

Contents

Overview 1

Structure of a C# Program 2

Basic Input/Output Operations 9

Recommended Practices 15
Compiling, Running, and Debugging 22

Lab 2: Creating a Simple C# Program 36

Review 45

Module 2: Overview of
C#

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 2: Overview of C# 1

Overview

n Structure of a C# Program

n Basic Input/Output Operations

n Recommended Practices

n Compiling, Running, and Debugging

In this module, you will learn about the basic structure of a C# program by
analyzing a simple working example. You will learn how to use the Console
class to perform some basic input and output operations. You will also learn
about some best practices for handling errors and documenting your code.
Finally, you will compile, run, and debug a C# program.

After completing this module, you will be able to:

n Explain the structure of a simple C# program.

n Use the Console class of the System namespace to perform basic
input/output operations.

n Handle exceptions in a C# program.

n Generate Extensible Markup Language (XML) documentation for a C#
program.

n Compile and execute a C# program.

n Use the debugger to trace program execution.

2 Module 2: Overview of C#

u Structure of a C# Program

n Hello, World

n The Class

n The Main Method

n The using Directive and the System Namespace

n Demonstration: Using Visual Studio to Create
a C# Program

In this section, you will learn about the basic structure of a C# program. You
will analyze a simple program that contains all of the essential features. You
will also learn how to use Microsoft® Visual Studio® to create and edit a C#
program.

 Module 2: Overview of C# 3

Hello, World

using System;

class Hello
{

public static int Main()
{
Console.WriteLine("Hello, World");
return 0;

}
}

using System;

class Hello
{

public static int Main()
{

Console.WriteLine("Hello, World");
return 0;

}
}

The first program most people write when learning a new language is the
inevitable Hello, World. In this module, you will get a chance to examine the
C# version of this traditional first program.

The example code on the slide contains all of the essential elements of a C#
program, and it is easy to test! When executed from the command line, it
simply displays the following:

Hello, World

In the following topics, you will analyze this simple program to learn more
about the building blocks of a C# program.

4 Module 2: Overview of C#

The Class

n A C# Application Is a Collection of Classes, Structures,
and Types

n A Class Is a Set of Data and Methods

n Syntax

n A C# Application Can Consist of Many Files

n A Class Cannot Span Multiple Files

class name
{

...
}

class name
{

...
}

In C#, an application is a collection of one or more classes, data structures, and
other types. In this module, a class is defined as a set of data combined with
methods (or functions) that can manipulate that data. In later modules, you will
learn more about classes and all that they offer to the C# programmer.

When you look at the code for the Hello, World application, you will see that
there is a single class called Hello. This class is introduced by using the
keyword class. Following the class name is an open brace ({). Everything up to
the corresponding closing brace (}) is part of the class.

You can spread the classes for a C# application across one or more files. You
can put multiple classes in a file, but you cannot span a single class across
multiple files.

The name of the application file does not need to be
the same as the name of the class.

C# does not distinguish between the definition and the
implementation of a class in the same way that C++ does. There is no concept
of a definition (.hpp) file. All code for the class is written in one file.

Note for Java developers

Note for C++ developers

 Module 2: Overview of C# 5

The Main Method

n When Writing Main, You Should:

l Use an uppercase “M,” as in “Main”

l Designate one Main as the entry point to the program

l Declare Main as public static int Main

n Multiple Classes Can Have a Main

n When Main Finishes, or Returns, the Application Quits

Every application must start somewhere. When a C# application is run,
execution starts at the method called Main. If you are used to programming in
C, C++, or even Java, you are already familiar with this concept.

The C# language is case sensitive. Main must be spelled with an
uppercase "M" and with the rest of the name in lowercase.

Although there can be many classes in a C# application, there can only be one
entry point. It is possible to have multiple classes each with Main in the same
application, but only one Main will be executed. You need to specify which
one should be used when the application is compiled.

The signature of Main is important too. If you use Visual Studio, it will be
created automatically as public static int. (You will learn what these mean later
in the course.) Unless you have a good reason, you should not change the
signature.

You can change the signature to some extent, but it must always be static,
otherwise it might not be recognized as the application’s entry point by the
compiler.

The application runs either until the end of Main is reached or until a return
statement is executed by Main.

Important

Tip

6 Module 2: Overview of C#

The using Directive and the System Namespace

n The .NET Framework Provides Many Utility Classes

l Organized into namespaces

n System Is the Most Commonly Used Namespace

n Refer to Classes by Their Namespace

n The using Directive

System.Console.WriteLine("Hello, World");System.Console.WriteLine("Hello, World");

using System;
…
Console.WriteLine("Hello, World");

using System;
…
Console.WriteLine("Hello, World");

As part of the Microsoft .NET Framework, C# is supplied with many utility
classes that perform a range of useful operations. These classes are organized
into namespaces. A namespace is a set of related classes. A namespace may
also contain other namespaces.

