
Technical Manual

Motorola SDK for the
J2ME™ Platform

Developer Edition

Version 5.2.1

Table of Contents
Introduction 4

How This Guide is Organized 4
Motorola SDK Component Changes 5
Guide Conventions 5
Glossary 6
References 6

Installation 8
System Requirements 8
Installing Sun's Java™ 2 SDK 8
Installing the Motorola SDK Components 10
Motorola SDK Directory Structure 12

Tutorial: Developing an Application 16
Step 1: Writing an Application 17
Step 2: Compiling an Application 18

Using the Motorola SDK Components 20
Working with the Emulator 20
Sample Applications 25
Working with Impronto Simulator 25
Working with WMA Test Server 27

Using the Launchpad Application 29
Where to Find Launchpad 29
The Launchpad UI 30
Launchpad Components 32
Simulator Thumbnail Window 34
Advanced Settings Window 35
Using Launchpad to Run a MIDlet 37
Saving a Launchpad Configuration 38

Appendix A: Using CodeWarrior Wireless Studio 39
Installing CodeWarrior Wireless Studio 39
Creating a J2ME Project 42
Debugging a MIDlet 45
Running a MIDlet on the Emulator 47
Troubleshooting Tips 49

Appendix B: Sample MIDlets 50
Sample MIDlet Descriptions 50

Appendix C: Bytecode Verifier 62
Appendix D: Using Foreign Fonts in Motorola Emulators 63

Language Requirements 63
Enable Java™ to Support Foreign Language Fonts 63
Supported Foreign Fonts 63

2

Modify Motorola Emulator Files 64
Appendix E: Open Classes 66

Open Class Overview 66
Appendix F: Unified Emulator Interface 69

3

Introduction

The Java™ 2 Platform, Micro Edition (J2ME) is a small footprint Java
product designed by Sun® Microsystems for resource-limited devices
such as pagers and cell phones. J2ME platform consists of a Java virtual
machine, along with associated Java class libraries to provide a set of
core and enhanced services.

The Motorola Software Development Kit (SDK) Components for the J2ME
platform provide tools used for developing and testing programs written in
the Java programming language. The configuration editor helps you
define your device, and the emulator simulates the J2ME platform of your
device. Together these tools allow you to develop and debug your J2ME
programs in emulation before downloading them to a target device.

How This Guide is Organized

Chapter 2 - Installation: Shows you how to install the Motorola SDK
Components as well as Sun Microsystems' Java 2 SDK, Standard
Edition, version 1.4 or later.

Chapter 3 - Tutorial: Developing an Application: Teaches you how to
develop a J2ME application by walking you through the basic steps of
writing, compiling and running an application.

Chapter 4 - Using the Motorola SDK Components: Describes how the
components work and shows you how to use them. These components
include:

• Working with Configurations: Provides an overview on creating new
target device configurations

• The Configuration Editor: A tool for creating and modifying target device
configurations

• Working with the Emulator: A tool for testing J2ME programs on the
desktop by emulating a target device

Chapter 5 - Using the Launchpad Application: Assists you in the
process of MIDlet application development.

Appendix A - Using CodeWarrior Wireless Studio: Shows you how to
install and use CodeWarrior Wireless Studio, version 7.0 for developing
J2ME applications.

4

Appendix B - Sample MIDlets: Provides descriptions of the sample
applications provided with the Motorola SDK Components for the J2ME
platform.

Appendix C - Bytecode Verifier: Introduces the process of bytecode
verification.

Appendix D - Using Foreign Fonts in Motorola Emulators: Provides
information on using UNICODE fonts with J2ME and the Motorola SDK.

Appendix E - Open Classes: Provides information about the APIs
available in this version of Motorola SDK.

Appendix F - Unified Emulator Interface: Future implementation of
this feature in Motorola SDK.

Motorola SDK Component Changes

The following changes should be noted since the previous release of this
SDK:

• New phone integrated: ROKR E1.

Guide Conventions

This guide uses the following type conventions:

Convention Purpose

variable Words appearing in italics and Courier
font are variables that you must
replace with appropriate values, as in
filename.

computer Words formatted as Courier font
represent output, lines of code,
pathnames, and filenames.

bold typeface Words formatted as Bold font represent
items that appear on the screen, like a
menu command (File), a window title
(Target Settings), or a control (OK).

| character The | character separates each
command in a menu hierarchy. For
example: File | Open, represents
selecting File in the application menu,

5

and then selecting the Open command.
Table 1. Convensions Table

Glossary

Here are definitions of common terms used in this manual:

Term Definition

ADK Application Development Kit
API Application Programming Interface
CLDC Connected, Limited Device

Configuration
J2ME Java™ 2 Micro Edition
JDK Java Development Kit
JRE Java Runtime Environment
KVM Kilobyte Virtual Machine
MIDlet Mobile Information Device appLet
MIDP Mobile Information Device Profile
MO Mobile Originator
PC Personal Computer
SDK Software Development Kit
SMS Short Messaging Service
UI User interface
URL Uniform Resource Locator
VM Virtual Machine

Table 2. Glossary Table

References

The following references provide additional information on the
technologies and materials discussed in this manual:

Organization URL

Metrowerks www.metrowerks.com
Motorola Developer Program www.motocoder.com
World Wide Web Consortium www.w3.org
Sun Microsystems java.sun.com

Table 3. References Table

For more information on J2ME and on Java programming in general, see

6

the following Web sites and publications:

1. Sun's Web site on Java 2 Platform, Micro Edition

http://java.sun.com/j2me/

2. J2ME Connected, Limited Device Configuration Specification

http://jcp.org/aboutJava/communityprocess/final/jsr030/index.html

3. J2ME Mobile Information Device Profile Specification

http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html

4. The Java Virtual Machine Specification, Tim Lindholm and Frank Yellin

http://java.sun.com/docs/books/vmspec/index.html

5. The Java Language Specification, James Gosling, Bill Joy, and Guy
Steele

http://java.sun.com/docs/books/jls/index.html

6. The API document for the CLDC specification is in

<MOTOROLA_SDK_HOME>\Docs\cldc1.0\index.html

7. The API document for the MIDP specification is in

<MOTOROLA_SDK_HOME>\Docs\midp2\index.html

8. The Impronto Simulator Manual is in

<MOTOROLA_SDK_HOME>\Docs\jblend_micro_jabwt_simulator_mj_en_01_00_01.pdf

9. The WMA Test Server Manual is in

<MOTOROLA_SDK_HOME>\Docs\jblend_micro_wma20_testtool_mj_en_1_00_00.pdf

7

Installation

This chapter shows you how to install the Sun Microsystems' Java™ 2
SDK, Standard Edition, version 1.4.2 and the Motorola SDK Components.
Topics include:

• System Requirements
• Installing Sun's Java 2 SDK
• Installing the Motorola SDK Components
• Motorola SDK Directory Structure

System Requirements

To use the Motorola SDK Components, your system must meet these
minimum requirements:

Required System
Components

Requirement

Processor Pentium™-100 MHz
Memory 64 MB RAM
Operating System Windows® XP, Windows® 2000.
Hard Disk Space Approximately 65 MB for the

Motorola® SDK Components
Java Environment Java™ 2, Standard Edition v1.4

(recommended), Java 1.3.1 and later
supported

Table 4. System Requirements Table

Installing Sun's Java™ 2 SDK

To use the Motorola SDK Components, Motorola recommends that you
use the Java 2 SDK, Standard Edition (J2SE™) version 1.4, although
versions 1.3.1 and later are supported.

Reading the Java 2, Standard Edition Version Number

8

To ensure that the correct version of the J2SE platform is installed:

• Select Start | Settings | Control Panel
• Open Add/Remove Programs

If Java 2 SDK Standard Edition v1.4 or later is listed, click Cancel. If a
previous version is listed, select it and click Add/Remove to uninstall the
previous version.

You can also type java -version into a Command Prompt window, see
Figure 1, to determine which JDK version you have.

Figure 1. Using a Command Prompt to determine the Java version

Installing the Java 2, Standard Edition Platform

To install the J2SE platform, follow these steps:

• Download the J2SE SDK from
http://java.sun.com/j2se/1.4/index.jsp

• Follow Sun's instructions for installation

To ensure that the Motorola SDK Components work correctly, the JDK
install directory must be in the system path environment variable.

