.

Topic Objective
To discuss how to use
DataRelations within a
DataSet to create and
maintain relationships.

Lead-in
Relationships are the basis
of an RDBMS.

26 Module 8: Using ADO .NET

Creating Relationships
The following example shows how to create a relationship between two
DataTable objects in a DataSet . The same DataAdapter is used to populate
the DataTable objects, and then a DataRelation is created between the two.

Dim conSQL As SqlClient.SqlConnection
conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
"Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

Dim adaptSQL As SqlClient.SqlDataAdapter
Dim datPubs As DataSet = New DataSet()

adaptSQL = New SqlClient.SqlDataAdapter("Select pub_id," & _
 "pub_name, city, state from publishers", conSQL)
adaptSQL.Fill(datPubs, "Publishers")
adaptSQL = New SqlClient.SqlDataAdapter("Select pub_id," & _
"title, type, price from titles", conSQL)
adaptSQL.Fill(datPubs, "Titles")

Dim relPubsTitle As DataRelation
relPubsTitle = New DataRelation("PubsTitles", _
datPubs.Tables("Publishers").Columns("pub_id"), _
datPubs.Tables("Titles").Columns("pub_id"))
datPubs.Relations.Add(relPubsTitle)

Accessing Related Data
The main use of a DataRelation is to allow access to related records in a
different table. You can do this by using the GetChildRows method of a
DataRow object that returns an array of DataRow objects. The following
example shows how to use this method to access the child rows that match the
first publisher by using the relationship created in the previous example:

Dim PubRow, TitleRow As DataRow
Dim TitleRows() As DataRow 'Array of DataRow objects

PubRow = datPubs.Tables("Publishers").Rows(0)
TitleRows = PubRow.GetChildRows("PubsTitles")

Dim i As Integer
For i = 0 To UBound(TitleRows)
 TitleRow = TitleRows(i)
 listBox1.Items.Add(TitleRow("title").ToString)
Next i

 Module 8: Using ADO .NET 27

Using Constraints

n Creating New Constraints

l ForeignKeyConstraints

l UniqueConstraints

n Using Existing Constraints

adaptSQL = New SqlClient.SqlDataAdapter("Select title_id,
title, type, price from titles", conSQL)

adaptSQL.FillSchema(datPubs, schematype.Source, "Titles")
adaptSQL.Fill(datPubs, "Titles")
'Edit some data
adaptSQL.Fill(datPubs, "Titles")

adaptSQL = New SqlClient.SqlDataAdapter("Select title_id,
title, type, price from titles", conSQL)

adaptSQL.FillSchema(datPubs, schematype.Source, "Titles")
adaptSQL.Fill(datPubs, "Titles")
'Edit some data
adaptSQL.Fill(datPubs, "Titles")

You can create your own constraints within a DataSet, or you can copy the
existing constraints from the data source. Each of these options is available to
you in ADO .NET.

Creating New Constraints
You can apply two types of constraint classes to DataColumns:
ForeignKeyConstraint and UniqueConstraint.

ForeignKeyConstraint
This constraint controls what happens to a child row when a parent row is
updated or deleted. You can specify different behaviors for different
circumstances. The following table shows the values for the DeleteRule and
UpdateRule properties of the ForeignKeyConstraint.

Value Description

Cascade Deletes or updates any child records based on the parent record

SetNull Sets related values to DBNull

SetDefault Sets related values to their defaults

None Does not affect related rows

Topic Objective
To explain the importance of
constraints and how to use
them.

Lead-in
Constraints are needed to
ensure the validity of data.

28 Module 8: Using ADO .NET

The following example shows how to apply a foreign key constraint with
specific actions between two tables in an existing DataSet. If a row in the
parent table is deleted, the child value will be set to DBNull. If a row in the
parent table is updated, the child values will be also be updated.

Dim colParent As DataColumn
Dim colChild As DataColumn
Dim fkcPubsTitles As ForeignKeyConstraint

colParent = datPubs.Tables("publishers").Columns("pub_id")
colChild = datPubs.Tables("titles").Columns("pub_id")
fkcPubsTitles = New _
 ForeignKeyConstraint("PubsTitlesFKConstraint", colParent, _
 colChild)

fkcPubsTitles.DeleteRule = Rule.SetNull
fkcPubsTitles.UpdateRule = Rule.Cascade
 datPubs.Tables("titles").Constraints.Add(fkcPubsTitles)
datPubs.EnforceConstraints = True

UniqueConstraint
This constraint can be added to one column or to an array of columns. It ensures
that all values in the column or columns are unique. When this constraint is
added, ADO .NET verifies that the existing data does not violate the constraint
and maintains the setting for all changes to that DataTable.

The following example shows how to add a UniqueConstraint to a column:

Dim ucTitles As UniqueConstraint
ucTitles = New UniqueConstraint("UniqueTitles", _
 datPubs.Tables("titles").Columns("title"))
datPubs.EnforceConstraints = True

 Module 8: Using ADO .NET 29

Using Existing Constraints
If constraints already exist in the RDBMS, you can copy them directly into your
DataSet. This can save a lot of time that might be spent coding for frequently
occurring problems. For example, if you fill a DataSet, modify some data, and
then use Fill again to return to the original data, all the rows will be appended
to your existing DataTable s, unless you define primary keys. You can avoid
this type of problem by copying the table schema.

The following example shows how to use the FillSchema method to copy
constraint information into a DataSet:

adaptSQL = New SqlClient.SqlDataAdapter("Select title_id," & _
 "title, type, price from titles", conSQL)
adaptSQL.FillSchema(datPubs, schematype.Source, "Titles")
adaptSQL.Fill(datPubs, "Titles")
'Edit some data
adaptSQL.Fill(datPubs, "Titles")

Constraints are automatically added to columns when you create a
relationship between them. A UniqueConstraint is added to the primary key,
and a ForeignKeyConstraint is added to the foreign key.