The .NET Framework is made up of many namespaces, the most im portant of
which is called System . The System namespace contains the classes that most
applications use for interacting with the operating system. The most commonly
used classes handle input and output (I/O). As with many other languages, C#
has no I/O capability of its own and therefore depends on the operating system
to provide a C# compatible interface.

You can refer to objects in namespaces by prefixing them explicitly with the
identifier of the namespace. For example, the System namespace contains the
Console class, which provides several methods, including WriteLine. You can
access the WriteLine method of the Console class as follows:

System.Console.WriteLine("Hello, World");

However, using a fully qualified name to refer to objects can be unwieldy and
error prone. To ease this burden, you can specify a namespace by placing a
using directive at the beginning of your application before the first class is
defined. A using directive specifies a namespace that will be examined if a
class is not explicitly defined in the application. You can put more than one
using directive in the source file, but they must all be placed at the beginning of
the file.

 Module 2: Overview of C# 7

With the using directive, you can rewrite the previous code as follows:

using System;
...
Console.WriteLine("Hello, World");

In the Hello, World application, the Console class is not explicitly defined.
When the Hello, World application is compiled, the compiler searches for
Console and finds it in the System namespace instead. The compiler generates
code that refers to the fully qualified name System.Console.

The classes of the System namespace, and the other core functions
accessed at run time, reside in an assembly called mscorlib.dll. This assembly is
used by default. You can refer to classes in other assemblies, but you will need
to specify the locations and names of those assemblies when the application is
compiled.

Note

8 Module 2: Overview of C#

Demonstration: Using Visual Studio to Create a C# Program

In this demonstration, you will learn how to use Visual Studio to create and edit
C# programs.

 Module 2: Overview of C# 9

u Basic Input/Output Operations

n The Console Class

n Write and WriteLine Methods

n Read and ReadLine Methods

In this section, you will learn how to perform command-based input/output
operations in C# by using the Console class. You will learn how to display
information by using the Write and WriteLine methods, and how to gather
input information from the keyboard by using the Read and ReadLine methods.

10 Module 2: Overview of C#

The Console Class

n Provides Access to the Standard Input, Standard
Output, and Standard Error Streams

n Only Meaningful for Console Applications

l Standard input – keyboard

l Standard output – screen

l Standard error – screen

n All Streams May Be Redirected

The Console class provides a C# application with access to the standard input,
standard output, and standard error streams.

Standard input is normally associated with the keyboard— anything that the user
types on the keyboard can be read from the standard input stream. Similarly, the
standard output stream is usually directed to the screen, as is the standard error
stream.

These streams and the Console class are only meaningful to console
applications. These are applications that run in a Command window.

You can direct any of the three streams (standard input, standard output,
standard error) to a file or device. You can do this programmatically, or the user
can do this when running the application.

Note

 Module 2: Overview of C# 11

Write and WriteLine Methods

n Console.Write and Console.WriteLine Display
Information on the Console Screen

l WriteLine outputs a line feed/carriage return

n Both Methods Are Overloaded

n A Format String and Parameters Can Be Used

l Text formatting

l Numeric formatting

You can use the Console.Write and Console.WriteLine methods to display
information on the console screen. These two methods are very similar; the
main difference is that WriteLine appends a new line/carriage return pair to the
end of the output, and Write does not.

Both methods are overloaded. You can call them with variable numbers and
types of parameters. For example, you can use the following code to write “99”
to the screen:

Console.WriteLine(99);

You can use the following code to write the message “Hello, World” to the
screen:

Console.WriteLine("Hello, World");

Text Formatting
You can use more powerful forms of Write and WriteLine that take a format
string and additional parameters. The format string specifies how the data is
output, and it can contain markers, which are replaced in order by the
parameters that follow. For example, you can use the following code to display
the message “The sum of 100 and 130 is 230”:

Console.WriteLine("The sum of {0} and {1} is {2}", 100, 130,
100+130);

The first parameter that follows the format string is referred to as
parameter zero: {0}.

Important

12 Module 2: Overview of C#

You can use the format string parameter to specify field widths and whether
values should be left or right justified in these fields, as shown in the following
code:

Console.WriteLine("Left justified in a field of width 10: {0,-
Ê10}", 99);
Console.WriteLine("Right justified in a field of width 10:
Ê{0,10}", 99);

This will display the following on the console:

“Left justified in a field of width 10: 99 ”

“Right justified in a field of width 10: 99”

You can use the backward slash (\) character in a format string to turn off
the special meaning of the character that follows it. For example, "\{" will cause
a literal "{" to be displayed, and "\\" will display a literal "\". You can use the at
sign (@) character to represent an entire string verbatim. For example,
"@\\server\share" will be processed as "\\server\share."

Numeric Formatting
You can also use the format string to specify how numeric data is to be
formatted. The full syntax for the format string is {N,M:FormatString},
where N is the parameter number, M is the field width and justification, and
FormatString specifies how numeric data should be displayed. The table
below summarizes the items that may appear in FormatString. In all of these
formats, the number of digits to be displayed, or rounded to, can optionally be
specified.