Verifying the Path Environment Variable

To ensure that the Path environment variable is correct, follow these
steps:

1. Select Start | Settings | Control Panel

9

2. Open the System control panel

3. Select Advanced tab and click in Environment Variables

4. Select Path under System Variables, see Figure 2.

5. Look for c:\j2sdk1.4.2\bin; in the Variable Value field If the path
doesn't already exist, click Edit, then enter c:\j2sdk1.4.2; in front of
the other variables as shown in Figure 2.

6. Click OK (closes Edit System Variables window)

7. Click OK (closes Environmental Variables window)

Figure 2. Edit System Variable window (Windows 2000)

Installing the Motorola SDK
Components

This section describes how to install the Motorola SDK for the J2ME
platform software on your PC.

You no longer need to uninstall previous version of the Motorola SDK.

10

The installer places the latest version in its own folder within the
<Motorola_SDK_HOME> folder, enabling you to develop and test your
software across different releases.

Installing the Motorola SDK Components

You must install the Motorola SDK Components to use them in your
developer efforts.

We highly recommend that you install the Motorola SDK v5.2.1 for J2ME
components using the default directory specified by the SDK installer.
Otherwise problems could occur later.

Figure 3. Installer start-up window

To install the Motorola SDK:

1. Run the Motorola_SDK_v5.2.1_for_J2ME.exe installer program Run
the installer program by using one of the following ways:

• Double-click the Motorola_SDK_v5.2.1_for_J2ME icon in the
Window Explorer window

11

• From a command line, enter
Motorola_SDK_v5.2.1_for_J2ME.exe

2. Follow the prompts in the installer program

Motorola SDK Directory Structure

The installer automatically installs Motorola SDK Components in your
<MOTOROLA_SDK_HOME> directory unless you indicate otherwise. Once
installed, the Motorola SDK Components directory structure looks like
this:

12

Figure 4. Motorola SDK directory structure

Use of the default directory location is highly recommended, as several of
the scripts that accompany the SDK are dependent upon it. Relocation
may cause script errors.

13

The table below lists the major directories plus a summary of their
contents.

Sub-Directories Contents

AplixTestWMAServer\ Contains the server used for testing the
WMA functionality

demo\ Demonstration scripts and files
demo\com\mot\j2me\midlets Contains various MIDlets and LWT

example files
demo\Scripts Contains the following scripts:

• makeAll.bat -builds all MIDlets,
tests,and tutorials

• makeOneEA1.bat- builds a
single MIDlet that uses the E
A.1 emulator

• makeOneEA3.bat- builds a
single MIDlet that uses the E
A.3 emulator

• makeOneEA4.bat- builds a
single MIDlet that uses the E
A.4 emulator

• makeOneEM1.bat- builds a
single MIDlet that uses the E
M.1 emulator

• makeOneEM3.bat- builds a
single MIDlet that uses the E
M.3 emulator

Docs\Start.htm Used to access all the API's
documentation.

Docs\ Includes documentation for Motorola
SDK Components Guide (this guide :
Motorola SDK for J2ME Users
Guide.pdf)

EmulatorA.1 Contains the bin and lib for the
Emulator A.1 release

EmulatorA.1\bin\ Contains files for the configuration
editor, emulator and resources

EmulatorA.1\lib\ Class libraries (com, java, javax) for
Emulator A.1

EmulatorA.3 Contains the bin and lib for the
EmulatorA.3 release

EmulatorA.3 \bin\ Contains files for the configuration
editor, emulator and resources

EmulatorA.3 \lib\ Class libraries (com, java, javax) for
EmulatorA.3

EmulatorA.4 Contains the bin and lib for the
EmulatorA.4 release

14

EmulatorA.4\bin\ Contains files for the configuration
editor, emulator and resources

EmulatorA.4\lib\ Class libraries (com, java, javax) for
EmulatorA.4

EmulatorM.1 Contains the bin and lib for the
Emulator M.1 release

EmulatorM.1\bin\ Contains files for the configuration
editor, emulator and resources

EmulatorM.1\lib\ Class libraries (com, java, javax) for
Emulator M.1

EmulatorM.3 Contains the bin and lib for the
Emulator M.3 release

EmulatorM.3 \bin\ Contains files for the configuration
editor, emulator and resources

EmulatorM.3 \lib\ Class libraries (com, java, javax) for
Emulator M.3

Impronto_Simulator Contains the Impronto Simulator
application used to emulate the
Bluetooth hardware.

MIDway\ Contains the MIDway application used
to transfer the midlets from a PC to the
phone through the USB port.

Table 5. Directory Structure Table

15

Tutorial: Developing an
Application

This tutorial shows you how to develop a J2ME MIDP-compliant
application, called a MIDlet, using the Motorola SDK Components. In this
tutorial you will write, build, compile, and run an application from the
command line. The steps include:

• Step 1: Writing an Application
• Step 2: Compiling an Application
• Step 3: Running and Testing an Application

Before you begin, note the following:

• The Java language is case-sensitive; therefore, you must type all Java
code exactly as shown in the example.

• Applications developed with the Motorola SDK Components must extend
javax.microedition.midlet.MIDlet and implement the following
three methods:

J2ME Application Methods

Method Description

protected void startApp() Starts a MIDlet and puts it in Active
state.

protected void pauseApp() Stops a MIDlet and puts it in Paused
state.

protected void
destroyApp(boolean
unconditional)

Terminates a MIDlet and puts it in
Destroyed state.

Table 6. J2ME Application Methods Table

The chart in Figure 5 illustrates the flow of these application methods.

Figure 5. Application methods chart

16

Step 1: Writing an Application

In this tutorial, you will develop the application HelloWorld. When you
compile and run this application, it displays "Hello World. This is a J2ME
MIDlet" on the simulator.

The first step to developing is writing. For this tutorial, instead of writing a
new application, modify the HelloWorld.java file included with the
Motorola SDK Components. This file is located at:

<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\tutorials\HelloWorld.java

Modifying the HelloWorld Application

In the code editor of your choice, open and modify HelloWorld.java to
match the source code shown in List 1. After modifying the file to match
the example, save and close HelloWorld.java.

/*
* HelloWorld.java
*
* Jan 1, 2003
*
* © Copyright 2003 Motorola, Inc. All Rights Reserved.
* This notice does not imply publication.
*/

package com.mot.j2me.midlets.tutorials;

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

/**
* A simple Hello World midlet
*
* @see MIDlet
*/
public class HelloWorld extends MIDlet {
/**
* Main application screen
*/
private Form mainScreen;

/**
* A reference to the Display
*/
private Display myDisplay;

17

/**
* Creates a screen for our midlet
*/
HelloWorld() {

myDisplay = Display.getDisplay(this);
mainScreen = new Form("Hello World");
/*
* Create a string item
*/
StringItem strItem = new StringItem("Hello",
"This is a J2ME MIDlet.");
mainScreen.append(strItem);

}

/**
* Start the MIDlet
*/
public void startApp() throws MIDletStateChangeException {
myDisplay.setCurrent(mainScreen);
}

/**
* Pause the MIDlet
*/
public void pauseApp() {
}

/**
* Called by the framework before
* the application is unloaded
*/
public void destroyApp(boolean unconditional) {
}
}

List 1. HelloWorld.java example

Step 2: Compiling an Application

You compile the sample MIDlets included with the Motorola SDK using
the makeAll batch file. This file will invoke the java compiler "javac" for
each of the midlets, tests, and tutorials found under the
<MOTOROLA_SDK_HOME>\demo directory. A separate script is included in
each source directory to build the targets in that directory.

Compiling the HelloWorld MIDlet

1. Change to the directory of the compiler. Enter:

18

cd Program Files\Motorola\SDK v5.2.1 for
J2ME\demo\Scripts

2. Run the compiler. Enter:

makeAll

If makeAll does not run, verify that the JDK 1.4 install directory and bin
subdirectory are in the PATH system environment variable. For more
information, see the section "Verifying the Path Environment Variable".