Note

30 Module 8: Using ADO .NET

Updating Data in the DataSet

n Adding Rows

n Editing Rows

n Deleting Data

Dim drNewRow As DataRow = datPubs.Tables("Titles").NewRow
'Populate columns
datPubs.Tables("Titles").Rows.Add(drNewRow)

Dim drNewRow As DataRow = datPubs.Tables("Titles").NewRow
'Populate columns
datPubs.Tables("Titles").Rows.Add(drNewRow)

drChangeRow.BeginEdit()
drChangeRow("Title") = drChangeRow("Title").ToString & " 1"
drChangeRow.EndEdit()

drChangeRow.BeginEdit()
drChangeRow("Title") = drChangeRow("Title").ToString & " 1"
drChangeRow.EndEdit()

datPubs.Tables("Titles").Rows.Remove(drDelRow)datPubs.Tables("Titles").Rows.Remove(drDelRow)

After you have created a DataSet of DataTables, you might want to add,
update, and delete data. Any changes you make to the data are stored in
memory and later used to apply the changes to the data source.

Adding Rows
Use the following steps to add new rows to a table:

1. Instantiate a DataRow object by using the NewRow method of the
DataTable.

2. Populate the columns with data.

3. Call the Add method of the DataRows collection, passing the DataRow
object.

The following example shows how to add rows to a DataSet:

Dim drNewRow As DataRow = datPubs.Tables("Titles").NewRow
drNewRow("title") = "New Book"
drNewRow("type") = "business"
datPubs.Tables("Titles").Rows.Add(drNewRow)

Topic Objective
To explain how to update
data in a DataSet and pass
those changes back to the
underlying data source.

Lead-in
Once you have access to
data, you are likely to want
to be able to change some
of it.

 Module 8: Using ADO .NET 31

Editing Rows
Use the following steps to edit existing rows:

1. Call the BeginEdit method of the row.

2. Change the data in the columns.

3. Call EndEdit or CancelEdit to accept or reject the changes.

The following example shows how to edit data in an existing column:

Dim drChangeRow As DataRow = datPubs.Tables("Titles").Rows(0)
drChangeRow.BeginEdit()
drChangeRow("Title") = drChangeRow("Title").ToString & " 1"
drChangeRow.EndEdit()

Deleting Data
Use either of the following methods to delete a row:

n Remove method

Call the Remove method of the DataRows collection. This permanently
removes the row from the DataSet.

n Delete method

Call the Delete method of the DataRow object. This only marks the row for
deletion in the DataSet, and calling RejectChanges will undo the deletion.

The following example shows how to delete an existing row from a DataSet:

Dim drDelRow As DataRow = datPubs.Tables("Titles").Rows(0)
datPubs.Tables("Titles").Rows.Remove(drDelRow)

Confirming the Changes
To update the DataSet, you use the appropriate methods to edit the table, and
then call AcceptChanges or RejectChanges for the individual rows or for the
entire table.

You can discover whether any changes have been made to a row since
AcceptChanges was last called by querying its RowState property. The
following table describes the valid settings for this property.

Value Description

Unchanged No changes have been made.

Added The row has been added to the table.

Modified Something in the row has been changed.

Deleted The row has been deleted by the Delete method.

Detached The row has been deleted, or the row has been created, but
the Add method has not been called.

32 Module 8: Using ADO .NET

Updating Data at the Source

n Explicitly Specifying the Updates

n Automatically Generating the Updates

Dim comm As comm.CommandText = "Insert into titles(" & _
"title_id, title, type) values(@t_id,@title,@type)"
comm.Parameters.Add("@t_id",SqlDbType.VarChar,6,"title_id")
comm.Parameters.Add("@title",SqlDbType.VarChar,80,"title")
comm.Parameters.Add("@type",SqlDbType.Char,12,"type")
adaptSQL.InsertCommand = comm
adaptSQL.Update(datPubs, "titles")

Dim comm As comm.CommandText = "Insert into titles(" & _
"title_id, title, type) values(@t_id,@title,@type)"
comm.Parameters.Add("@t_id",SqlDbType.VarChar,6,"title_id")
comm.Parameters.Add("@title",SqlDbType.VarChar,80,"title")
comm.Parameters.Add("@type",SqlDbType.Char,12,"type")
adaptSQL.InsertCommand = comm
adaptSQL.Update(datPubs, "titles")

Dim sqlCommBuild As New SqlCommandBuilder(adaptSQL)
MsgBox(sqlCommBuild.GetInsertCommand.ToString)
adaptSQL.Update(datPubs, "titles")

Dim sqlCommBuild As New SqlCommandBuilder(adaptSQL)
MsgBox(sqlCommBuild.GetInsertCommand.ToString)
adaptSQL.Update(datPubs, "titles")

After you have updated the tables in your DataSet, you will want to replicate
those changes to the underlying data source. To do this, you use the Update
method of the DataAdapter object, which is the link between DataSet and data
source.

The Update method, like the Fill method, takes two parameters: the DataSet in
which the changes have been made and the name of the DataTable in which
the changes are. It determines the changes to the data and executes the
appropriate SQL command (Insert, Update or Delete) against the source data.

Explicitly Specifying the Updates
You use the InsertCommand, UpdateCommand, and DeleteCommand
properties of the DataAdapter to identify the changes occurring in your
DataSet. You specify each of these as an existing command object for an Insert,
Update, or Delete SQL statement. For any variable columns in the statements,
you use SqlParameter objects to identify the column, data type, size, and data
to be inserted.

Topic Objective
To discuss how to update
changes from the DataSet
to the source.

Lead-in
After you have updated your
DataSet, you will want to
replicate those changes to
the data source.

 Module 8: Using ADO .NET 33

The following example shows how to use the InsertCommand property to add
a row to the Titles table in the Pubs database:

Dim conSQL As SqlClient.SqlConnection
Dim adaptSQL As SqlClient.SqlDataAdapter
Dim datPubs As DataSet = New DataSet()

conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

adaptSQL = New SqlClient.SqlDataAdapter("Select pub_id," & _
 "title_id, title, type, price from titles", conSQL)
adaptSQL.Fill(datPubs, "Titles")

Dim drNewRow As DataRow = datPubs.Tables("Titles").NewRow
drNewRow("title_id") = "hg3454"
drNewRow("title") = "New Book"
drNewRow("type") = "business"
datPubs.Tables("Titles").Rows.Add(drNewRow)

Dim comm As SqlClient.SqlCommand
comm = New SqlClient.SqlCommand()
comm.Connection = conSQL
comm.CommandText = "Insert into titles(title_id, title, " & _
"type) values (@title_id,@title,@type)"

comm.Parameters.Add("@title_id", SqlDbType.VarChar, 6, _
"title_id")
comm.Parameters.Add("@title", SqlDbType.VarChar, 80, "title")
comm.Parameters.Add("@type", SqlDbType.Char, 12, "type")

adaptSQL.InsertCommand = comm
adaptSQL.Update(datPubs, "titles")

34 Module 8: Using ADO .NET

Automatically Generating the Updates
If your DataTable is generated from only one table in the data source, you can
use the CommandBuilder object to automatically create the InsertCommand,
UpdateCommand, and DeleteCommand properties.