Item Meaning

C Display the number as currency, using the local currency symbol and

conventions.

D Display the number as a decimal integer.

E Display the number by using exponential (scientific) notation.

F Display the number as a fixed-point value.

G Display the number as either fixed point or integer, depending on which
format is the most compact.

N Display the number with embedded commas.

X Display the number by using hexadecimal notation.

Note

 Module 2: Overview of C# 13

The following code shows some examples of how to use numeric formatting:

Console.WriteLine("Currency formatting - {0:C} {1:C4}", 88.8,
Ê-888.8);
Console.WriteLine("Integer formatting - {0:D5}", 88);
Console.WriteLine("Exponential formatting - {0:E}", 888.8);
Console.WriteLine("Fixed-point formatting - {0:F3}",
Ê888.8888);
Console.WriteLine("General formatting - {0:G}", 888.8888);
Console.WriteLine("Number formatting - {0:N}", 8888888.8);
Console.WriteLine("Hexadecimal formatting - {0:X4}", 88);

When the previous code is run, it displays the following:

Currency formatting - $88.80 ($888.8000)
Integer formatting - 00088
Exponential formatting - 8.888000E+002
Fixed-point formatting - 888.889
General formatting - 888.8888
Number formatting - 8,888,888.80
Hexadecimal formatting – 0058

Custom format specifiers are available for dates and times. There are also
custom format specifiers that allow you to create your own user-defined
formats.

Note

14 Module 2: Overview of C#

Read and ReadLine Methods

n Console.Read and Console.ReadLine Read User Input

l Read reads the next character

l ReadLine reads the entire input line

You can obtain user input from the keyboard by using the Console.Read and
Console.ReadLine methods.

The Read Method
Read reads the next character from the keyboard. It returns the int value –1 if
there is no more input available. Otherwise it returns an int representing the
character read.

The ReadLine Method
ReadLine reads all characters up to the end of the input line (the carriage return
character). The input is returned as a string of character s. You can use the
following code to read a line of text from the keyboard and display it to the
screen:

string input = Console.ReadLine();
Console.WriteLine("{0}", input);

 Module 2: Overview of C# 15

u Recommended Practices

n Commenting Applications

n Generating XML Documentation

n Demonstration: Generating and Viewing XML
Documentation

n Exception Handling

In this section, you will learn some recommended practices to use when writing
C# applications. You will be shown how to comment applications to aid
readability and maintainability. You will also learn how to handle the errors
that can occur when an application is run.

16 Module 2: Overview of C#

Commenting Applications

n Comments Are Important

l A well-commented application permits a developer to
fully understand the structure of the application

n Single-Line Comments

n Multiple-Line Comments

/* Find the higher root of the
quadratic equation */

x = (-b + Math.Sqrt(b * b – 4 * a * c))/(2 * a);

/* Find the higher root of the
quadratic equation */

x = (-b + Math.Sqrt(b * b – 4 * a * c))/(2 * a);

// Get the user’s name
Console.WriteLine("What is your name? ");
name = Console.ReadLine();

// Get the user’s name
Console.WriteLine("What is your name? ");
name = Console.ReadLine();

It is important to provide adequate documentation for all of your applications.
Provide enough comments to enable a developer who was not involved in
creating the original application to follow and understand how the application
works. Use thorough and meaningful comments. Good comments add
information that cannot be expressed easily by the code statements alone— they
explain the “why” rather than the “what.” If your organization has standards for
commenting code, then follow them.

C# provides several mechanisms for adding comments to application code:
single- line comments, multiple-line comments, and XML-generated
documentation.

You can add a single- line comment by using the forward slash characters –(//).
When you run your application, everything following these two characters until
the end of the line is ignored.

You can also use block comments that span multiple lines. A block comment
starts with the /* character pair and continues until a matching */ character pair
is reached. You cannot nest block comments.

 Module 2: Overview of C# 17

Generating XML Documentation

/// <summary> The Hello class prints a greeting
/// on the screen
/// </summary>
class Hello
{
/// <remarks> We use console-based I/O.
/// For more information about WriteLine, see
/// <seealso cref="System.Console.WriteLine"/>
/// </remarks>
public static void Main()
{

Console.WriteLine("Hello, World");
}

}

/// <summary> The Hello class prints a greeting
/// on the screen
/// </summary>
class Hello
{

/// <remarks> We use console-based I/O.
/// For more information about WriteLine, see
/// <seealso cref="System.Console.WriteLine"/>
/// </remarks>
public static void Main()
{
Console.WriteLine("Hello, World");

}
}

You can use C# comments to generate XML documentation for your
applications.

Documentation comments begin with three forward slashes (///) followed by an
XML documentation tag. For examples, see the slide.

