
Section 1. Tutorial tips

Should I take this tutorial?
Looking to incorporate mail facilities into your platform-independent Java solutions? Look no
further than the JavaMail API, which offers a protocol-independent model for working with
IMAP, POP, SMTP, MIME, and all those other Internet-related messaging protocols. With
the help of the JavaBeans Activation Framework (JAF), your applications can now be
mail-enabled through the JavaMail API.

Concepts

After completing this module you will understand the:
* Basics of the Internet mail protocols SMTP, POP3, IMAP, and MIME
* Architecture of the JavaMail framework
* Connections between the JavaMail API and the JavaBeans Activation Framework

Objectives

By the end of this module you will be able to:
* Send and read mail using the JavaMail API
* Deal with sending and receiving attachments
* Work with HTML messages
* Use search terms to search for messages

Prerequisites

Instructions on how to download and install the JavaMail API are contained in the course. In
addition, you will need a development environment such as the JDK 1.1.6+ or the Java 2
Platform, Standard Edition (J2SE) 1.2.x or 1.3.x.

A general familiarity with object-oriented programming concepts and the Java programming
language is necessary. The Java language essentials tutorial can help.

copyright 1996-2000 Magelang Institute dba jGuru

Contact
jGuru has been dedicated to promoting the growth of the Java technology community
through evangelism, education, and software since 1995. You can find out more about
their activities, including their huge collection of FAQs at jGuru.com . To send feedback
to jGuru about this course, send mail to producer@jguru.com .

Course author: Formerly with jGuru.com , John Zukowski does strategic Java
consulting for JZ Ventures, Inc. His latest book is titled Java Collections from Apress .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 2

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www.jguru.com
http://www.jguru.com
mailto:producer@jguru.com
http://www.jguru.com
http://www.jzventures.com
http://www.jzventures.com
http://www.jzventures.com
http://www.apress.com/catalog/book/1893115925/
http://www.apress.com/catalog/book/1893115925/
http://www.apress.com

Section 2. Introducing the JavaMail API

What is the JavaMail API?
The JavaMail API is an optional package (standard extension) for reading, composing, and
sending electronic messages. You use the package to create Mail User Agent (MUA) type
programs, similar to Eudora, pine, and Microsoft Outlook. The API's main purpose is not for
transporting, delivering, and forwarding messages; this is the purview of applications such as
sendmail and other Mail Transfer Agent (MTA) type programs. MUA-type programs let users
read and write e-mail, whereas MUAs rely on MTAs to handle the actual delivery.

The JavaMail API is designed to provide protocol-independent access for sending and
receiving messages by dividing the API into two parts:

* The first part of the API is the focus of this course -- basically, how to send and receive
messages independent of the provider/protocol.

* The second part speaks the protocol-specific languages, like SMTP, POP, IMAP, and
NNTP. With the JavaMail API, in order to communicate with a server, you need a
provider for a protocol. The creation of protocol-specific providers is not covered in this
course because Sun provides a sufficient set for free.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 3

Section 3. Reviewing related protocols

Introduction
Before looking into the JavaMail API specifics, let's step back and take a look at the protocols
used with the API. There are basically four that you'll come to know and love:

* SMTP
* POP
* IMAP
* MIME

You will also run across NNTP and some others. Understanding the basics of all the
protocols will help you understand how to use the JavaMail API. While the API is designed to
be protocol agnostic, you can't overcome the limitations of the underlying protocols. If a
capability isn't supported by a chosen protocol, the JavaMail API doesn't magically add the
capability on top of it. (As you'll soon see, this can be a problem when working with POP.)

SMTP
The Simple Mail Transfer Protocol (SMTP) is defined by RFC 821 . It defines the mechanism
for delivery of e-mail. In the context of the JavaMail API, your JavaMail-based program will
communicate with your company or Internet Service Provider's (ISP's) SMTP server. That
SMTP server will relay the message on to the SMTP server of the recipient(s) to eventually
be acquired by the user(s) through POP or IMAP. This does not require your SMTP server to
be an open relay, as authentication is supported, but it is your responsibility to ensure the
SMTP server is configured properly. There is nothing in the JavaMail API for tasks like
configuring a server to relay messages or to add and remove e-mail accounts.