The following example shows how to use the CommandBuilder object to
achieve the same results as the previous example:

Dim conSQL As SqlClient.SqlConnection
Dim adaptSQL As SqlClient.SqlDataAdapter
Dim datPubs As DataSet = New DataSet()

conSQL = New SqlClient.SqlConnection()
conSQL.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
conSQL.Open()

adaptSQL = New SqlClient.SqlDataAdapter("Select pub_id," & _
 "title_id, title, type, price from titles", conSQL)
adaptSQL.Fill(datPubs, "Titles")

Dim drNewRow As DataRow = datPubs.Tables("Titles").NewRow
drNewRow("title_id") = "hg8765"
drNewRow("title") = "New Book"
drNewRow("type") = "business"
datPubs.Tables("Titles").Rows.Add(drNewRow)

Dim sqlCommBuild As New SqlCommandBuilder(adaptSQL)
adaptSQL.Update(datPubs, "titles")

Even though the automatically generated commands can simplify your
coding, you will improve performance by using the InsertCommand,
UpdateCommand, and DeleteCommand properties.

Note

 Module 8: Using ADO .NET 35

Practice: Using DataSets

In this practice, you will update existing data in a SQL Server database by using
automatically generated commands.

å To review the application
1. Open Visual Studio .NET.

2. On the File menu, point to Open, and click Project . Set the location to
install folder\Practices\Mod08\DataSets\Starter, click DataSets.sln, and
then click Open.

3. Run the application, and click Populate DataSet and Refresh List from
Data Source. Note that the list on the left displays data from a DataSet, and
the list on the right uses a DataAdapter object. Quit the application.

4. Review the code in Form1.vb to see how the DataSet was created.

å To update the local DataSet

1. In btnEditName_Click procedure, locate the comment “add code to update
the dataset here.”

2. Add the following lines below the comment to update the local dataset:

objDataTable = dsCustomers.Tables("customers")
objDataRow = objDataTable.Rows(iCust)
objDataRow("lastname") = strNewName

Topic Objective
To practice using DataSets.

Lead-in
In this practice, you will
update existing data in a
SQL Server database using
automatically generated
commands.

36 Module 8: Using ADO .NET

å To automatically generate a command

1. In btnUpdate_Click procedure, locate the comment “add code to update the
data source here.”

2. To generate the update command automatically, add the following lines
below the comment:

Dim sqlCommBuild As New _
SqlClient.SqlCommandBuilder(adaptCustomers)
adaptCustomers.Update(dsCustomers, "customers")

å To test your code

1. Run the application, and click Populate DataSet and Refresh List from
Data Source.

2. Click the first name in the Local DataSet box. Click Edit Name, enter your
last name, and then click OK. Click Refresh List from DataSet, and note
that the change has been made to the local dataset. Click Refresh List from
Data Source, and note that the underlying data source still contains the
original data.

3. Click Update Changes. Click Refresh List from Data Source, and verify
that the changes have now been replicated to the underlying data source.

 Module 8: Using ADO .NET 37

u Data Designers and Data Binding

n Designing DataSets

n Data Form Wizard

n Data Binding in Windows Forms

n Data Binding in Web Forms

Data binding has been an important part of Visual Basic data development for a
long time. The tools included in Visual Basic .NET have been enhanced to
allow easier creation of data-bound forms and to take advantage of the new
features in ADO .NET.

After completing this lesson, you will be able to:

n Describe the data designers available in Visual Basic .NET.

n Create data-bound Windows Forms and Web Forms.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Data binding is an important
feature of Visual Basic.

38 Module 8: Using ADO .NET

Designing DataSets

n DataAdapter Configuration Wizard

l Generates a DataAdapter object in the
InitializeComponent procedure for use in your code

n Generate DataSet Tool

l Generates a DataSet based on data from an existing
DataAdapter

Visual Basic .NET includes a number of designers to simplify the process of
DataSet creation. These include the Connection Wizard, DataAdapter
Configuration Wizard, and the Generate DataSet Tool.

DataAdapter Configuration Wizard
This wizard leads you through the steps needed to create a DataAdapter object
within an existing connection. You can initiate the wizard by adding a
SqlDataAdapter or OleDbDataAdapter from the Toolbox to a form at design
time. It requires the following information to generate a DataAdapter object
for use in your form:

n Connection name

n Query type

• SQL statement

• New stored procedure

• Existing stored procedure

n Details of the chosen query

Once you have created the DataAdapter, you can view the code created by the
wizard in the InitializeComponent procedure.

Topic Objective
To discuss how to create
connections, commands,
and DataSets by using the
Visual Basic designers.

Lead-in
Visual Basic .NET includes
a number of designers to
simplify the process of
DataSet creation.

Delivery Tip
Remind students that these
wizards just automate the
manual process that they
have learned about already.

 Module 8: Using ADO .NET 39

Generate DataSet Tool
This tool allows you to generate a DataSet automatically from a DataAdapter.

Again, once created, you can use this DataSet in the usual way in your code.

40 Module 8: Using ADO .NET

Data Form Wizard

n Information Required:

l Name of DataSet

l Connection to be used

l Which tables or views, and which columns within them

l How to display the data

l Which buttons to create

You can use the Data Form Wizard to automatically bind data to controls on a
form. You can specif y to use an existing DataSet in the project, which will then
use your pre-written methods for data access, or to create a new DataSet based
on information supplied to the wizard.

If you wish to create a new DataSet, the Data Form Wizard will require the
following information:

n Name of the DataSet to create

n Connection to be used (you can create a new connection at this point)

n Which tables or views to use (if more than one, you can also identify the
relationship between them)

n Which columns to include on the form

n How to display the data (data grid or bound controls)

n Whether to include navigation and editing buttons

Topic Objective
To explain how to use the
Data Form Wizard to
generate a data-bound form.