There are a number of suggested XML tags that you can use. (You can also
create your own.) The following table shows some XML tags and their uses.

Tag Purpose

<summary> … </summary> To provide a brief description. Use the <remarks>

tag for a longer description.

<remarks> … </remarks> To provide a detailed description. This tag can
contain nested paragraphs, lists, and other types of
tags.

<para> … </para> To add structure to the description in a <remarks>
tag. This tag allows paragraphs to be delineated.

<list type="…"> … </list> To add a structured list to a detailed description.
The types of lists supported are “bullet,” “number,”
and “table.” Additional tags (<term> … </term>
and <description> … </description>) are used
inside the list to further define the structure.

<example> … </example> To provide an example of how a method, property,
or other library member should be used. It often
involves the use of a nested <code> tag.

<code> … </code> To indicate that the enclosed text is application
code.

18 Module 2: Overview of C#

(continued)
Tag Purpose

<c> … </c> To indicate that the enclosed text is application

code. The <code> tag is used for lines of code that
must be separated from any enclosing description;
the <c> tag is used for code that is embedded
within an enclosing description.

<see cref=" member"/> To indicate a reference to another member or field.
The compiler checks that “member” actually
exists.

<seealso cref="member"/> To indicate a reference to another member or field.
The compiler checks that “member” actually
exists. The difference between <see> and
<seealso> depends upon the processor that
manipulates the XML once it has been generated.
The processor must be able to generate See and
See Also sections for these two tags to be
distinguished in a meaningful way.

<exception> … </exception> To provide a description for an exception class.

<permission> … </permission> To document the accessibility of a member.

<param name="name"> …
</param>

To provide a description for a method parameter.

<returns> … </returns> To document the return value and type of a
method.

<value> … </value> To describe a property.

You can compile the XML tags and documentation into an XML file by using
the C# compiler with the /doc option:

csc myprogram.cs /doc:mycomments.xml

If there are no errors, you can view the XML file that is generated by using a
tool such as Internet Explorer.

The purpose of the /doc option is only to generate an XML file. To
render the file, you will need another processor. Internet Explorer displays a
simple rendition that shows the structure of the file and allows tags to be
expanded or collapsed, but it will not, for example, display the
<list type="bullet"> tag as a bullet.

Note

 Module 2: Overview of C# 19

Demonstration: Generating and Viewing XML Documentation

In this demonstration, you will see how to compile the XML comments that are
embedded in a C# application into an XML file. You will also learn how to
view the documentation file that is generated.

20 Module 2: Overview of C#

Exception Handling

using System;
public class Hello
{

public static int Main(string[] args)
{

try {
Console.WriteLine(args[0]);

} catch (Exception e) {
Console.WriteLine("Exception at
Ê{0}", e.StackTrace);

}
return 0;

}
}

using System;
public class Hello
{

public static int Main(string[] args)
{

try {
Console.WriteLine(args[0]);

} catch (Exception e) {
Console.WriteLine("Exception at
Ê{0}", e.StackTrace);

}
return 0;

}
}

A robust C# application must be able to handle the unexpected. No matter how
much error checking you add to your code, there is inevitably something that
can go wrong. Perhaps the user will type an unexpected response to a prompt,
or will try to write to a file in a folder that has been deleted. The possibilities
are endless.

When a run-time error occurs in a C# application, the operating system throws
an exception. Trap exceptions by using a try-catch construct as shown on the
slide. If any of the statements in the try part of the application cause an
exception to be raised, execution will be transferred to the catch block.

You can find out information about the exception that occurred by using the
StackTrace, Message , and Source properties of the Exception object. You
will learn more about handling exceptions in a later module.

If you print out an exception, by using Console.WriteLine for example,
the exception will format itself automatically and display the StackTrace ,
Message, and Source properties.

Note

 Module 2: Overview of C# 21

It is far easier to design exception handling into your C# applications from
the start than it is to try to add it later.

If you do not use exception handling, a run-time exception will occur. If you
want to debug your program using Just-in-time debugging instead, you need to
enable it first. If you have enabled Just-in-time debugging, depending upon
which environment and tools are installed, Just-in-time debugging will prompt
you for a debugger to be used.

To enable Just-in-time debugging, perform the following steps:

1. On the Tools menu, click Options.

2. In the Options dialog box, click the Debugging folder.

3. In the Debugging folder, click General.

4. Click the Settings button.

5. Enable or disable Just-in-time (JIT) debugging for specific program types
(for example, Win32 applications) in the JIT Debugging Settings dialog
box, and then click Close.

6. Click OK.

You will learn more about the debugger later in this module.

Tip

22 Module 2: Overview of C#

u Compiling, Running, and Debugging

n Invoking the Compiler

n Running the Application

n Demonstration: Compiling and Running
a C# Program

n Debugging

n Multimedia: Using the Visual Studio Debugger

n The SDK Tools

n Demonstration: Using ILDASM

In this section, you will learn how to compile and debug C# programs. You will
see the compiler executed from the command line and from within the Visual
Studio environment. You will learn some common compiler options. You will
be introduced to the Visual Studio Debugger. Finally, you will learn how to use
some of the other tools that are supplied with the Microsoft .NET Framework
software development kit (SDK).