19

Using the Motorola SDK
Components

The Motorola SDK Components consist of a configuration editor, a
simulator and sample applications. Use the information in this chapter to
add new device configurations to the development environment. In most
cases, device configurations are already supplied and ready to use.
However, in those rare cases where you need a custom configuration,
this chapter can help you setup a new device configuration.

The topics covered in this section include:

• Working with the Emulator: Describes the workings of the simulator,
including running and debugging MIDlets.

• Sample Applications: Brief descriptions of the various sample
applications included with the Motorola SDK.

Working with the Emulator

The emulator is a tool you can use to design and debug J2ME
applications using a desktop computer. As described in the previous
section, Working with Configurations, you can configure the emulator to
emulate different types of devices such as cell phones, personal digital
assistants (PDA's), and pagers.

The emulator is an interactive image of your device. You can interact with
the emulator through the keys on the image, the desktop keyboard, or the
mouse. The emulator can also display output of an application on the
virtual LCD of the emulated device.

Only the J2ME environment is emulated; standard cell phone features
such as placing a call are not supported.

The profiles for the Motorola SDK Components under Emulator A.1
include:

• Motorola A630
• Motorola A845
• Motorola C380

20

• Motorola C381p
• Motorola C381/C386
• Motorola C384/C385/C390/C391
• Motorola C650/C651
• Motorola C698p
• Motorola E375
• Motorola E398
• Motorola E550/V535/V560
• Motorola T725
• Motorola V180/V185/V186/V188
• Motorola V220/V220i/V226
• Motorola V3/RAZR V3b
• Motorola V300/V400/V500
• Motorola V330/V547/V551/V555
• Motorola V400p/V303p
• Motorola V550/V545
• Motorola V600
• Motorola V600i
• Motorola V620
• Motorola V635
• Motorola V80

The profiles for the Motorola SDK Components under Emulator A.3
include:

• Motorola C975
• Motorola C980
• Motorola E1000/E1000R
• Motorola RAZR V3g
• Motorola V975
• Motorola V980

The profiles for the Motorola SDK Components under Emulator A.4
include:

• Motorola PEBL
• Motorola RAZR V3i
• Motorola ROKR E1
• Motorola SLVR
• Motorola V190
• Motorola V230/V235
• Motorola V270/V280
• Motorola V360/V361
• Motorola V540/V557/V557p

The profiles for the Motorola SDK Components under Emulator M.1
include:

• Motorola A760/A760i
• Motorola A768/A768i

21

The profiles for the Motorola SDK Components under Emulator M.3
include:

• Motorola A780
• Motorola E680/E680i

You can use these cell phone profiles to test your applications with
different memory resources, LCD screen sizes, and keypad layouts. See
Configuring the Emulator for the Target Device for more information on
these configuration profiles.

Figure 6. Example profile images include A845, V180/V185/V186/V188, A630 (not shown to
scale)

If you have trouble running the emulator, you may need to check the
system environment path. See Verifying the Path Environment Variable
for more information. The emulator may also display debugging
information in the command line window.

Using the Emulator Keys

Use the guidelines shown below when using the emulator keys to
simulate device keys:

Emulator keys

Key Action Simulator

Left, right soft keys
• Use the mouse
• Page Up, Page Down

0-9, *, #, left, right, up, down
• Use the mouse
• Press keyboard numbers (not

numeric keypad)

Select an item
• Press Enter
• Click phone key on the

emulator

22

Table 7. Emulators Keys Table

Exiting the Emulator

To exit the emulator:

• Click the emulator window's close box

Configuring the Emulator for the Target Device

You can use the device configurations provided with the Motorola SDK
Components, or create new configurations for your own device. The
tables below, Emulator A.1 Device Configurations, Emulator M.1 Device
Configurations, Emulator A.3 Device Configurations, Emulator A.4 Device
Configurations and Emulator M.3 Device Configurations list the available
configurations for each emulator.

Currently, the configuration of properties files must be done manually.

Emulator A.1 Device Configuration

Device Emulated Device Properties

A630 A630.props A630.jpg
A845 A845.props A845.jpg
C380 C380.props C380.jpg
C381p C381p.props C381p.jpg
C381 / C386 C381_C386.props C381.jpg
C384 / C385 / C390 / C391 C384_C385_C390_C391.props

C384_C385_C390_C391.jpg
C650 / C651 C650_C651.props C650_C651.jpg
C698p C698p.props C698p.jpg
E375 E375.props E375.jpg
E398 E398.props E398.jpg
E550/V535/V560 E550_V535_V560.props

E550_V535_V560.jpg
T725 T725.props T725.jpg
V180 / V185 / V186 / V188 V180_V185_V186_V188.props

V180_V185_V186_V188.jpg
V220 / V220i / V226 V220_V220i_V226.props

V220_V220i_V226.jpg
V3/RAZR V3b V3_RAZR_V3b.props

V3_RAZR_V3b.jpg
V300 / V400 / V500 V300_V400_V500.props

V300_V400_V500.jpg
V330 / V547 / V551 / V555 V330_V547_V551_V555.props

V330_V547_V551_V555.jpg

23

V400p / V303p V400p_V303p.props V400p_V303p.jpg
V550 / V545 V550_V545.props V550_V545.jpg
V600 V600.props V600.jpg
V600i V600i.props V600i.jpg
V620 V620.props V620.jpg
V635 V635.props V635.jpg
V80 V80.props V80.jpg

Table 8. A.1 Table

Emulator A.3 Device Configuration

Device Emulated Device Properties

C975 C975.props C975.bmp
C980 C980.props C980.bmp
E1000/E1000R E1000_E1000R.props

E1000_E1000R.bmp
RAZR V3g RAZR_V3g.props RAZR_V3g.bmp
V975 V975.props V975.bmp
V980 V980.props V980.bmp

Table 9. A.3 Table

Emulator A.4 Device Configuration

Device Emulated Device Properties

PEBL Pebl.props Pebl.bmp
RAZR V3i RAZR_V3i.props RAZR_V3i.bmp
ROKR E1 ROKR_E1.props ROKR_E1.bmp
SLVR SLVR.props SLVR.bmp
V190 V190.props V190.bmp
V230/V235 V230_V235.props V230_V235.bmp
V270 / V280 V270_V280.props V270_V280.bmp
V360 / V361 V360_V361.props V360_V361.bmp
V540 / V557 / V557p V540_V557_V557p.props

V540_V557_V557p.bmp
Table 10. A.4 Table

Emulator M.1 Device Configuration

Device Emulated Device Properties

A760 / A760i A760_A760i.props A760_A760I.bmp
A768 / A768i A768_A768i.props A768_A768I.bmp

Table 11. M.1 Table

Emulator M.3 Device Configuration

Device Emulated Device Properties

24

A780 A780.props A780.bmp
E680 / E680i E680_E680i.props E680_E680i.bmp

Table 12. M.3 Table

Debugging J2ME Applications on the Device

Once you have your J2ME applications working on the device emulator, it
is time to test the applications on the device itself. If your integrated
development environment (IDE) comes with a debug agent for debugging
J2ME applications on the emulator, you may be able to debug those
applications on the actual device. To use your IDE for on-device
debugging, the following conditions must be met:

• The device must have J2ME debugging capability enabled and be
KDWP-compliant.

• The debug agent talks to the device using the KVM Debug Wire Protocol
(KDWP).

• The manufacturer must have provided a means of downloading the
MIDlets to the device for debugging.

• The medium of KDWP communication used by the phone (i.e., serial port
or UDP) must be supported by the IDE and its debug agent.

• If you are using Metrowerks CodeWarrior® as your IDE, see Appendix A:
Using CodeWarrior Wireless Studio for instructions on using the debug
agent.

Sample Applications

The sample applications described are demos that give you an idea of the
application capabilities available for the J2ME platform. These samples
are stored in the
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets directory.

Some of these MIDlets appear in the sub-directories Tests or
Tutorials.

For details on a particular sample application, see Appendix B: Sample
MIDlets.

Working with Impronto Simulator

The Java APIs for Bluetooth Wireless Technology (JABWT) specified in

25

JSR 82 is an API for implementing Bluetooth connectivity between
multiple Bluetooth enabled devices. Confirming this functionality on a
Windows based emulator requires some means of simulating
communication between emulated devices. The Impronto Simulator
described in [9] serves this purpose. Using this tool, developers can test
the application using the JABWT functionality without actual devices.