Lead-in
You can use the Data Form
Wizard to automatically bind
data to controls on a form.

 Module 8: Using ADO .NET 41

Demonstration: Using the Data Form Wizard

In this demonstration, you will learn how to use the Data Form Wizard to create
a data-bound form from a new DataSet.

Topic Objective
To demonstrate how to use
the Data Form Wizard.

Lead-in
In this demonstration, you
will learn how to use the
Data Form Wizard to create
a data-bound form from a
new DataSet.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

42 Module 8: Using ADO .NET

Data Binding in Windows Forms

n Simple Binding

n Complex Binding

da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
"au_fname from authors", sqlconn)

da.Fill(ds, "authors")
DataGrid1.DataSource = ds.Tables("authors")

da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
"au_fname from authors", sqlconn)

da.Fill(ds, "authors")
DataGrid1.DataSource = ds.Tables("authors")

da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
"au_fname from authors", sqlconn)

da.Fill(ds, "authors")
TextBox1.DataBindings.Add("Text", _

ds.Tables("authors"), "au_fname")

da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
"au_fname from authors", sqlconn)

da.Fill(ds, "authors")
TextBox1.DataBindings.Add("Text", _

ds.Tables("authors"), "au_fname")

If you want more control over the appearance of your forms, you can use data
binding to design them yourself.

There are two general types of binding that can be used: simple binding and
complex binding. Both can be performed at design time by using the Properties
window or at run time by using code.

Simple Binding
You use simple binding to link a control to a single field in a DataSet. For
example, you would use simple binding for a TextBox control. Using the
DataBindings property of a data-aware control, you can specify which DataSet
and which field to bind to which property.

Topic Objective
To discuss data binding in
Windows Forms.

Lead-in
Windows Forms data
binding allows for more
control over the appearance
of your application than
applications created with the
Data Form Wizard.

 Module 8: Using ADO .NET 43

The following example shows how to bind data to a TextBox control:

Dim sqlconn As SqlClient.SqlConnection
Dim da As SqlClient.SqlDataAdapter
Dim ds As New DataSet()
sqlconn = New SqlClient.SqlConnection()
sqlconn.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
sqlconn.Open()
da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
 "au_fname from authors", sqlconn)
da.Fill(ds, "authors")

TextBox1.DataBindings.Add("Text", _
 ds.Tables("authors"), "au_fname")
TextBox2.DataBindings.Add("Text", _
 ds.Tables("authors"), "au_lname")

Complex Binding
You use complex binding to link a control to multiple fields in a DataSet. For
example, you would use complex binding for a DataGrid control. These
controls have a DataSource property that allows you to specify the table to be
used.

The following example shows how to use the DataSource property of a
DataGrid control:

Dim sqlconn As SqlClient.SqlConnection
Dim da As SqlClient.SqlDataAdapter
Dim ds As New DataSet()
sqlconn = New SqlClient.SqlConnection()
sqlconn.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
sqlconn.Open()
da = New SqlClient.SqlDataAdapter("Select au_lname, " & _
 "au_fname from authors", sqlconn)
da.Fill(ds, "authors")
DataGrid1.DataSource = ds.Tables("authors")

Updating Data
As with manual coding of data access, changing values in data-bound forms
only applies to the local DataSet. To write these changes to the underlying data
source, you must add your own code by using the Update method of the
DataAdapter.

Delivery Tip
Remind students that this
was covered in the previous
lesson.

44 Module 8: Using ADO .NET

Data Binding in Web Forms

n Binding to Read-Only Data

Dim sqlComm As New SqlClient.SqlCommand("Select * from " & _
"authors", sqlconn)

Dim sqlReader As SqlClient.SqlDataReader
sqlReader = sqlComm.ExecuteReader
DataGrid1.DataSource() = sqlReader
DataGrid1.DataBind()

Dim sqlComm As New SqlClient.SqlCommand("Select * from " & _
"authors", sqlconn)

Dim sqlReader As SqlClient.SqlDataReader
sqlReader = sqlComm.ExecuteReader
DataGrid1.DataSource() = sqlReader
DataGrid1.DataBind()

Most data displayed on Web Forms will be read only, so you do not need to
incorporate the overhead of using a DataSet in your Web Form applications;
you can use the more efficient DataReader object instead. If you want your
users to be able to edit data on the Web Form, you must code the edit, update,
and cancel events yourself.

Binding to Read-Only Data
You use the DataBind method of the DataGrid server control to bind data to a
grid on a Web Form. The following example shows how to do this using a
DataReader object:

Dim sqlconn As SqlClient.SqlConnection
Dim da As SqlClient.SqlDataAdapter
Dim ds As New DataSet()
sqlconn = New SqlClient.SqlConnection()
sqlconn.ConnectionString = "Integrated Security=True;" & _
 "Data Source=LocalHost;Initial Catalog=Pubs;"
sqlconn.Open()

Dim sqlComm As New SqlClient.SqlCommand("Select * from " & _
 "authors", sqlconn)
Dim sqlReader As SqlClient.SqlDataReader
sqlReader = sqlComm.ExecuteReader
DataGrid1.DataSource() = sqlReader
DataGrid1.DataBind()

The DataGrid will not be visible until you call the DataBind method.

Topic Objective
To discuss how to use data
binding in Web forms.

Lead-in
Few Web applications can
function without some sort
of data display.

 Module 8: Using ADO .NET 45

u XML Integration

n Why Use Schemas?

n Describing XML Structure

n Creating Schemas

n Using XML Data and Schemas in ADO .NET

n DataSets and XmlDataDocuments

Traditionally, XML and ADO data have been two distinct entities, but
ADO .NET brings them together and allows you to work with both types in the
same way.

XML is tightly integrated into the .NET platform. You have already seen how
DataSets are transmitted by using XML format, and now you will learn how
DataSets are literally represented as XML and how their structure is defined in
an XML Schema Definition (XSD).

After completing this lesson, you will be able to:

n Describe what an XML schemas is.

n Explain why XML schemas are useful to the Visual Basic .NET developer.

n Create schemas.

n Manipulate XML data within an ADO .NET DataSet by means of an
XMLReader.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
XML is tightly integrated into
the .NET platform.