 Module 2: Overview of C# 23

Invoking the Compiler

n Common Compiler Switches

n Compiling from the Command Line

n Compiling from Visual Studio

n Locating Errors

Before you execute a C# application, you must compile it. The compiler
converts the source code that you write into machine code that the computer
understands. You can invoke the C# compiler from the command line or from
Visual Studio.

Strictly speaking, C# applications are compiled into Microsoft
intermediate language (MSIL) rather than native machine code. The MSIL code
is itself compiled into machine code by the Just-in-time (JIT) compiler when
the application is run. However, it is also possible to compile directly to
machine code and bypass the JIT compiler if required.

Common Compiler Switches
You can specify a number of switches for the C# compiler by using the csc
command. The following table describes the most common switches.

Switch Meaning

/?, /help Displays the compiler options on the standard output.

/out Specifies the name of the executable.

/main Specifies the class that contains the Main method (if more than one
class in the application includes a Main method).

/optimize Enables and disables the code optimizer.

/warn Sets the warning level of the compiler.

/warnaserror Treats all warnings as errors that abort the compilation.

/target Specifies the type of application generated.

Note

24 Module 2: Overview of C#

(continued)
Switch Meaning

/checked Indicates whether arithmetic overflow will generate a run-time

exception.

/doc Processes documentation comments to produce an XML file.

/debug Generates debugging information.

Compiling from the Command Line
To compile a C# application from the command line, use the csc command. For
example, to compile the Hello, World application (Hello.cs) from the command
line, generating debug information and creating an executable called Greet.exe,
the command is:

csc /debug+ /out:Greet.exe Hello.cs

Ensure that the output file containing the compiled code is specified
with an .exe suffix. If it is omitted, you will need to rename the file before you
can run it.

Compiling f rom Visual Studio
To compile a C# application by using Visual Studio, open the project
containing the C# application, and click Build on the Build menu.

By default, Visual Studio opens the debug configuration for projects.
This means that a debug version of the application will be compiled. To
compile a release build that contains no debug information, change the solution
configuration to release.

You can change the options used by the compiler by updating the project
configuration:

1. In Solution Explorer, right-click the project icon.

2. Click Properties.

3. In the Property Pages dialog box, click Configuration Properties, and
then click Build.

4. Specify the required compiler options, and then click OK.

Important

Note

 Module 2: Overview of C# 25

Locating Errors
If the C# compiler detects any syntactic or semantic errors, it will report them.

If the compiler was invoked from the command line, it will display messages
indicating the line numbers and the character position for each line in which it
found errors.

If the compiler was invoked from Visual Studio, the Task List window will
display all lines that include errors. Double-clicking each line in this window
will take you to the respective error in the application.

It is common for a single programming mistake to generate a number of
compiler errors. It is best to work through errors by starting with the first ones
found because correcting an early error may automatically fix a number of later
errors.

Tip

26 Module 2: Overview of C#

Running the Application

n Running from the Command Line

l Type the name of the application

n Running from Visual Studio

l Click Start Without Debugging on the Debug menu

You can run a C# application from the command line or from within the
Visual Studio environment.

Running from the Command Line
If the application is compiled successfully, an executable file (a file with
an .exe suffix) will be generated. To run it from the command line, type the
name of the application (with or without the .exe suffix).

Running from Within Visual Studio
To run the application from Visual Studio, click Start Without Debugging on
the Debug menu, or press CTRL+F5. If the application is a Console
Application, a console window will appear automatically, and the application
will run. When the application has finished, you will be prompted to press any
key to continue, and the console window will close.

 Module 2: Overview of C# 27

Demonstration: Compiling and Running a C# Program

In this demonstration, you will see how to compile and run a C# program by
using Visual Studio. You will also see how to locate and correct compile-time
errors.

28 Module 2: Overview of C#

Debugging

n Exceptions and JIT Debugging

n The Visual Studio Debugger

l Setting breakpoints and watches

l Stepping through code

l Examining and modifying variables

Exceptions and JIT Debugging
If your application throws an exception and you have not written any code that
can handle it, Common Language Runtime will instigate JIT debugging. (Do
not confuse JIT debugging with the JIT compiler.)

Assuming that you have installed Visual Studio, a dialog box will appear giving
you the choice of debugging the application by using the Visual Studio
Debugger (Microsoft Development Env ironment), or the debugger provided
with the .NET Framework SDK.

If you have Visual Studio available, it is recommended that you select the
Microsoft Development Environment debugger.

The .NET Framework SDK provides another debugger: cordbg.exe. This
is a command-line debugger. It includes most of the facilities offered by the
Microsoft Development Environment, except for the graphical user interface. It
will not be discussed further in this course.