There are a number of environment variables that must be set in order to
run the Impronto Simulator:

SIMULATOR_HOME The absolute path to the
impronto_simulator\impronto directory.

JAVA_HOME Location of the Java SDK installation on the machine.

SIM_HOST The IP address or host name of the machine that the
simulator is running on. The string "localhost" should be set.

SIM_FRIENDLY_NAME The friendly name of the virtual device being
launched in the simulator. The virtual device with the name specified in
this environment variable must have been created using the Bluetooth
Simulator Console. A virtual device is a Bluetooth enabled virtual device
that works with the Impronto Simulator. To create a virtual device,
characteristics of the device such as Bluetooth address, its friendly name
and type of service offered by the device must be set in the Bluetooth
Simulator Console. The friendly name is used to associate the device
emulator with the virtual device when the device emulator runs.

How to integrate Impronto Simulator with Launchpad

1. Set enviroment variables

• SIMULATOR_HOME= <Impronto simulator home>
• SIM_HOST=localhost
• SIM_XML_VERBOSE=0

2. For each MIDlet execution, these cases should be taken into account

• SIM_FRIENDLY_NAME= < XML file >
• It is not possible to execute two MIDlets with the same

SIM_FRIENDLY_NAME
• Into each XML file the "bluetoothAddress" atribute shall be unique.
• Into each XML file the "friendlyName" atribute shall be accodording with

SIM_FRIENDLY_NAME *
• The XML filename shall be according with SIM_FRIENDLY_NAME *

Note.: The XML file is located in "SIMULATOR_HOME/etc/"

3. In order to run a Bluetooth application in SDK, the emulator must be
started from a command prompt, after the Impronto Simulator is running,
due to the fact that the Impronto Simulator needs environment variable

26

settings for each Bluetooth application. To start a MIDlet in SDK from the
command prompt, follow the steps described in the section "Save
Command to Batch File" of this document. Or create a batch file that first
sets the needed environment variables, and then launch a Bluetooth
specific midlet.

Setting the environment variables:

• set SIM_HOST=localhost
• set SIM_FRIENDLY_NAME=sample_jabwt_chat_Client2
• set SIM_XML_VERBOSE=0

Starting Launchpad from Command Prompt:

1. C:

2. cd "\Program Files\Motorola\SDK v5.2.1 for
J2ME\EmulatorA.4\bin"

3. c:\Program Files\Motorola\SDK v5.2.1 for
J2ME\EmulatorA.4\bin\jblend.exe -Xdescriptor:"C:\
sampleApplications\sample_bluetooth.jad" -Xdevice:PEBL

Note that c:\sampleApplications\sample_bluetooth.jad is just
an example of usage, this midlet does not come with SDK.

For further details on starting the Impronto Simulator to work with SDK in
order to run a Bluetooth application, see [8].

Note: the JSR 82 Bluetooth API is available only for Emulator A.4

Working with WMA Test Server

The Wireless Messaging API (WMA) specified in JSR 205 is an API for
implementing messaging between a cellular phone and outside server.
Confirming this functioning on an emulator requires some means of
simulating communication between the mobile device and outside server.
The JSR 205 Wireless Messaging API Connection Test Tool described in
[9] servers this purpose. Using this tool, the developer can test the basic
WMA functions.

In order to run a JSR 205 application in SDK, the emulator must be
started after the WMA Test Server is running,

To start running the WMA Test Server, enter the following command
statement in a command prompt:

27

• SMS/CBS: TestWmaServer
• MMS: TestWmaServer -server_port 20001 -client_port

20000

To receive messages in the WMA Test Server, enter the following
command statement in the command prompt where the WMA Test Server
is running:

• SMS/CBS: tx SMS send.txt
• MMS: tx MMS sendMulti.txt

Where send.txt and sendMulti.txt are the files that needed to be
received.

For details on starting the WMA Test Server to work with SDK in order to
run a JSR 205 application, see [9]. The steps needed to compose MMS
and SMS messages are also described in [9].

Note: the JSR 205 WMA 2.0 API is available only for Emulator A.4

28

Using the Launchpad
Application

The Launchpad application assists you in the process of MIDlet
application development. It does this by providing an easy-to-use GUI
that lets you quickly launch MIDlets using the appropriate emulation and a
particular handset.

The topics in this section include:

• Where to find Launchpad: Contains instructions on where to locate the
Launchpad executable in the J2ME™ directory.

• The Launchpad UI: Describes the controls that let you select a specific
MIDlet, emulator and handset skin by simply pointing and clicking.

• Running Launchpad: Describes how to use Launchpad to start a demo
MIDlet program.

• Saving a Launchpad configuration: Describes how you can save the
configuration. Launchpad uses to start a specific MIDlet into a .bat file
for future use.

Where to Find Launchpad

The Launchpad executable file, Launchpad.exe, is in the installation
directory made by the installer application. By default, this is the Motorola
SDK v5.2.1 for J2ME directory. Figure 7 shows where the SDK v5.2.1 for
J2ME directory is located at c:\Program Files\Motorola, but this
directory could be elsewhere.

29

Figure 7. Location of the Launchpad executable in the SDK v5.2.1 for J2ME directory.

The Launchpad UI

Launchpad presents a UI that allows you to quickly select an emulator
and a handset skin to execute and test with a particular MIDlet. This
section explains the details of the UI and how you apply them to configure
and launch a Java MIDlet.

The topics in this section include:

• The Launchpad window
• The Launchpad Components
• Using Launchpad to run a MIDlet
• The Launchpad Emulator Thumbnail Window
• The Launchpad Advanced Settings window

When Launchpad starts, it presents the Motorola J2ME Launchpad
window, as shown in Figure 8.

30

Figure 8. The Motorola J2ME Launchpad window

This window presents the controls that configure and assemble a
command line that Launchpad passes to the Java™ Runtime
Environment (JRE™) for execution. The window has various components
for selecting the handset type, the language for the emulation to display,
the name of the class in the MIDlet to execute, and diagnostic control
settings. The table below summarizes the purpose of these components.

Launchpad window components

Component Description

Handset Chooses the handset skin that the
MIDlet interacts with.

Language Chooses the language-appropriate
display fonts that the emulator uses.

Select Handset Displays a window with thumbnails of
the supported handsets. You pick a

31

handset and the language that it uses
from this window.

Advanced Displays a window where you can
adjust advanced options.

Browse Displays a window to select a JAD file
to run a MIDlet.

Keep Launchpad open after MIDlet
launch

Launchpad does not exit after issuing
the command line to the JRE.

Keep command window open after
completion

The command window does not exit
when the MIDlet exits.

Save command line to batch file Saves the current configuration of
Launchpad's command line into a .bat
file

Command line Displays the command line that
Launchpad generates.

Table 13. Launchpad's components Table

Launchpad Components

This section describes the UI components presented by the Motorola
J2ME Launchpad window in further detail. The topics covered in the
section are:

• Handset
• Language
• Select Handset
• Advanced
• Browse
• Keep Launchpad open after MIDlet launch
• Keep command window open after completion
• Save Command to Batch file
• Command line

Handset

The Launchpad application scans the installation directory tree to locate
any installed handset properties (.props) files. Each discovered handset is
attached to the drop-down list that the Handset component displays.
When you select a specific handset, Launchpad uses this information to
determine what languages it supports. Launchpad then updates the
Language component to display only valid language selections for the
chosen handset. In addition, the choice of handset determines what skin
the Display Emulator presents when the MIDlet executes. Use the Select
Handset button to open the Simulator Thumbnail window. You use this

32

window to choose a handset and--for certain skins--the language that it
displays. For more information, consult the section, Simulator Thumbnail
Window.

Language

This component displays a drop-down list of languages available for the
handset. This list is determined by the handset specified in the Handset
component.

Select Handset

Click the Select Handset button to open Simulator Thumbnail Window.
Select one of the available handsets and click OK.

Advanced

Click the Advanced button to open the Advanced Settings window. For
more information, consult the section, Advanced Settings Window.