Delivery Tip
This lesson assumes that
students have reasonable
knowledge of XML and an
awareness of its associated
technologies.
You may find that you need
to provide more background
information if students are
not familiar with these
concepts.

46 Module 8: Using ADO .NET

Why Use Schemas?

n Define Format of Data

n Use for Validity Checking

n Advantages over DTDs

l XML syntax

l Reusable types

l Grouping

When working with traditional database applications, you often need to write
validation code to ensure that the data you are inputting matches the database
schema. If you do not do this, then you need to write error-handling code for
the potential errors that may occur. Either way, there must be some way of
checking. The solution to this problem when you are working with XML data is
XML schemas.

XML schemas are similar in concept to database schemas. They define the
elements and attributes that may appear in your XML documents, and how
these elements and attributes relate to each other. Schemas are very important
to ensure that the data you are using conforms to your specification. When
loading XML data, you can check it against the schema to validate that none of
the data entering your system is in an incorrect format. This is becoming more
of an issue as business-to-business and business-to-customer commerce
becomes more prevalent in the Internet world.

Topic Objective
To discuss XML schemas
and the role they can play in
Visual Basic .NET.

Lead-in
XML schemas are an
essential part of the
developer’s tool kit.

 Module 8: Using ADO .NET 47

Visual Studio .NET uses XSD to create schemas. This syntax is currently at
working-draft status at the World Wide Web Consortium (W3C), but it has
many advantages over document type definitions (DTDs).

n XML syntax

DTDs are written using a DTD syntax, which is not related to any of the
other Internet standards currently in use. XSD uses XML syntax, which
enables developers to validate data without needing to learn yet another
language.

n Reusable types

XSD allows you to define complex data types and reuse those within your
schema.

n Grouping

You can specify that a set of elements always exists as a group and stipulate
the order in which they must appear.

Delivery Tip
If students are not familiar
with DTDs, do not spend too
much time justifying the use
of a new technology to
them.

48 Module 8: Using ADO .NET

Describing XML Structure

n Schemas Can Describe:

l Elements in the document

l Attributes in the document

l Element and attribute relationships

l Data types

l The order of the elements

l Which elements are optional

Schemas describe the structure of an XML document, and you can use them to
validate data within that document. A schema document can describe all or
some of the following:

n Elements and attributes contained within the XML document

n Element and attribute relationships

n Data types

n The order of the elements

n Which elements are optional

For example, consider the following XML document:

<?xml version="1.0" ?>
<pubs>
 <Publishers>
 <pub_id>0736</pub_id>
 <pub_name>Lucerne Publishing</pub_name>
 <city>Boston</city>
 <state>MA</state>
 <country>USA</country>
 </Publishers>
 <Publishers>
 <pub_id>0877</pub_id>
 <pub_name>Litware, Inc.</pub_name>
 <city>Washington</city>
 <state>DC</state>
 <country>USA</country>
 </Publishers>
</pubs>

Topic Objective
To explain how a schema
document describes XML
data.

Lead-in
So, what is contained in the
schema document?

 Module 8: Using ADO .NET 49

This document consists of a <pubs> element containing individual
<Publishers> elements. Each of these contains a <pub_id>, <pub_name>,
<city>, <state>, and <country> element. This defines the structure of the
document.

After the XML document is linked to a schema document describin g the
structure, the schema can be used to verify data being input into the document.

The following example shows the schema generated for this document:

<xsd:schema id="pubs"
 targetNamespace="http://tempuri.org/Publishers.xsd"
 xmlns="http://tempuri.org/Publishers.xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 attributeFormDefault="qualified"
 elementFormDefault="qualified">
 <xsd:element name="pubs" msdata:IsDataSet="true"
 msdata:EnforceConstraints="False">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Publishers">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="pub_id"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="pub_name"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="city"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="state"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="country"
 type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

50 Module 8: Using ADO .NET

Creating Schemas

n Creating Schemas from Existing XML Documents

n Creating Schemas from Databases

n Working with Schemas

n Validating XML Documents Against Schema

Schemas are automatically generated for you when you work with DataSets.
You may find that there are situations when you want to create your own. One
example would be when you are exchanging data with a business partner and
want to define the structure of that data.

Creating Schemas from Existing XML Documents
You can add an existing XML document to a project and automatically create a
schema based on the contents of the document.

When you are working with XML data, an XML menu becomes available. This
menu allows you to generate schema and validate data against the schema.
When you create schemas from existing documents, all data types are declared
as strings. You can alter this manually in the XML Designer.

Creating Schemas from Databases
You can also create an XSD schema from the structure of existing data. To do
this, you add a new schema item to your project and drag on the chosen tables
or views from the hierarchy displayed in the Data Connections of Server
Explorer. Again, the data types will need editing.

Topic Objective
To discuss how to
create schemas in
Visual Basic .NET.

Lead-in
Schemas can be generated
automatically, or they can
be explicitly created.

 Module 8: Using ADO .NET 51

Working with Schemas
You can view schemas in Visual Studio .NET either as XML or in the Designer
Window, which is a user-friendly display of the schema. In this window, you
can edit existing schemas (adding, removing, or modifying elements and
attributes) and create new schemas.

The following illustration shows the Designer Window:

Validating XML Documents Against Schema
You can use the XML Designer to validate data against XML schema. If you
have an existing document that you are adding data to, you can use this
technique to validate that the new data conforms to the structure described in
the schema.

Use the following steps to validate an XML document against an XML schema.

1. Load the XML document into the XML Designer.

2. On the XML menu, click Validate XML Data.

Any validation errors will be noted in the Task List.

52 Module 8: Using ADO .NET

Using XML Data and Schemas in ADO .NET

n Loading XML Data into a DataSet

n Using a Typed DataSet

l Increases performance

l Simplifies coding

Dim datXML As DataSet = New DataSet()
datXML.ReadXml("c:\publishers.xml")
MessageBox.Show(datXML.Tables(0).Rows(0)(0).ToString)

Dim datXML As DataSet = New DataSet()
datXML.ReadXml("c:\publishers.xml")
MessageBox.Show(datXML.Tables(0).Rows(0)(0).ToString)

MessageBox.Show(pubs.Publishers(0).pub_id)MessageBox.Show(pubs.Publishers(0).pub_id)

One of the issues experienced by developers in the past has been trying to
manipulate XML data within their applications. In earlier data access
technologies, there was no ability to do this. In ADO .NET, you can populate a
DataSet from an XML document. This allows you to access the data in a
simple fashion.