Note

 Module 2: Overview of C# 29

Setting Breakpoints and Watches in Visual Studio
You can use the Visual Studio Debugger to set breakpoints in your code and
examine the values of variables.

To bring up a menu with many useful options, right-click a line of code. Click
Insert Breakpoint to insert a breakpoint at that line. You can also insert a
breakpoint by clicking in the left margin. Click again to remove the breakpoint.
When you run the application in debug mode, execution will stop at this line
and you can examine the contents of variables.

The Watch window is useful for monitoring the values of selected variables
while the application runs. If you type the name of a variable in the Name
column, its value will be displayed in the Value column. As the application
runs, you will see any changes made to the value. You can also modify the
value of a watched variable by typing over it.

To use the debugger, ensure that you have selected the Debug
solution configuration rather than Release.

Stepping Through Code
Once you have set any breakpoints that you need, you can run your application
by clicking Start on the Debug menu, or by pressing F5. When the first
breakpoint is reached, execution will halt.

You can continue running the application by clicking Continue on the Debug
menu, or you can use any of the single-stepping options on the Debug menu to
step through your code one line at a time. You can use Set Next Statement on
the Debug menu to jump backward or forward in your application and continue
running from that point.

The breakpoint, stepping, and watch variable options are also available on
the Debug toolbar.

Examining and Modifying Variables
You can view the variables defined in the current method by clicking Locals on
the Debug toolbar or by using the Watch window. You can change the values
of variables by typing over them (as you can in the Watch window).

Important

Tip

30 Module 2: Overview of C#

Multimedia: Using the Visual Studio Debugger

This multimedia demonstration will show you how to use the Visual Studio
Debugger to set breakpoints and watches. It will also show you how to step
through code and how to examine and modify the values of variables.

 Module 2: Overview of C# 31

The SDK Tools

n General Tools and Utilities

n Win Forms Design Tools and Utilities

n Security Tools and Utilities

n Configuration and Deployment Tools and Utilities

The .NET Framework SDK is supplied with a number of tools that provide
additional functionality for developing, configuring, and deploying applications.
These tools can be run from the command line.

General Tools and Utilities
You may find some of the following general-purpose tools useful.

Tool name Command Description

NGWS Runtime Debugger cordbg.exe The command-line debugger.

MSIL Assembler ilasm.exe An assembler that takes MSIL as input
and generates an executable file.

MSIL Disassembler ildasm.exe A disassembler that can be used to
inspect the MSIL and metadata in an
executable file.

PEVerify peverify.exe Validates the type safety of code and
metadata prior to release.

Win Forms Class Viewer wincv.exe Locates managed classes and displays
information about them.

32 Module 2: Overview of C#

Win Forms Design Tools and Utilities
You can use the following tools to manage and convert ActiveX® controls and
Win Forms controls.

Tool name Command Description

Win Forms ActiveX
Control Importer

aximp.exe Generates a wrapper from an ActiveX
control type library that allows the
control to be hosted by a Win Forms
form.

License Compiler lc.exe Produces a binary .licenses file for
managed code from files containing
licensing information.

Resource File
Generation Utility

ResGen.exe Produces a binary .resources file for
managed code from text files that
describe the resources.

ResX Resource
Compiler

ResXToResources.exe Produces a binary .resources file for
managed code from .ResX (XML-
based resource format) files that
describe the resources.

Win Forms Designer
Test Container

windes.exe A tool for testing Win Forms controls.

 Module 2: Overview of C# 33

Security Tools and Utilities
You can use the following tools to provide security and encryption features
for .NET managed assemblies and classes.

Tool name Command Description

Code Access Security
Policy Utility

caspol.exe Maintains machine and user code security
policies.

Software Publisher
Certificate Test Utility

cert2spc.exe Creates a Software Publisher’s Certificate
from an X.509 certificate. This tool is
used only for testing purposes.

Certificate Creation
Utility

makecert.exe An enhanced version of cert2spc.exe. It is
also used only for testing purposes.

Certificate Manager
Utility

certmgr.exe Maintains certificates, certificate trust
lists, and certificate revocation lists.

Certificate Verification
Utility

chktrust.exe Verifies the validity of a signed file.

Permissions View
Utility

permview.exe Views the permissions requested for an
assembly.

Secutil Utility SecUtil.exe Locates public key or certificate
information in an assembly.

Set Registry Utility setreg.exe Modifies registry settings related to public
key cryptography.

File Signing Utility signcode.exe Signs an executable file or assembly with
a digital signature.

Strong Name Utility Sn.exe Helps create assemblies that have strong
names. It guarantees name uniqueness and
provides some integrity. It also allows
assemblies to be signed.

34 Module 2: Overview of C#

Configuration and Deployment Tools and Utilities
Many of the following tools are specialized tools that you will use only if you
are integrating .NET managed code and COM classes.