Browse

Click the Browse button to open a dialog box to select the JAD file.

You can use Browse button to search for a JAD file or type the directory
path and file name into the text entry section of this component. If you fail
to provide a file name, Launchpad displays an error message.

When running from a JAD file, the Launchpad opens the file and
searches for entries in the format MIDlet-n:<value>, where n is the
number of the MIDlet in the suite. If no such entry exists, then Launchpad
opens the corresponding JAR file, and reads the MANIFEST.MF file to
determine the names of the MIDlet(s) stored there. Once Launchpad has
determined the names of the stored MIDlets, then one of three actions will
occur:

• No MIDlets-an error message appears
• A single MIDlet-the MIDlet is launched
• Multiple MIDlets-a dialog appears where you can select which MIDlet to

launch.

Keep Launchpad open after MIDlet launch

33

Checking this component instructs Launchpad not to exit after you click
on the Launch button. In addition, the Motorola J2ME Launchpad window
remains visible. This is valuable when executing several MIDlets
simultaneously.

Keep command window open after completion

Checking this component has the command line window remain open
after the MIDlet exits. This feature is useful if the MIDlet uses the
standard output device to display diagnostic information. It is also useful
for displaying error messages issued by the JRE if the MIDlet fails to
launch.

Save command to batch file

Checking this component has Launchpad save the current settings
required to execute the MIDlet into a batch (.bat) file. This is useful for
assembling command sequences into sophisticated MIDlet test suites.
For example, you might use Launchpad to generate a set of batch files
that execute the same MIDlet, but with different skins. You then use an
editor to string these batch files together so that you have one test suite
batch file that tests the one MIDlet with every handset skin it supports.
Type a file name into the text entry area of this component. The file
extension should be .bat. Alternately, you can click on the Browse button
to select a specific directory and choose an existing batch file. This
feature can also be useful to start a MIDlet from the command line. Just
check this component, type a file name into the text entry area, press the
Launch button in the Launchpad and then the MIDlet will be launched and
the command needed to start this same MIDlet will be saved in the batch
file. After this, the MIDlet can be launched from the command line just
running the generated batch file.

Command line

This component displays the command line that Launchpad generates to
execute the MIDlet. This line changes as you make selections from the
various components in the Motorola J2ME Launchpad window.

Simulator Thumbnail Window

This section describes the components of the Simulator Thumbnail

34

Window and their purpose. This window appears when you click Select
Handset in the Launchpad for J2ME window. The Simulator Thumbnail
Window (Figure 9) displays thumbnail images of all of the handsets that
the J2ME release supports. Clicking on an image selects the simulator (or
handset interface skin) to simulate, and it also determines the choice of
emulator that executes the MIDlet code.

Figure 9. The Simulator Thumbnail Window

Each image provides the name of the handset that it represents. Certain
image names also indicate the language fonts that the handset displays
when the MIDlet executes. For other handsets to display different
language fonts, you must make adjustments to the handset's .props files
or elsewhere. For more information on managing the fonts that emulator
uses, consult Appendix D, Using Foreign Fonts in Motorola Emulators.

Advanced Settings Window

35

This section describes the components of the Launchpad-Advanced
Settings window and their purpose. When you click on the Advanced
button in the Motorola J2ME Launchpad window, the
Launchpad-Advanced Settings window appears, as shown in Figure 10.

Figure 10. The Advanced Settings Window

Normally, the Launchpad application generates a syntactically correct
command line to present to the JRE. However, the Advanced component
allows you to modify the command line to issue parameters for special
situations.

Advanced Settings window components

Componenet Description

Runtime Name This component selects the executable
name of the Java runtime. The runtime
executable should be accessible in the
Windows PATH.

Java Classpath Enter the directory path the Java
runtime needs to find the specified
emulator and config tool libraries.

Emulator Class This is the class name of the handset
emulator that executes the MIDlet.

Emulator Classpath The directory path the emulator uses to

36

locate the Java Application Manager
(JAM™) and MIDlets.

Application Manager Enter the class name of the Java
Application Manager (JAM).

Parameters Enter the Application Manager-specific
parameters that modify its operation.

Table 14. Advanced Settings Table

Using Launchpad to Run a MIDlet

This section describes how to use Launchpad to execute one of the demo
MIDlets.

1. Start Launchpad by double-clicking on the launchpad.exe file. The
Motorola J2ME Launchpad window appears.

2. Click on the Handset component and choose E398 from the pop-up menu
list.

3. Click on the Language component and pick ENGLISH from the pop-up
menu list.

4. Click on the Application component and type
com.mot.j2me.midlets.paddleball.PaddleBall into the text
entry field.

5. Click the Browse button and navigate to the
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets paddleball
directory and select the paddleball.jar file.

6. Click Launch. The E398 skin should appear, and the paddleball MIDlet
should start running (Figure 11).

37

Figure 11. Launchpad executing the PaddleBall MIDlet.

Saving a Launchpad Configuration

As discussed in the section on Launchpad Components, you use the
Save command line to batch file component to save the command line
that Launchpad generates. To save a working Launchpad configuration,
do the following:

1. Click on the Save command line to batch file component, so that a
checkmark appears.

2. Type a file name into the text entry area of this component. The file
extension should be .bat.

3. Alternately, you can you the Browse button to select a specific directory
and an existing batch file.

4. Click on Launch. Launchpad saves the command line it generated to the
specified file. If the file already exists, it is overwritten.

38

Appendix A: Using
CodeWarrior Wireless

Studio

This appendix provides instructions on using Metrowerks' CodeWarrior™
Wireless Studio, version 7.0 and the Motorola SDK Components into its
integrated development environment (IDE). If you use the CodeWarrior
tools, do not install the Motorola SDK Components separately.

This appendix shows you how to:

• Install CodeWarrior Wireless Studio
• Create a J2ME Project
• Debug a MIDlet
• Runn a MIDlet on the Emulator
• Troubleshooting Tips

The instructions in this appendix primarily involve using the Motorola
emulator and debug agent with the CodeWarrior development tools. For
complete instructions on how to use the CodeWarrior IDE in general,
consult the CodeWarrior documentation. For more information on
Metrowerks, see www.metrowerks.com.

Installing CodeWarrior Wireless Studio

To successfully install the CodeWarrior Wireless Studio tools, you must:

• Remove any previous CodeWarrior for Java installation
• Remove any previous Motorola SDK Component installation
• Install the latest CodeWarrior Wireless Studio tools and Motorola SDK

Components

Removing Previous Versions of CodeWarrior Tools

If you have a previous version of the CodeWarrior for Java™ on your

39

system, remove the old version using Window's built-in Add/Remove
Programs control panel. To access this control panel:

• Select Start | Settings | Control Panels | Add/Remove Programs

OR

• Select Start | Settings | Control Panels to show the Control Panels
window

• Double-click the Add/Remove Programs icon
• Use the control panel (Figure 12) to remove any previous versions of

CodeWarrior for Java or CodeWarrior Wireless Studio.

Figure 12. Use the Add/Remove Programs control panel to remove previous versions of the
CodeWarrior tools.

Installing CodeWarrior Wireless Studio, version 7.0

To install CodeWarrior Wireless Studio:

1.Insert the CodeWarrior Wireless Studio CD

2.If the installer fails to auto-launch, double-click Setup.exe

3.Follow the online instructions making sure to select:

40

• Setup Type: Full Install
• File Association Option: Typical
• Click Yes to install Personal Java Emulation Environment

4.Reboot your computer after installing the CodeWarrior tools

Merging Motorola SDK v5.2.1 for J2ME Platform with
CodeWarrior Wireless Studio

To have complete access to the Motorola SDK v5.2.1 for J2ME platform
from within the CodeWarrior Wireless Studio, you must specify where it
will find the Motorola SDK v5.2.1 for J2ME files. To do that, exit
CodeWarrior Wireless Studio and follow these instructions:

1. Install the Motorola SDK v5.2.1 for J2ME Platform (if not already
installed) See Installing the Motorola SDK Components for details.

The following instructions will not work if the Motorola SDK v5.2.1 for
J2ME Platform installation was done to an alternate directory location.
The default location is c:\Program Files\Motorola\SDK v5.2.1
for J2ME\.