Loading XML Data into a DataSet
You can load an existing XML document into a DataSet by using the
ReadXML method of the DataSet. This requires one argument of the fully
qualified path and file name of the XML document to be loaded.

The following example shows how to load the data and display the first column
in the first row:

Dim datXML As DataSet = New DataSet()
datXML.ReadXml("c:\publishers.xml")
Dim drFirstRow As DataRow = datXML.Tables(0).Rows(0)
MessageBox.Show(drFirstRow(0).ToString)

Topic Objective
To discuss how to load XML
data into an ADO .NET
DataSet.

Lead-in
Accessing XML data by
means of ADO .NET solves
an issue that developers
have had in the past.

 Module 8: Using ADO .NET 53

Using Typed DataSets
DataSets can be typed or untyped. A typed DataSet is simply a DataSet that
uses information in a schema to generate a derived DataSet class containing
objects and properties based on the structure of the data.

You can create a typed DataSet by using the Generate DataSet command
from the schema view. You can add a DataSet object to a form, and link it to
the typed dataset already in the project, and then work with the DataSet in the
usual way.

In untyped DataSets, you have been accessing the columns and rows as
collections in the hierarchy. In a typed DataSet, you can access these directly
as objects, as shown in the following example:

MessageBox.Show(pubs.Publishers(0).pub_id)

Typed DataSets also provide compile-time type checking and better
performance than untyped DataSets.

DataSets created using the XML Designer tools are automatically typed.

Note

54 Module 8: Using ADO .NET

DataSets and XmlDataDocuments

XmlDataDocument DataSet
sync

XSLT, X-Path,
Schema, DTD, etc.

Controls, Designers,
Code Generation

Managed ProviderXmlReader

Data SourceXML Documents

XmlReader

XML Documents

XML developers have traditionally used the Document Object Model (DOM) to
manipulate their XML documents. This is a standard COM interface to XML
data, and it allows access to the elements and attributes contained within the
document.

The XmlDataDocument in the .NET Framework extends the DOMDocument
object in the XML DOM to allow .NET developers to use the same
functionality. This object is tightly integrated with the ADO .NET DataSet, and
loading data into either object synchronizes it with the other.

Any manipulation of data by means of the DataSet or the XmlDataDocument
is synchronized in the other. Therefore, if you add a row to the DataSet, an
element is added to the XmlDataDocument, and vice versa.

Topic Objective
To provide an overview of
the relationship between
DataSets and
XmlDataDocuments.

Lead-in
XML developers have
traditionally used the XML
DOM to manipulate their
XML documents.

Delivery Tip
This topic is not meant to
cover how to use
XmlDataDocuments but to
simply provide an overview
of the link with DataSets.

 Module 8: Using ADO .NET 55

Demonstration: Using XML Schema

In this demonstration, you will learn how to create an XML schema from an
existing XML document, and how to then use the schema to validate the
document.

Topic Objective
To demonstrate using XML
documents by means of
DataSets.

Lead-in
This demonstration will
show you how to use an
XML schema to validate and
XML document.

56 Module 8: Using ADO .NET

Lab 8.1: Creating Applications That Use ADO .NET

Objectives
After completing this lab, you will be able to:

n Retrieve, insert, and update data by using ADO .NET.

n Use data binding on a Web Form.

n Use the XML Designer to create a typed dataset.

Prerequisites
Before working on this lab, you must be familiar with:

n Creating Visual Basic .NET Windows Forms and Web Forms.

n Using ADO .NET data readers.

n Using ADO .NET DataSets.

n Working with XML and XSD.

Scenario
In this lab, you will use ADO .NET to access data for the Cargo application.
You will create both Windows Forms and Web Forms that access both
customer and invoice information. You will also use the XML Designer to
create a typed DataSet.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab081\Starter folder, and the solution files are in the
install folder\Labs\Lab081\Solution folder.

Estimated time to complete this lab: 60 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will use
ADO.NET to access data.

Explain the lab objectives.

 Module 8: Using ADO .NET 57

Exercise 1
Retrieving Data

In this exercise, you will create a Windows Forms application to display a list
of customers and their details. You will create a DataSet object in a class
module and use this data set to obtain the customer details for the selected
customer.

å To create the project
1. Open Visual Studio .NET.

2. On the File menu, point to New, and then click Project.

3. In the Project Types box, click Visual Basic Projects.

4. In the Templates box, click Windows Application.

5. Change the name of the project to CustomerProject , set the location to
install folder\Labs\Lab081\Ex01, and then click OK.

å To create the Windows Form
1. In Solution Explorer, rename the default form to frmCustomer.vb.

2. In the Properties window, change the Text property of the form to
Customer Details, and change the Name property to frmCustomer.

3. Open the Project Property Pages dialog box, and change the Startup object
to frmCustomer.

4. Add controls to the form, as shown in the following illustration.

58 Module 8: Using ADO .NET

5. Set the properties of the controls as shown in the following table.

Control Property name Property value

ListBox1 Name lstCustomers

Label1 Name

Text

lblID

ID

TextBox1 Name

Text

txtID

<empty>

Label2 Name

Text

lblCompany

Company

TextBox2 Name

Text

txtCompany

<empty>

Label3 Name

Text

lblEmail

Email

TextBox3 Name

Text

txtEmail

<empty>

Label4 Name

Text

lblAddress

Address

TextBox4 Name

Text

Multiline

Size.Height

txtAddress

<empty>

True

32

6. Save the project.

å To create the Cargo class
1. On the Project menu, click Add Class.

2. Rename the class Cargo.vb, and then click Open.

3. At the top of the class, add an Imports statement to reference the
System.Data.SqlClient namespace.

4. In the Cargo class, create private class-level variables, using the
information in the following table.

Variable name Type

dstCargo DataSet

conCargo SqlConnection

 Module 8: Using ADO .NET 59

å To create the connection

1. Create a constructor for the class.

2. Instantiate the conCargo Connection object.

3. Using the information in the following table, set the ConnectionString
property of conCargo.

Name Value

Data Source localhost

Initial Catalog Cargo

Integrated Security True

å To create the GetCustomers method

1. Create a method called GetCustomers for the class. The method takes no
arguments and has no return value.

2. In this method, declare and instantiate a SqlDataAdapter object called
adpCust. Pass the following information to the constructor.