Tool name Command Description

Assembly
Generation Utility

al.exe Generates an assembly manifest from
MSIL and resource files.

Assembly
Registration Tool

RegAsm.exe Enables .NET managed classes to be
called transparently by COM components.

Services
Registration Tool

RegSvcs.exe Makes managed classes available as COM
components by loading and registering the
assembly and by generating and installing
a COM+ type library and application.

Assembly Cache
Viewer

shfusion .dll Views the contents of the global cache. It
is a shell extension used by Microsoft
Windows ® Explorer.

Isolated Storage
Utility

storeadm.exe Manages isolated storage for the user that
is currently logged on.

Type Library
Exporter

TlbExp.exe Converts a .NET assembly into a COM
type library.

Type Library
Importer

Tlbimp.exe Converts COM type library definitions
into the equivalent metadata format for use
by .NET.

Web Service
Utility

WebServiceUtil.exe Installs and uninstalls managed code Web
services.

NGWS Runtime
XML Schema
Definition Tool

xsd.exe Used for defining schemas that follow the
World Wide Web Consortium (W3C)
XML Schema Definition language.

 Module 2: Overview of C# 35

Demonstration: Using ILDASM

In this demonstration, you will learn how to use Microsoft Intermediate
Language (MSIL) Disassembler (ildasm.exe) to examine the manifest and
MSIL code in a class.

36 Module 2: Overview of C#

Lab 2: Creating a Simple C# Program

Objectives
After completing this lab, you will be able to:

n Create a C# program.

n Compile and run a C# program.

n Use the Visual Studio Debugger.

n Add exception handling to a C# program.

Estimated time to complete this lab: 60 minutes

 Module 2: Overview of C# 37

Exercise 1
Creating a Simple C# Program

In this exercise, you will use Visual Studio to write a C# program. The program
will ask for your name and will then greet you by name.

å To create a new C# console application
1. Start Microsoft Visual Studio.NET.

2. On the File menu, point to New, and then click Project.

3. Click Visual C# Projects in the Project Types box.

4. Click Console Application in the Templates box.

5. Type Greetings in the Name box.

6. Type install folder\Labs\Lab02 in the Location box and click OK.

7. Type an appropriate comment for the summary.

8. Change the name of the class to Greeter.

9. Select and delete the public Greeter() method.

10. Save the project by clicking Save All on the File menu.

å To write statements that prompt and greet the user

1. In the Main method, before the return statement, insert the following line:

string myName;

2. Write a statement that prompts users for their name.

3. Write another statement that reads the user’s response from the keyboard
and assigns it to the myName string.

4. Add one more statement that prints “Hello myName” to the screen (where
myName is the name the user typed in).

5. When completed, the Main method should contain the following:

public static int Main(string[] args)
{
 string myName;

 Console.WriteLine("Please enter your name");
 myName = Console.ReadLine();
 Console.WriteLine("Hello {0}", myName);
 return 0;
}

6. Save your work.

38 Module 2: Overview of C#

å To compile and run the program

1. On the Build menu, click Build (or press CTRL+SHIFT+B).

2. Correct any compilation errors and build again if necessary.

3. On the Debug menu, click Start Without Debugging (or press CTRL+F5).

4. In the console window that appears, type your name when prompted and
press ENTER.

5. After the hello message is displayed, press a key at the “Press any key to
continue” prompt.

 Module 2: Overview of C# 39

Exercise 2
Compiling and Running the C# Program from the Command Line

In this exercise, you will compile and run your program from the command line.

å To compile and run the application from the command line

1. Open a Command window.

2. Go to the install folder\Labs\Lab02\Greetings folder.

3. Compile the program by using the following command:

csc /out:Greet.exe Class1.cs

4. Run the program by entering the following:

Greet

5. Close the Command window.

40 Module 2: Overview of C#

Exercise 3
Using the Debugger

In this exercise, you will use the Visual Studio Debugger to single-step through
your program and examine the value of a variable.

å To set a breakpoint and start debugging by using Visual Studio
1. Start Visual Studio.NET if it is not already running.

2. On the File menu, point to Open and then click Project.

3. Open the Greetings.sln project in the install folder\Labs\Lab02\Greetings
folder.

4. Click in the left margin on the line containing the first occurrence of
Console.WriteLine in the class Greeter.

A breakpoint (a large red dot) will appear in the margin.

5. On the Debug menu, click Start (or press F5).

The program will start running, a console window will appear, and the
program will then halt at the breakpoint.

å To watch the value of a variable
1. On the Debug menu, point to Windows, and then click Watch.

2. In the Watch window, add the variable myName to the list of watched
variables.

3. The myName variable will appear in the Watch window with a value of null.

å To single-step through code

1. On the Debug menu, click Step Over (or press F10) to run the first
Console.WriteLine statement.

2. Bring the console window to the foreground.

The prompt will appear.