POP
POP stands for Post Office Protocol. Currently in version 3, also known as POP3, RFC 1939
defines this protocol. POP is the mechanism most people on the Internet use to get their
mail. It defines support for a single mailbox for each user. That is all it does, and that is also
the source of a lot of confusion. Much of what people are familiar with when using POP, like
the ability to see how many new mail messages they have, are not supported by POP at all.
These capabilities are built into programs like Eudora or Microsoft Outlook, which remember
things like the last mail received and calculate how many are new for you. So, when using
the JavaMail API, if you want this type of information, you have to calculate it yourself.

IMAP
IMAP is a more advanced protocol for receiving messages. Defined in RFC 2060 , IMAP
stands for Internet Message Access Protocol, and is currently in version 4, also known as
IMAP4. When using IMAP, your mail server must support the protocol. You can't just change
your program to use IMAP instead of POP and expect everything in IMAP to be supported.
Assuming your mail server supports IMAP, your JavaMail-based program can take

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 4

http://www.imc.org/rfc821
http://www.imc.org/rfc821
http://www.imc.org/rfc1939
http://www.imc.org/rfc1939
http://www.imc.org/rfc2060
http://www.imc.org/rfc2060

advantage of users having multiple folders on the server and these folders can be shared by
multiple users.

Due to the more advanced capabilities, you might think IMAP would be used by everyone. It
isn't. It places a much heavier burden on the mail server, requiring the server to receive the
new messages, deliver them to users when requested, and maintain them in multiple folders
for each user. While this does centralize backups, as users' long-term mail folders get larger
and larger, everyone suffers when disk space is exhausted. With POP, saved messages get
offloaded from the mail server.

MIME
MIME stands for Multipurpose Internet Mail Extensions. It is not a mail transfer protocol.
Instead, it defines the content of what is transferred: the format of the messages,
attachments, and so on. There are many different documents that take effect here: RFC 822
, RFC 2045 , RFC 2046 , and RFC 2047 . As a user of the JavaMail API, you usually don't
need to worry about these formats. However, these formats do exist and are used by your
programs.

NNTP and others
Because of the split of the JavaMail API between provider and everything else, you can
easily add support for additional protocols. Sun maintains a list of third-party providers that
take advantage of protocols for which Sun does not provide out-of-the-box support. You'll
find support for NNTP (Network News Transport Protocol) [newsgroups], S/MIME (Secure
Multipurpose Internet Mail Extensions), and more.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 5

http://www.imc.org/rfc822
http://www.imc.org/rfc822
http://www.imc.org/rfc2045
http://www.imc.org/rfc2045
http://www.imc.org/rfc2046
http://www.imc.org/rfc2046
http://www.imc.org/rfc2047
http://www.imc.org/rfc2047
http://java.sun.com/products/javamail/Third_Party.html
http://java.sun.com/products/javamail/Third_Party.html

Section 4. Installing JavaMail

Introduction
There are two versions of the JavaMail API commonly used today: 1.2 and 1.1.3. All the
examples in this course will work with both. While 1.2 is the latest, 1.1.3 is the version
included with the 1.2.1 version of the Java 2 Platform, Enterprise Edition (J2EE), so it is still
commonly used. The version of the JavaMail API you want to use affects what you download
and install. All will work with JDK 1.1.6+, Java 2 Platform, Standard Edition (J2SE) version
1.2.x, and J2SE version 1.3.x.

Note: After installing Sun's JavaMail implementation, you can find many example programs
in the demo directory.

Installing JavaMail 1.2
To use the JavaMail 1.2 API, download the JavaMail 1.2 implementation, unbundle the
javamail-1_2.zip file, and add the mail.jar file to your CLASSPATH. The 1.2
implementation comes with an SMTP, IMAP4, and POP3 provider besides the core classes.

After installing JavaMail 1.2, install the JavaBeans Activation Framework.

Installing JavaMail 1.1.3
To use the JavaMail 1.1.3 API, download the JavaMail 1.1.3 implementation, unbundle the
javamail1_1_3.zip file, and add the mail.jar file to your CLASSPATH. The 1.1.3
implementation comes with an SMTP and IMAP4 provider, besides the core classes.

If you want to access a POP server with JavaMail 1.1.3, download and install a POP3
provider. Sun has one available separate from the JavaMail implementation. After
downloading and unbundling pop31_1_1.zip, add pop3.jar to your CLASSPATH, too.

After installing JavaMail 1.1.3, install the JavaBeans Activation Framework.

Installing the JavaBeans Activation Framework
All versions of the JavaMail API require the JavaBeans Activation Framework. The
framework adds support for typing arbitrary blocks of data and handling it accordingly. This
doesn't sound like much, but it is your basic MIME-type support found in many browsers and
mail tools today. After downloading the framework, unbundle the jaf1_0_1.zip file, and
add the activation.jar file to your CLASSPATH.