Argument Value

selectCommandText Select CustomerID, FirstName, LastName,

CompanyName, Email, Address from Customers

selectConnection conCargo

3. Instantiate the DataSet object.

4. Use the Fill method of adpCust to pass the following information.

Argument Value

dataSet dstCargo

srcTable CustTable

å To create the CustList property

1. Define a read-only property called CustList that returns a DataTable .

2. In the Get clause, return the CustTable table from dstCargo.

3. Save and build the project.

60 Module 8: Using ADO .NET

å To populate the list box

1. Open the frmCustomers Code Editor.

2. Declare and instantiate a private class-level variable called objCargo of type
Cargo.

3. Create the frmCustomers_Load event handler.

4. Call the GetCustomers method of the objCargo object.

5. Add the following code to loop through the customers and populate the list
box:

Dim CurRows() As DataRow, CurRow As DataRow
CurRows = objCargo.CustList.Select()
For Each CurRow In CurRows
 lstCustomers.Items.Add(CurRow("FirstName").ToString & _
 " " & CurRow("LastName").ToString)
Next

6. Call the SetSelected method of lstCustomer to select the first item in the list.

å To populate the text boxes

1. Create the lstCustomers_SelectedIndexChanged event handler.

2. Declare an Integer variable called RowNum, and then store the
SelectedIndex property of the list box in the variable.

3. Declare a DataRow variable called CurRow, and then store the row
identified by RowNum in it by using the following line of code:

objCargo.CustList.Rows(rowNum)

4. Using the information in the following table, populate the text boxes with
data from this row.

Text box Column name

txtID CustomerID

txtCompany CompanyName

txtEmail Email

txtAddress Address

5. Save the project.

å To test the application

1. On the Build menu, click Build, and resolve any build errors.

2. On the Debug menu, click Start. You should see that the list box and text
boxes are populated with data.

3. Click on a different customer in the list and verify that the text boxes
display the relevant data.

4. Quit the application.

5. Quit Visual Studio .NET.

 Module 8: Using ADO .NET 61

Exercise 2
Updating Data

In this exercise, you will extend the class created in the previous exercise to
allow editing of data. The form in the starter file has been modified to make the
text boxes read-only by default and to include a button that you will code to test
the functionality.

å To prepare the form
1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project.

3. Set the location to install folder\Labs\Lab081\Ex02\Starter, click
CustomerProject.sln , and then click Open.

4. In the frmCustomer.vb code window, locate the btnEdit_Click procedure
and write code to set the ReadOnly property of the following textboxes to
False.

• txtCompany

• txtEmail

• txtAddress

å To update the DataSet

1. Open the code window for Cargo.vb.

2. Create a new public method called EditDetails that takes the following
parameters by value and has no return value.

Parameter name Type

RowNum Integer

ID Integer

strCompany String

strEmail String

strAddress String

3. Using the information in the following table, declare and initialize a variable.

Name Type Initialization Value

editRow DataRow dstCargo.Tables(“custtable”).Rows(RowNum)

4. Call the BeginEdit method of the editRow object.

62 Module 8: Using ADO .NET

5. Update the data in the DataSet with the arguments passed to the procedure.
Use the information in the following table.

editRow item Argument

CompanyName strCompany

Email strEmail

Address strAddress

6. Call the EndEdit method of the editRow object.

å To update the underlying data

1. Using the information in the following table, declare and instantiate a
variable

Name Type Construction Value

commUpdate SqlCommand "Update customers set

CompanyName= @company,
email=@email, address=@address
where customerid=@id", conCargo

2. Use the Add method of the command’s Parameters collection to create
parameters for this command. Use the information in the following table.

name dbType size source column

@id SqlDbType.Int 4 CustomerID

@company SqlDbType.VarChar 50 CompanyName

@email SqlDbType.VarChar 255 Email

@address SqlDbType.VarChar 255 Address

3. In the GetCustomers procedure, locate the declaration for adpCust.

4. Remove the declaration for adpCust (leaving the instantiation code), and
then declare adpCust as a class-level variable.

5. In the EditDetails procedure, set the UpdateCommand property of
adpCust to the commUpdate command.

6. Call the Update method of adpCust, and pass it the existing DataSet and
DataTable.

 Module 8: Using ADO .NET 63

å To call the EditDetails method

1. Open the frmCustomer.vb code window, and create a handler for the
btnSave_Click event.

2. Add code to call the EditDetails method of the objCargo object to pass the
appropriate parameters. Use the information in the following table.

Parameter Value

RowNum lstCustomers.SelectedIndex

ID txtID.Text

strCompany txtCompany.Text

strEmail txtEmail.Text

strAddress txtAddress.Text

3. Set the ReadOnly property of the following textboxes to True.

• txtCompany

• txtEmail

• txtAddress

å To test your code

1. Run the application.

2. Click Edit Details , replace the company name with Microsoft, and then
click Save.

3. Quit the application.

4. Run the application again, and verify that the changes have been saved.

5. Quit the application.

6. Quit Visual Studio .NET.

64 Module 8: Using ADO .NET

Exercise 3
Using Data Binding in Web Forms

In this exercise, you will create a Web Form that displays invoice data in a
bound data grid by using a DataReader object.

å To create the project
1. Open Visual Studio .NET.

2. On the File menu, point to New, and then click Project.

3. In the Project Types box, click Visual Basic Project.

4. In the Templates box, click ASP.NET Web Application.

5. Change the name of the project to Invoices, set the location to
http://localhost/2373/Labs/Lab081/Ex03, and then click OK.

å To create the Web Form
1. Open the design window for WebForm1.aspx.

2. In the Properties window, click DOCUMENT, and change the title
property to Cargo Invoices. This will alter the text in the Internet Explorer
title bar.

3. From the Toolbox, add a DataGrid control to the form.

4. Save the project.

å To create the connection

1. Open the code window for WebForm1.aspx.

2. Add an Imports statement to access the System.Data.SqlClient namespace.

3. Locate the Page_Load procedure, and declare a procedure-level variable,
using the information in the following table.

Name Type

sqlConn SqlConnection

4. Instantiate the connection object, and then set the ConnectionString
property, using the information in the following table.