3. Return to Visual Studio and single-step the next line containing the
Console.ReadLine statement by pressing F10.

4. Return to the console window and type your name, and then press the
RETURN key.

You will automatically be returned to Visual Studio. The value of myName
in the Watch window will be your name.

5. Single-step the next line containing the Console.WriteLine statement by
pressing F10.

 Module 2: Overview of C# 41

6. Bring the console window to the foreground.

The greeting will appear.

7. Return to Visual Studio. On the Debug menu, click Continue (or press F5)
to run the program to completion.

If you try to modify the value of myName in the Watch window, it will
not change. This is because strings in C# are immutable and are handled
differently than other types of variables, such as integers or other numerics
(which would change as expected).

Note

42 Module 2: Overview of C#

Exercise 4
Adding Exception Handling to a C# Program

In this exercise, you will write a program that uses exception handling to trap
unexpected run-time errors. The program will prompt the user for two integer
values. It will divide the first integer by the second and display the result.

å To create a new C#program

1. Start Visual Studio.NET if it is not already running.

2. On the File menu, point to New, and then click Project.

3. Click Visual C# Projects in the Project Types box.

4. Click Console Application in the Templates box.

5. Type Divider in the Name box.

6. Type install folder\Labs\Lab02 in the Location box and click OK.

7. Type an appropriate comment for the summary.

8. Change the name of the class to DivideIt.

9. Select and delete the public DivideIt() method.

10. Save the project by clicking Save All on the File menu.

å To write statements that prompt the user for two integers

1. In the Main method, before the return statement, insert the following lines:

int i, j;
string temp;

2. Write a statement that prompts the user for the first integer.

3. Write another statement that reads the user’s response from the keyboard
and assigns it to the temp string.

4. Add a statement to convert the string value in temp to an integer and to store
the result in i as follows:

i = Int32.Parse(temp);

5. Add statements to your code to:

a. Prompt the user for the second integer.

b. Read the user’s response from the keyboard and assign it to temp.

c. Convert the value in temp to an integer and store the result in j.

 Module 2: Overview of C# 43

Your code should look similar to the following:

int i, j;
string temp;

Console.WriteLine("Please enter the first integer");
temp = Console.ReadLine();
i = Int32.Parse(temp);

Console.WriteLine("Please enter the second integer");
temp = Console.ReadLine();
j = Int32.Parse(temp);

6. Save your work.

å To divide the first integer by the second and display the result

1. Write code to create a new integer variable k that is given the value resulting
from the division of i by j, and insert it at the end of the previous procedure.
Your code should look like the following:

int k = i / j;

2. Add a statement that displays the value of k.

3. Save your work.

å To test the program
1. On the Debug menu, click Start Without Debugging (or press CTRL+F5).

2. Type 10 for the first integer value and press ENTER.

3. Type 5 for the second integer value and press ENTER.

4. Check that the value displayed for k is 2.

5. Run the program again by pressing CTRL+F5.

6. Type 10 for the first integer value and press ENTER.

7. Type 0 for the second integer value and press ENTER.

8. The program causes an exception to be thrown (divide by zero).

44 Module 2: Overview of C#

å To add exception handling to the program

1. Place the code in the Main method inside a try block as follows:

try {
 int i, j;
 string temp;
 ...
 int k = i / j;
 Console.WriteLine(...);
}

2. Add a catch statement to Main, before the return statement. The catch
statement should print a short message, as is shown in the following code:

catch(Exception e) {
 Console.WriteLine("An exception was thrown: {0}" , e);
}
return 0;
...

3. Save your work.

4. The completed Main method should look similar to the following:

public static int Main(string[] args)
{
 try {
 int i, j;

 string temp;

 Console.WriteLine ("Please enter the first integer");
 temp = Console.ReadLine();
 i = Int32.Parse(temp);

 Console.WriteLine ("Please enter the second integer");
 temp = Console.ReadLine();
 j = Int32.Parse(temp);

 int k = i / j;
 Console.WriteLine("The result of dividing {0} by {1}
 Êis {2}", i, j, k);
 } catch(Exception e) {
 Console.WriteLine("An exception was thrown: {0}", e);
 }

 return 0;
}

å To test the exception-handling code

1. Run the program again by pressing CTRL+F5.

2. Type 10 for the first integer value and press ENTER.

3. Type 0 for the second integer value and press ENTER.

The program still causes an exception to be thrown (divide by zero), but this
time the error is caught and your message appears.

 Module 2: Overview of C# 45

Review

n Structure of a C# Program

n Basic Input/Output Operations

n Recommended Practices

n Compiling, Running, and Debugging

1. Where does execution start in a C# application?

2. When does application execution finish?

3. How many classes can a C# application contain?

4. How many Main methods can an application contain?

46 Module 2: Overview of C#

5. How do you read user input from the keyboard in a C# application?

6. What namespace is the Console class in?

7. What happens if your C# application causes an exception to be thrown that
it is not prepared to catch?