For JavaMail 1.2 users, you should now have added mail.jar and activation.jar to
your CLASSPATH.

For JavaMail 1.1.3 users, you should now have added mail.jar, pop3.jar, and
activation.jar to your CLASSPATH. If you have no plans of using POP3, you don't

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 6

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/javamail-1_1_3.html
http://java.sun.com/products/javamail/pop3.html
http://java.sun.com/products/javabeans/glasgow/jaf.html

need to add pop3.jar to your CLASSPATH.

If you don't want to change the CLASSPATH environment variable, copy the jar files to your
lib/ext directory under the Java Runtime Environment (JRE) directory. For instance, for
the J2SE 1.3 release, the default directory would be C:\jdk1.3\jre\lib\ext on a
Windows platform.

Using JavaMail with the Java 2 Enterprise Edition
If you use J2EE, there is nothing special you have to do to use the basic JavaMail API; it
comes with the J2EE classes. Just make sure the j2ee.jar file is in your CLASSPATH and
you're all set.

For J2EE 1.2.1, the POP3 provider comes separately, so download and follow the steps to
include the POP3 provider as shown in the previous section "Installing JavaMail 1.1.3." J2EE
1.3 users get the POP3 provider with J2EE so do not require the separate installation.
Neither installation requires you to install the JavaBeans Activation Framework.

Exercise
Exercise 1. How to set up a JavaMail environment on page 22

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 7

Section 5. Reviewing the core classes

Introduction
Before taking a how-to approach at looking at the JavaMail classes in depth, this section
walks you through the core classes that make up the API: Session, Message, Address,
Authenticator, Transport, Store, and Folder. All these classes are found in the
top-level package for the JavaMail API, javax.mail, though you'll frequently find yourself
using subclasses found in the javax.mail.internet package.

Session
The Session class defines a basic mail session. It is through this session that everything
else works. The Session object takes advantage of a java.util.Properties object to
get information like mail server, username, password, and other information that can be
shared across your entire application.

The constructors for the class are private. You can get a single default session that can be
shared with the getDefaultInstance() method:

Properties props = new Properties();
// fill props with any information
Session session = Session.getDefaultInstance(props, null);

Or, you can create a unique session with getInstance():

Properties props = new Properties();
// fill props with any information
Session session = Session.getDefaultInstance(props, null);

In both cases, the null argument is an Authenticator object that is not being used at this
time.

In most cases, it is sufficient to use the shared session, even if working with mail sessions for
multiple user mailboxes. You can add the username and password combination in at a later
step in the communication process, keeping everything separate.

Message
Once you have your Session object, it is time to move on to creating the message to send.
This is done with a type of Message . Because Message is an abstract class, you must
work with a subclass, in most cases javax.mail.internet.MimeMessage . A
MimeMessage is an e-mail message that understands MIME types and headers, as defined
in the different RFCs. Message headers are restricted to US-ASCII characters only, though
non-ASCII characters can be encoded in certain header fields.

To create a Message, pass along the Session object to the MimeMessage constructor:

MimeMessage message = new MimeMessage(session);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 8

http://java.sun.com/products/javamail/javadocs/javax/mail/Session.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Properties.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Message.html
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/MimeMessage.html

Note: There are other constructors, like for creating messages from RFC822-formatted input
streams.

Once you have your message, you can set its parts, as Message implements the Part
interface (with MimeMessage implementing MimePart). The basic mechanism to set the
content is the setContent() method, with arguments for the content and the mime type:

message.setContent("Hello", "text/plain");

If, however, you know you are working with a MimeMessage and your message is plain text,
you can use its setText() method, which only requires the actual content, defaulting to the
MIME type of text/plain:

message.setText("Hello");

For plain text messages, the latter form is the preferred mechanism to set the content. For
sending other kinds of messages, like HTML messages, use the former.

For setting the subject, use the setSubject() method:

message.setSubject("First");

Address
Once you've created the Session and the Message, as well as filled the message with
content, it is time to address your letter with an Address . Like Message, Address is an
abstract class. You use the javax.mail.internet.InternetAddress class.

To create an address with just the e-mail address, pass the e-mail address to the
constructor:

Address address = new InternetAddress("president@whitehouse.gov");

If you want a name to appear next to the e-mail address, you can pass that along to the
constructor, too:

Address address = new InternetAddress("president@whitehouse.gov", "George Bush");

You will need to create address objects for the message's from field as well as the to field.
Unless your mail server prevents you, there is nothing stopping you from sending a message
that appears to be from anyone.