2. Create a new directory called "Motorola SDK 5.2.1 " inside the
\Metrowerks\CodeWarrior\Java_Support\ directory

3. Copy the files "Motorola_5.2.1_J2ME.xml" and "register2.bat" from the
\Motorola\SDK v5.2.1 for J2ME\ directory to the
\MetrowerksCodeWarrior\Java_Support\Motorola SDK 5.2.1
directory

4. Open a command prompt window

5. Change to the \Metrowerks CodeWarrior\Java_Support\
Motorola SDK v5.2.1 directory

6. Type "register2" to update the path to the Motorola SDK v5.2.1 for
J2ME platform files

7. Restart CodeWarrior Wireless Studio

You now have complete access to the Motorola SDK v5.2.1 for J2ME files
from within the CodeWarrior for Wireless development tools.

If CodeWarrior 7.0 was installed prior to installing the Motorola SDK
v5.2.1 for J2ME, the SDK installer performs this registration process for
you.

41

Creating a J2ME Project

In the following exercise, use bouncetest as the sample MIDlet to create a
new J2ME project. The new project process involves:

• Creating a new J2ME project
• Deleting any unnecessary files from the project
• Adding additional files to the project

Creating a New Project

To create a new project named bouncetest.mcp:

1. Select Start | Programs | CodeWarrior Wireless Studio, version 7.0
| CodeWarrior IDE

2. Select File | New from the Metrowerks CodeWarrior window The New
window appears (Figure 13).

3. Select Java J2ME Stationery from the Project list

42

Figure 13. CodeWarrior's New window

4. Type a project name in the Project name field For this example, type
bouncetest.mcp.

5. Click OK The New Project window (Figure 14) appears.

Figure 14. New Project window

6. Select and verify the new project is J2ME MIDlet, click OK.

The IDE generates a project window (Figure 15), in this case called
bouncetest.mcp. This window shows the default sources of a J2ME
MIDlet. The Sources group contains the default HelloWorld.java;
however, for this example, you'll replace it with Bounce.java.

Figure 15. New bouncetest project window

43

Deleting Files from a Project

A project built from stationery often contains source files. If the original
sources are not required by the project, you should remove them. In this
example, the project does not need the HelloWorld.java file inside the
Sources group. To remove it:

1. Select HelloWorld.java in the Sources group

2. Select Edit | Delete

3. Click OK to confirm the "Removing file from project..." warning

The IDE removes the file from the project.

Adding Files to a Project

To make a project usable, you must add source files. In this example, the
project needs the Bounce.java file.

To add a file:

1. In the bouncetest.mcp project window, highlight the Sources folder

2. Select Project | Add Files

3. Locate the Bounce.java file using the Select files to add dialog The file
should be found at:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\Bounce\Bounce.java

4. Click Open The Add Files dialog (Figure 16) appears, use it to select
which build targets use the file.

44

Figure 16. Add Files window

5. Leave Debug and Release options checked, click OK The IDE adds
the file to the project and a Project Messages window appears if any
messages are generated.

6. Close the Project Messages window (Figure 17)

Figure 17. Project Messages window

7. Open the Sources folder to make sure Bounce.java is there (Figure
18) The project is now ready for debugging.

Figure 18. Project window - after adding file

Debugging a MIDlet

45

The debug agent is a Motorola SDK Component that works with the IDE
and allows you to debug your J2ME applications.

Setting Target Debugger Settings

To set up your debug environment for bouncetest:

1. Choose Edit | Java MIDlet Debug Settings The Settings window
appears. Use the Settings window to set options that apply to a specific
build target. In this case, that is the Java MIDlet Debug build target, as
represented by the window title, Java MIDlet Debug Settings.

2. Select Target Settings in the Target Settings Panels list (Figure 19)
For this example, use the default options as follows:

• Target Name: Java MIDlet Debug
• Linker: Java Linker
• Pre-linker: none
• Post-linker: none
• Output Directory: {Project}debug_out
• Save project entries using relative paths: selected

Figure 19. Target Settings panel option settings

3. Select Java Target in the Target Setting Panels list (Figure 20) For
this example, set the options as follows:

• Target Type: J2ME Midlet
• VM Arguments: empty
• Main Class: com.mot.j2me.midlets.bounce.Bounce
• Virtual Machine: Motorola SDK v5.2.1 EA.3
• Simulator: selected
• Simulator Config. File: Default Device

46

Figure 20. Java Target Settings panel option settings

4. Click OK The IDE saves the new options.

5. Select Project | Make to compile the MIDlet The IDE compiles the
project.

6. Select Project | Debug to debug the MIDlet After a few seconds, the
debug agent and the emulator appears. You can now modify the source
code using the debug agent.

For detailed instructions on using the debugging interface, refer to the
CodeWarrior documentation. See Working with the Emulator in this guide
for instructions on how to use the emulator.

Running a MIDlet on the Emulator

All classfiles running on the Motorola SDK for J2ME platform must be
preverified prior to running. The CodeWarrior Wireless Studio tools do
this automatically when you create a new project using the MIDlet
stationery.

Previous versions of CodeWarrior development tools used the Pre-linker

47

setting in the Target Settings panel to activate preverification. If you
converted a project that used this setting, open the Target Settings panel
and change the Pre-linker setting to None.

For more information on preverification, refer to Appendix C: Bytecode
Verifier.

Preverifying a MIDlet

To run a MIDlet on the emulator, preverification must be done.

Figure 21. Setting the Preverifiy option

To enable Preverification of a project:

1. Click Edit | Java MIDlet Debug Settings

2. Select Java Output in the Target Settings Panels list

3. Enable the Preverify option (Figure 21)

4. Click OK

5. Select Project | Make (The IDE compiles the MIDlet).

6. Select Project | Run to run the MIDlet (The IDE launches the MIDlet using
the emulator).

48

Troubleshooting Tips

Here are some answers to common troubleshooting questions.

1. When I try to launch the emulator, the command window appears, then
immediately disappears, and the emulator never launches. Can this be
fixed?

The CodeWarrior IDE is unable to find the emulator. The most common
cause is a corrupt jvmdb.xml file. The jvmdb.xml file contains
information about installed virtual machines, as well as their supported
devices, and the IDE uses this data to create the Java Target panel's
Virtual Machine list settings. To correct this problem, exit the IDE if it's
running, then locate and throw away the jvmdb.xml file. On Windows 2000,
it is located in C:\Document and Settings\user_name\My
Documents\Metrowerks\ folder. The next time the CodeWarrior IDE
launches, it recreates the file. Then, if you're using the Motorola SDK
v5.2.1 for J2ME Platform, run register2.bat to repopulate the file with
VMs and device information. See Merging the Motorola SDK v5.2.1 for
J2ME Platform with CodeWarrior Wireless Studio for details.

49

Appendix B: Sample
MIDlets

The Motorola SDK Components also provides sample MIDlets you can
run to see examples of J2ME programming capabilities. The MIDlet
classfiles and source files for these samples are in
<MOTOROLA_SDK_HOME>\demo\midlets\com\mot\j2me\midlets.

Sample MIDlet Descriptions

This section describes each of the sample MIDlets included with this
version of the Motorola SDK for the J2ME Platform.

AcronymSearcher

The sample midlet Acronym Searcher, through a web server, allows the
user to consult the meaning of an acronym.

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\AcronymSearcher

AlertTest

AlertTest demonstrates how to use timed and modal alerts.

To see a timed alert:

• Click the left soft key

OR

• Press Page Up on the keyboard.

After two seconds, the emulator will return to the AlertTest menu.

To see a modal alert:

50

• Click the right soft key

OR

• Press Page Down on the keyboard.

Bounce

Bounce displays several squares bouncing around inside the screen.

Bluetooth Tic Tac Toe

This application consists of the game Tic Tac Toe with the capability of
being played by 2 players simultaneously, through two different instances
of the Motorola SDK for J2ME connected on a simulated Bluetooth
environment running on the same machine. This Sample Midlet
demonstrates how to use the JSR 82 (Java APIs for Bluetooth).

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\bluetoothtictactoe

ChangeDate

ChangeDate demonstrates how to use Calendars.