Name Value

Data Source localhost

Initial Catalog Cargo

Integrated Security True

5. Call the Open method of the connection object.

 Module 8: Using ADO .NET 65

å To bind the data

1. In the Page_Load procedure, declare and instantiate a SqlCommand object
called comInvoice s, and pass the parameters listed in the following table.

Parameter Value

cmdText Select * from Invoices

Connection sqlConn

2. Declare a SqlDataReader object called drInvoices.

3. Call the ExecuteReader method of the command object, and store the
results in drInvoices.

4. Set the DataSource property of the DataGrid to drInvoices.

5. Call the DataBind method of the DataGrid.

å To test your code

• Run the application and verify that the invoices are displayed in a grid on
the Web Form.

66 Module 8: Using ADO .NET

Exercise 4
Creating Typed DataSets

In this exercise, you will create an XSD schema from the Invoices table of the
Cargo database and use it to create a typed dataset for use in a Windows Form.

å To create the project
1. Open Visual Studio .NET.

2. On the File menu, point to New, and then click Project.

3. In the Project Types box, click Visual Basic Project.

4. In the Templates box, click Windows Application.

5. Change the name of the project to InvoiceApp, set the location to
install folder\Labs\Lab081\Ex04, and click OK.

å To create the connection

1. In Server Explorer, right-click Data Connections, and then click Add
Connection.

2. In the Data Link Properties dialog box, enter the following information,
and then click OK.

Setting Value

Server name localhost

Security Windows NT Integrated Security

Database name Cargo

å To create the schema

1. In the Project Explorer, click InvoiceApp. On the Project menu, click
Add New Item.

2. In the Templates box, click XML Schema, rename the item to
InvSchema.xsd, and then click Open.

3. In Server Explorer, expand the connec tion that you just created, expand
Tables, and then click Invoices.

4. Drag Invoices onto the Schema Designer.

5. Review the schema in both XML view and Schema view.

å To create the DataSet
1. In Schema view, on the Schema menu, click Generate DataSet.

2. In Solution Explorer, click Show All Files, and expand InvSchema.xsd.
You will see that an InvSchema.vb file has been created containing code to
generate a typed DataSet.

3. Review the code in InvSchema.vb.

 Module 8: Using ADO .NET 67

å To create the form

1. Open the design window for Form1.vb.

2. Add three Labels, three TextBoxes, and a Button to the form. Use the
information in the following table to set their properties.

Control Property Value

Label1 Name

Text
lblInvoiceID
Invoice ID

Label2 Name
Text

lblCustomerID
Customer ID

Label3 Name
Text

lblAmount

Amount

TextBox1 Name
Text

txtInvoiceID
<empty>

TextBox2 Name
Text

txtCustomerID
<empty>

TextBox3 Name
Text

txtAmount
<empty>

Button Name
Text

btnFill
Fill

3. From the Data tab of the Toolbox, add a DataSet control to the form, using
the information in the following table.

Setting Value

Type of DataSet Typed

Name InvoiceApp.InvSchema

å To populate the DataSet

1. Create an event handler for the btnFill_Click event.

2. Declare and instantiate a SQLClient.SqlConnection object called sqlConn
using the information in the following table.

Name Value

Data Source localhost

Initial Catalog Cargo

Integrated Security True

3. Call the Open method of sqlConn.

4. Declare and instantiate a SQLClient.SqlDataAdapter object called
sqlAdapt using the information in the following table.

Parameter Value

selectCommandText Select * from Invoices

selectConnection sqlConn

68 Module 8: Using ADO .NET

5. Declare and instantiate a variable, using the information in the following
table.

Name Type

invTable InvSchema.InvoicesDataTable

6. Call the Fill method of sqlAdapt, passing the following parameters.

Parameter Value

DataSet InvSchema1

srcTable invTable.TableName

å To populate the textboxes

1. In btnFill_Click, add code to populate the textboxes with the appropriate
data. Use the information in the following table.

Control Text property

txtInvoiceID InvSchema1.Invoices(0).InvoiceID

txtCustomerID InvSchema1.Invoices(0).CustomerID

txtAmount InvSchema1.Invoices(0).Amount

2. Build and save the project.

å To test your code
1. Run the application.

2. Click Fill, and verify that the textboxes are correctly populated with data.

3. Quit the application, and quit Visual Studio .NET.

 Module 8: Using ADO .NET 69

Review

n ADO .NET Overview

n .NET Data Providers

n The DataSet Object

n Data Designers and Data Binding

n XML Integration

1. State three benefits that ADO .NET has over earlier data access
technologies.

It is part of the .NET Framework, it is designed for disconnected data,
and it is integrated with XML.

2. You have the following code in your application. What would you do to
make the code more efficient? Why?

Dim sqlConn As New SqlClient.SqlConnection("Integrated
Security=True;Data Source=LocalHost;Initial Catalog=Pubs;")
sqlConn.Open()
Dim sqlAdapt As New SqlClient.SqlDataAdapter("Select
au_lname from authors", sqlConn)
Dim sqlDataSet As New DataSet()
sqlAdapt.Fill(sqlDataSet, "Authors")
Dim i As Integer
For i = 0 To sqlDataSet.Tables("Authors").Rows.Count - 1
MessageBox.Show(sqlDataSet.Tables("Authors").Rows(i).Item(0
).ToString)
Next

You should replace the DataSet with a DataReader because a
DataReader is more efficient for read-only, forward-only data access.
This is because a DataReader only holds one record in memory at a
time.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

70 Module 8: Using ADO .NET

3. If you change the contents of a DataTable in a DataSet, will those changes
be reflected in the underlying data source? Why, or why not?

The changes will only be reflected if you explicitly call the Update
method of the DataAdapter. If you do not do this, the changes are made
locally in the DataSet, which has no permanent connection to the source.

4. You have the following code in the Page_Load event of a Web Form, but
the DataGrid does not appear. What is wrong, assuming all objects are
correctly declared and instantiated?

sqlReader = sqlComm.ExecuteReader
DataGrid1.DataSource() = sqlReader

You have neglected to call the DataBind method of the DataGrid, as
shown in the following line of code:

DataGrid1.DataBind()

5. Write the code to load an XML document called Books.xml into a DataSet.

Dim ds As New DataSet()

ds.ReadXml("books.xml")