Once you've created the addresses, you connect them to a message in one of two ways. For
identifying the sender, you use the setFrom() and setReplyTo() methods.

message.setFrom(address)

If your message needs to show multiple from addresses, use the addFrom() method:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 9

http://java.sun.com/products/javamail/javadocs/javax/mail/Part.html
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/MimePart.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Address.html
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html

Address address[] = ...;
message.addFrom(address);

For identifying the message recipients, you use the addRecipient() method. This method
requires a Message.RecipientType besides the address.

message.addRecipient(type, address)

The three predefined types of address are:

* Message.RecipientType.TO
* Message.RecipientType.CC
* Message.RecipientType.BCC

So, if the message was to go to the vice president, sending a carbon copy to the first lady,
the following would be appropriate:

Address toAddress = new InternetAddress("vice.president@whitehouse.gov");
Address ccAddress = new InternetAddress("first.lady@whitehouse.gov");
message.addRecipient(Message.RecipientType.TO, toAddress);
message.addRecipient(Message.RecipientType.CC, ccAddress);

The JavaMail API provides no mechanism to check for the validity of an e-mail address.
While you can program in support to scan for valid characters (as defined by RFC 822) or
verify the MX (mail exchange) record yourself, these are all beyond the scope of the
JavaMail API.

Authenticator
Like the java.net classes, the JavaMail API can take advantage of an Authenticator
to access protected resources via a username and password. For the JavaMail API, that
resource is the mail server. The JavaMail Authenticator is found in the javax.mail
package and is different from the java.net class of the same name. The two don't share
the same Authenticator as the JavaMail API works with Java 1.1, which didn't have the
java.net variety.

To use the Authenticator, you subclass the abstract class and return a
PasswordAuthentication instance from the getPasswordAuthentication()
method. You must register the Authenticator with the session when created. Then, your
Authenticator will be notified when authentication is necessary. You could pop up a
window or read the username and password from a configuration file (though if not encrypted
is not secure), returning them to the caller as a PasswordAuthentication object.

Properties props = new Properties();
// fill props with any information
Authenticator auth = new MyAuthenticator();
Session session = Session.getDefaultInstance(props, auth);

Transport
The final part of sending a message is to use the Transport class. This class speaks the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 10

http://java.sun.com/products/javamail/javadocs/javax/mail/Message.RecipientType.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Authenticator.html
http://java.sun.com/products/javamail/javadocs/javax/mail/PasswordAuthentication.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Transport.html

protocol-specific language for sending the message (usually SMTP). It's an abstract class
and works something like Session. You can use the default version of the class by just
calling the static send() method:

Transport.send(message);

Or, you can get a specific instance from the session for your protocol, pass along the
username and password (blank if unnecessary), send the message, and close the
connection:

message.saveChanges(); // implicit with send()
Transport transport = session.getTransport("smtp");
transport.connect(host, username, password);
transport.sendMessage(message, message.getAllRecipients());
transport.close();

This latter way is best when you need to send multiple messages, as it will keep the
connection with the mail server active between messages. The basic send() mechanism
makes a separate connection to the server for each method call.

Note: To watch the mail commands go by to the mail server, set the debug flag with
session.setDebug(true).

Store and folder
Getting messages starts similarly to sending messages with a Session. However, after
getting the session, you connect to a Store , quite possibly with a username and password
or Authenticator. Like Transport, you tell the Store what protocol to use:

// Store store = session.getStore("imap");
Store store = session.getStore("pop3");
store.connect(host, username, password);

After connecting to the Store, you can then get a Folder , which must be opened before
you can read messages from it:

Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);
Message message[] = folder.getMessages();

For POP3, the only folder available is the INBOX. If you are using IMAP, you can have other
folders available.

Note: Sun's providers are meant to be smart. While Message message[] =
folder.getMessages(); might look like a slow operation reading every message from
the server, only when you actually need to get a part of the message is the message content
retrieved.

Once you have a Message to read, you can get its content with getContent() or write its
content to a stream with writeTo(). The getContent() method only gets the message
content, while writeTo() output includes headers.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 11

http://java.sun.com/products/javamail/javadocs/javax/mail/Store.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Folder.html

System.out.println(((MimeMessage)message).getContent());

Once you're done reading mail, close the connection to the folder and store.

folder.close(aBoolean);
store.close();

The boolean passed to the close() method of folder states whether or not to update the
folder by removing deleted messages.