To change the date:

• Press Enter on the keyboard

OR

• Click the Select key on the emulator.

To move around calendar:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To view new select date:

• Click Save on the emulator screen

51

ChoiceGroupTest

ChoiceGroupTest demonstrates radio button groups and checkbox
groups.

To move between the radio buttons and checkboxes:

• Press the up and down arrow keys on the keyboard
• Click the up and down arrow keys on the emulator
• Select with the mouse

To select a radio button:

• Press Enter
• Select with the mouse

You can only select one radio button at a time.

To select a checkbox:

• Press Enter
• Select with the mouse

You can select several checkboxes at one time.

CommandTest

CommandTest demonstrates how to use Commands and create menu
items.

To move around the menu items:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To select a menu item:

• Press Enter on the keyboard

OR

• Click the Select key on the emulator.

To go back to main menu:

52

• Click Back on the emulator screen.

CoolFLTest

CoolFLTest demonstrates how to use FunLights.

To enter sleep value:

• Click the number keys on the emulator

OR

• Press the number keys on the keyboard.

To see funlights working:

• Click Test on the emulator screen.

CoolFLTest will work only on handsets that supports FunLight API.

DateFieldTest

DateFieldTest demonstrates how to use DateFields in DATE, TIME, and
DATE_TIME mode.

To move around the date and time fields:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To enter numeric values:

• Click the number keys on the emulator

OR

• Press the number keys on the keyboard.

DateFieldTest does not recognize the numeric keypad except for the
asterisk (*) key, which allows you to delete existing characters.

FontDemo

53

FontDemo demonstrates different combinations of fonts, faces, styles,
and sizes.

To see the font examples:

• Click SELECT on the emulator screen to select a font type from the
"Choose Font Face" menu.

Note: The Emulator A1 has only one available font type. No styles/sizes
can be applied for font selection.

FormTest

FormTest demonstrates having multiple items on a form. The methods for
navigating and selecting form items are identical to the methods used in
ChoiceGroupTest. Notice, however, that the fields are only the first of
eight form elements. Press the up and down arrow keys on the keyboard,
or click the up and down arrow keys on the emulator to scroll up and
down the form. The fields include text fields, radio button groups,
checkbox groups, and interactive gauges.

GaugeTest

GaugeTest demonstrates how to use an interactive gauge.

To raise the gauge:

• Press the right arrow key on the keyboard
• Click the right arrow key on the emulator

• Press the left arrow key on the keyboard
• Click the left arrow key on the emulator

GraphicsDemo

GraphicsDemo demonstrates how to use various Graphics primitives.

To see the graphics examples:

• Click the left and right arrow keys on the emulator

OR

• Press the left and right arrow keys on the keyboard

The following routines are then shown:

54

• fillRect()
• drawRect()
• drawArc()
• fillArc()
• fillRoundRect()

GraphicsTest

GraphicsTest demonstrates how to use Graphics.

To move around the graphics:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To change a graphic style:

• Click Solid on the emulator screen

OR

• Click Doted on the emulator screen.

GuiTests

GuiTests demonstrates how to use various GUI components.

To move around the menu items:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To select a menu item:

• Press Enter on the keyboard

OR

• Click the Select key on the emulator.

55

HelloWorld

HelloWorld displays a "Hello World" message on the emulator screen.

ImageTest

ImageTest demonstrates how different types of images (colors, fonts,
shapes) look on the emulated device screen.

To view all available images:

• Click the scroll arrows at the bottom of the emulator screen.

KeyEventsTest

KeyEventsTest demonstrates how to perform low-level key event
handling. KeyEventsTest displays "Press a key!" when it starts. Press a
key on the keyboard or click a key on the emulator to display the key's
applicable values (key code, action, and key name) on the emulator
screen.

KJavaTelephonyTest

KJavaTelephonyTest simulates a phone call.

To enter phone number:

• Click the number keys on the emulator

OR

• Press the number keys on the keyboard.

To simulate a phone call:

• Press Enter on the keyboard

OR

• Click the Select key on the emulator.

MobilePiano

56

The sample midlet "Mobile Piano" allows the user to play an emulated
piano, configure volume and pitch, and play a tutorial video that
demonstrates how to play a small song. To develop this midlet the Mobile
Media API is used.

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\MobilePiano\

Paddleball

PaddleBall is similar to the classic arcade game with the ball and paddle.

To start the game:

• Click START on the emulator screen

OR

• Click the right soft key on the emulator

OR

• Press the Page Down key on the keyboard

To play the game:

• Click the right and left arrow keys on the emulator

OR

• Press the left and right arrow keys on your keyboard to move the paddle

Personal Organizer

The sample midlet Personal Organizer allows the user to register
contacts and events (such as meeting and friend's birthday) on the
handset. The user can also send the event contents through SMS to
other devices. To develop this midlet the Personal Information
Management API and Wireless Messaging API are used.

Photo Blog Example

The sample midlet Photo Blog Example allows the user to take snapshot,
include a brief description about it and save them on the emulator. The
user can delete or visualize the picture and its comments, or also insert
more comments about it. To develop this midlet the FileConnection API

57

(JSR 75) and Mobile Media API (JSR 135) are used.

PushRegistryExample

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\PushRegistryExample

RecordStoreDemo

RecordStoreDemo demonstrates some of the basic functionality of the
Record Management System (RMS) classes. Unlike FontDemo and
GraphicsDemo, the output from RecordStoreDemo appears in the
command line window, not the emulator screen. However, an empty
emulator screen is also displayed.

To demonstrate RMS functionality, RecordStoreDemo does the following:

• Creates a recordStore of constants
• Inserts ten new integer records
• Inserts some string records
• Builds an enumeration that indexes through all records (Notice that ID

#12 was deleted).
• Builds a RecordEnumeration that filters out all records except integer

records
• Lists the remaining records in reverse order

Scene3D

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\Scene3D

ShortMessage

The sample midlet Short Message Example offers short text message
transmission service to and from a mobile phone in a GSM network. To
develop this midlet the Wireless Messaging API (JSR 120) is used.

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\ShortMsgEx

SoundTest

SounsTest demonstrates different sound types.

58

To move around the sound items:

• Press the arrow keys on the keyboard

OR

• Click the arrow keys on the emulator.

To select a sound item:

• Press Enter on the keyboard

OR

• Click the Select key on the emulator.

Important Note: In order to run this midlet successfully, the following
sounds must be enabled in the Windows:

• Question ("Confirmation")
• Asterisk ("Alarm")
• Critical Stop ("Error")
• Exclamation ("Warning")
• Default Beep ("Info")

TextBoxTest

TextBoxTest demonstrates how to edit a text box screen.

To type letters in the text box:

• Click the desired key on the emulator keypad. For example, to type the
letter b, click the 2 key twice.

OR

• Press the appropriate number key on your keyboard (not the numeric
keypad) until the desired letter or number appears.

When the letter you want appears, click OK on the emulator screen, press
Enter on the keyboard, or click the phone key on the emulator.

To move around the text box screen:

• Click the left and right arrow keys on the emulator, or press the left and
right arrow keys on the keyboard.

To delete characters:

59

• Click the asterisk (*) key on the emulator, or press the asterisk key on
the numeric keypad.

To insert spaces between words:

• Click the pound sign (#) key on the emulator.

To select a character [period (.), comma (,), colon (:), at symbol (@),
dollar sign ($), exclamation point (!)]:

• Click the 1 key on the emulator, or press the 1 key on the keyboard
repeatedly.

TextFieldTest

TextFieldTest demonstrates how to add text to a text field in a form. The
methods for adding and deleting characters, as well as for navigating
from text field to text field, are identical to those methods found in
TextBoxTest.

TickerTest

TickerTest demonstrates how to use tickers. To navigate the three
screens in this MIDlet:

• Click NEXT and PREV on the emulator screen, or press the Page Up
and Page Down keys.

UDPSend and UDPReceive

UDP Send and UDP Receive demonstrates networking through the User
Datagram Protocol (UDP).

Once the program launches, UDPReceive waits for a datagram to be sent
through a given port. When the datagram is received, a message is
displayed to both the emulator and command line windows

Next, open a second command line window and enter:

runEmul com.mot.j2me.midlets.tutorials.UDPSend

While not necessary, you may choose to do this step from another
workstation on the same network as the workstation with the first
command line window. This further illustrates the capabilities of UDP.