Moving on
Essentially, understanding how to use these seven classes is all you need for nearly
everything with the JavaMail API. Most of the other capabilities of the JavaMail API build off
these seven classes to do something a little different or in a particular way, like if the content
is an attachment. Certain tasks, like searching, are isolated and are discussed later.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 12

Section 6. Using the JavaMail API

Introduction
You've seen how to work with the core parts of the JavaMail API. In the following sections
you'll find a how-to approach for connecting the pieces to do specific tasks.

Sending messages
Sending an e-mail message involves getting a session, creating and filling a message, and
sending it. You can specify your SMTP server by setting the mail.smtp.host property for
the Properties object passed when getting the Session:

String host = ...;
String from = ...;
String to = ...;

// Get system properties
Properties props = System.getProperties();

// Setup mail server
props.put("mail.smtp.host", host);

// Get session
Session session = Session.getDefaultInstance(props, null);

// Define message
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,
new InternetAddress(to));
message.setSubject("Hello JavaMail");
message.setText("Welcome to JavaMail");

// Send message
Transport.send(message);

You should place the code in a try-catch block, as setting up the message and sending it
can throw exceptions.

Exercise: Exercise 2. How to send your first message on page 23

Fetching messages
For reading mail, you get a session, get and connect to an appropriate store for your
mailbox, open the appropriate folder, and get your messages. Also, don't forget to close the
connection when done.

String host = ...;
String username = ...;
String password = ...;

// Create empty properties
Properties props = new Properties();

// Get session
Session session = Session.getDefaultInstance(props, null);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 13

// Get the store
Store store = session.getStore("pop3");
store.connect(host, username, password);

// Get folder
Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);

// Get directory
Message message[] = folder.getMessages();

for (int i=0, n=message.length; i<n; i++) {
System.out.println(i + ": " + message[i].getFrom()[0]

+ "\t" + message[i].getSubject());
}

// Close connection
folder.close(false);
store.close();

What you do with each message is up to you. The above code block just displays whom the
message is from and the subject. Technically speaking, the list of from addresses could be
empty and the getFrom()[0] call could throw an exception.

To display the whole message, you can prompt the user after seeing the from and subject
fields, and then call the message's writeTo() method if the user wants to see it.

BufferedReader reader = new BufferedReader (
new InputStreamReader(System.in));

// Get directory
Message message[] = folder.getMessages();
for (int i=0, n=message.length; i<n; i++) {
System.out.println(i + ": " + message[i].getFrom()[0]

+ "\t" + message[i].getSubject());

System.out.println("Do you want to read message? " +
"[YES to read/QUIT to end]");

String line = reader.readLine();
if ("YES".equals(line)) {

message[i].writeTo(System.out);
} else if ("QUIT".equals(line)) {

break;
}

}

Exercise: Exercise 3. How to check for mail on page 25

Deleting messages and flags
Deleting messages involves working with the Flags associated with the messages. There
are different flags for different states, some system-defined and some user-defined. The
predefined flags are defined in the inner class Flags.Flag and are listed below:

* Flags.Flag.ANSWERED
* Flags.Flag.DELETED
* Flags.Flag.DRAFT
* Flags.Flag.FLAGGED
* Flags.Flag.RECENT
* Flags.Flag.SEEN
* Flags.Flag.USER

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 14

http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.Flag.html

Just because a flag exists doesn't mean the flag is supported by all mail servers or providers.
For instance, except for deleting messages, the POP protocol supports none of them.
Checking for new mail is not a POP task but a task built into mail clients. To find out what
flags are supported, ask the folder with getPermanentFlags().

To delete messages, you set the message's DELETED flag:

message.setFlag(Flags.Flag.DELETED, true);

Open up the folder in READ_WRITE mode first though:

folder.open(Folder.READ_WRITE);

Then, when you are done processing all messages, close the folder, passing in a true value
to expunge the deleted messages.

folder.close(true);

There is an expunge() method of Folder that can be used to delete the messages.
However, it doesn't work for Sun's POP3 provider. Other providers may or may not
implement the capabilities. It will more than likely be implemented for IMAP providers.
Because POP only supports single access to the mailbox, you have to close the folder to
delete the messages with Sun's provider.

To unset a flag, just pass false to the setFlag() method. To see if a flag is set, check it
with isSet().

Authenticating yourself
You learned that you can use an Authenticator to prompt for username and password
when needed, instead of passing them in as strings. Here you'll actually see how to more
fully use authentication.