UDPSend sends a datagram with the message Hello UDP Networking to

60

the local host. To run UDPReceive on a different machine than the one
where UDPSend is located, you must edit the file UDPSend.java and
replace localhost with the host name of the machine running
UDPReceive. The localhost may be entered in one of the following two
formats:

• Host name (i.e., jijo.risc.sps.mot.com)
• IP address (i.e., 205.16.177.105)

Wireless Multimedia Messaging Example

The sample midlet Wireless Multimedia Messaging Example (WMME)
offers MMS message (audio, image and text) transmission service
simulating communication between the mobile device and outside server.
To develop this midlet the Wireless Messaging API 2.0 (JSR 205) and
Mobile Media API (JSR 135) are used.

See the file README.txt inside this midlet directory:
<MOTOROLA_SDK_HOME>\demo\com\mot\j2me\midlets\wirmultimsgex\

61

Appendix C: Bytecode
Verifier

The bytecode verifier is a tool that ensures that Java bytecodes and other
items stored in Java classfiles do not contain references to invalid
memory locations or memory areas outside the Java object memory
(known as Java heap). The classfile verifier ensures that classfiles loaded
into the virtual machine do not perform operations that are not allowed by
the Java Virtual Machine Specification.

Class files must be verified before they are run on the KVM to ensure that
the classfiles do not perform any illegal operations. Verification of
classfiles is done in two steps: offdevice

preverification and in-device verification. Preverification of a classfile
takes place somewhere other than the KVM such as on a server or on a
developer's workstation. The runtime verification (or in-device verification)
actually occurs within the device carrying the virtual machine using the
special attribute provided by the preverifier. Preverification is transparent
because it is written into the compiler.

The J2ME bytecode verifier is smaller than the bytecode verifier for the
standard Java 2 SDK. The J2ME bytecode verifier verifies each bytecode
linearly - that is, it does not require complex data flow algorithms to check
the accuracy of the bytecodes. The preverifier runs over the classfiles on
the file system and adds an attribute later used by the bytecode verifier to
actually verify the class at runtime. Preprocessed classfiles containing the
attribute from the preverifier are approximately 5% bigger than the
original, unmodified classfiles.

62

Appendix D: Using
Foreign Fonts in

Motorola Emulators

This appendix describes how to manually add Unicode fonts to access
them on a Motorola phone. We recommend that you use the Launchpad
application to automate this process, but it can be done manually if
desired. Read on to find out how.

Language Requirements

To support the use of foreign language characters you must:

• Enable Java™ to support foreign language fonts
• Install the fonts that contain the characters you want to display
• Modify the appropriate file for the emulator

Enable Java™ to Support Foreign
Language Fonts

The Java™ Runtime Environment (JRE™) uses the font.properties file to
determine which fonts are available and usable. You modify this file to
add additional fonts to the supported list. For more information on how to
accomplish this, see Sun's documentation "Adding Fonts to the Java
Runtime" located at the URL:
http://java.sun.com/products/jdk/1.1/docs/guide/intl/fontprop.html

Supported Foreign Fonts

63

In order for the Motorola emulators to use a foreign font, it must be
installed correctly on your PC. The following table lists the Asian fonts
currently recognized by Motorola phones as well as their Unicode and
Window's filenames. Use it as a guide to locate and install the correct
Asian font for your development efforts.

Supported Asian languages

Language Java Typeface Name Font File Name
Chinese (Simplified) \u5b8b\u4f53 SIMSUN.TTC

Chinese (Traditional) \u7d30\u660e\u9ad4 MINGLIU.TTC

Modify Motorola Emulator Files

The final step in the process is to manually edit the appropriate files for
the emulator that supports the device you are writing software for.

If MIDlets are not written to properly display Unicode characters, then
ASCII characters are used instead.

Emulator M.1

The M.1 emulator uses settings defined by the MIDP specification to
control the display fonts. This information is stored in the file
system.config, located in the directory <Wireless Toolkit root
directory>\lib. The entry microedition.locale is used to select the
font used, as shown in Figure 22.

64

Figure 22. Sample system.config file

To change the font used by the Emulator M.1

1. Find the system.config file

This file is located in the <Wireless Toolkit root
directory>\lib directory.

2. Rename system.config file to system-OLD.config Save the old
system.config file for later restoration of the old font, or in case you should
make a mistake.

3. Open this file with an editor, and immediately save it as system.config

4. Locate the string microedition.locale:

5. Change the string en_US to ja_JP to display Japanese fonts

6. Save the file

That's it. The next time you invoke the Emulator M.1, the device displays
the new language.

65

Appendix E: Open
Classes

This appendix provides descriptions of the Open Class (OC) application
programming interfaces (API) available in the Motorola SDK for the
J2ME™ platform release

Open Class Overview

For detailed information on a specific OC, see the JavaDoc for that API.

JSR 30 - CLDC 1.0 API

Connected Limited Device Configuration 1.0 API.

JSR 75 - PDA Optional Packages for the J2ME™ Platform

Two APIs compose this package: PIM API and FileConnection API. The
PIM package defines APIs to access Personal Information Management
(PIM) data. The FileConnection package describes file system access
support based on the Generic Connection Framework.

Note: currently there are two implementations of file system access:
Motorola FileSystem API and JSR 75 FileConnection. However, they can
not be used simultaneously. i.e., only one of them can be used in a
MIDlet at a given time

JSR 82 - Java APIs for Bluetooth

Bluetooth is an important emerging standard for wireless integration of
small devices. The specification standardizes a set of Java APIs to allow
Java-enabled devices to integrate into a Bluetooth environment.

66

JSR 118 - MIDP 2.0 API

Mobile Information Device Profile 2.0 API.

JSR 120 - Wireless Messaging API

It defines an API which allows applications to send and receive wireless
messages. It also includes the platform networking interfaces which have
been modified for use on platforms that support message connections.

JSR 135 - Mobile Media API

This document, Mobile Media API (JSR-135) Specification, defines the
Multimedia API for the Java TM 2 Platform, Micro Edition (J2METM). The
audience for this document is the public Java community reviewing this
specification and the Java Community Process (JCP) expert group
defining this specification, implementors of the Multimedia API, and
application developers targeting the J2ME platform.

JSR 139 - CLDC 1.1 API

Connected Limited Device Configuration 1.1 API.

JSR 184 - Mobile 3D Graphics API

This specification defines the Mobile 3D Graphics API (M3G) for J2ME. It
defines an API for rendering three-dimensional (3D) graphics at
interactive frame rates, including a scene graph structure and a
corresponding file format for efficient management and deployment of 3D
content.

JSR 205 - Wireless Messaging API 2.0

This JSR will extend and enhance the "Wireless Messaging 2.0 API"
(JSR-205).

Motorola Fun Light API

The Fun Light API provides developers a way to enhance applications
like games, with access to several light features including: on/off control,

67

light area control, intensity, and color, when supported by a device.

Motorola Get URL form Flex API

The Motorola Get URL from Flex API allows Java applications to read
and display the URL stored in flex files.

Motorola Vibrate and Backlight API

The Vibrator and Backlight interfaces are Java classes that extend the
standard J2ME platform, providing methods to control any vibrator or
screen backlight and intensity on the device. Only devices that include
KJava and the Vibrator and Backlight functionality can respond to these
methods.

68

Appendix F: Unified
Emulator Interface

The SDK development team is already working on the implementation of
the complex code changes that are required to allow the KVM to support
UEI commands. The tool will be fully UEI compliant in the near future. We
will be sure to broadcast a release update and notify our developer
community as soon as the tool is available.

Currently here are the UEI compliant statuses of the KVMs inside our
tool:

Emulator A.1 - Supports UEI command-line commands, but it only
supports on the default phone skin

Emulator A.3 - Does not support UEI commands.

Emulator A.4 - Does not support UEI commands.

Emulator M.1 - Does not support UEI commands.

Emulator M.3 - Supports UEI commands.

69

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or
service names are the property of their respective owners. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

© Motorola, Inc. 2003-2005