Instead of connecting to the Store with the host, username, and password, you configure
the Properties to have the host, and tell the Session about your custom
Authenticator instance, as shown here:

// Setup properties
Properties props = System.getProperties();
props.put("mail.pop3.host", host);

// Setup authentication, get session
Authenticator auth = new PopupAuthenticator();
Session session = Session.getDefaultInstance(props, auth);

// Get the store
Store store = session.getStore("pop3");
store.connect();

You then subclass Authenticator and return a PasswordAuthentication object from
the getPasswordAuthentication() method. The following is one such implementation,
with a single field for both. (This isn't a Project Swing tutorial; just enter the two parts in the
one field, separated by a comma.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 15

import javax.mail.*;
import javax.swing.*;
import java.util.*;

public class PopupAuthenticator extends Authenticator {

public PasswordAuthentication getPasswordAuthentication() {
String username, password;

String result = JOptionPane.showInputDialog(
"Enter 'username,password'");

StringTokenizer st = new StringTokenizer(result, ",");
username = st.nextToken();
password = st.nextToken();

return new PasswordAuthentication(username, password);
}

}

Because the PopupAuthenticator relies on Swing, it will start up the event-handling
thread for AWT. This basically requires you to add a call to System.exit() in your code to
stop the program.

Replying to messages
The Message class includes a reply() method to configure a new Message with the
proper recipient and subject, adding "Re: " if not already there. This does not add any content
to the message, only copying the from or reply-to header to the new recipient. The method
takes a boolean parameter indicating whether to reply to only the sender (false) or reply to all
(true).

MimeMessage reply = (MimeMessage)message.reply(false);
reply.setFrom(new InternetAddress("president@whitehouse.gov"));
reply.setText("Thanks");
Transport.send(reply);

To configure the reply-to address when sending a message, use the setReplyTo()
method.

Exercise: Exercise 4. How to reply to mail on page 27

Forwarding messages
Forwarding messages is a little more involved. There is no single method to call, and you
build up the message to forward by working with the parts that make up a message.

A mail message can be made up of multiple parts. Each part is a BodyPart , or more
specifically, a MimeBodyPart when working with MIME messages. The different body parts
get combined into a container called Multipart or, again, more specifically a
MimeMultipart . To forward a message, you create one part for the text of your message
and a second part with the message to forward, and combine the two into a multipart. Then
you add the multipart to a properly addressed message and send it.

That's essentially it. To copy the content from one message to another, just copy over its

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 16

http://java.sun.com/products/javamail/javadocs/javax/mail/BodyPart.html
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/MimeBodyPart.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Multipart.html
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/MimeMultipart.html

DataHandler , a class from the JavaBeans Activation Framework.

// Create the message to forward
Message forward = new MimeMessage(session);

// Fill in header
forward.setSubject("Fwd: " + message.getSubject());
forward.setFrom(new InternetAddress(from));
forward.addRecipient(Message.RecipientType.TO,
new InternetAddress(to));

// Create your new message part
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setText(
"Here you go with the original message:\n\n");

// Create a multi-part to combine the parts
Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);

// Create and fill part for the forwarded content
messageBodyPart = new MimeBodyPart();
messageBodyPart.setDataHandler(message.getDataHandler());

// Add part to multi part
multipart.addBodyPart(messageBodyPart);

// Associate multi-part with message
forward.setContent(multipart);

// Send message
Transport.send(forward);

Working with attachments
Attachments are resources associated with a mail message, usually kept outside of the
message like a text file, spreadsheet, or image. As with common mail programs like Eudora
and pine, you can attach resources to your mail message with the JavaMail API and get
those attachments when you receive the message.

Sending attachments: Sending attachments is quite like forwarding messages. You build
up the parts to make the complete message. After the first part, your message text, you add
other parts where the DataHandler for each is your attachment, instead of the shared
handler in the case of a forwarded message. If you are reading the attachment from a file,
your attachment data source is a FileDataSource . Reading from a URL, it is a
URLDataSource . Once you have your DataSource, just pass it on to the DataHandler
constructor, before finally attaching it to the BodyPart with setDataHandler(). Assuming
you want to retain the original filename for the attachment, the last thing to do is to set the
filename associated with the attachment with the setFileName() method of BodyPart. All
this is shown here:

// Define message
Message message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,
new InternetAddress(to));

message.setSubject("Hello JavaMail Attachment");

// Create the message part
BodyPart messageBodyPart = new MimeBodyPart();

// Fill the message
messageBodyPart.setText("Pardon Ideas");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 17

http://java.sun.com/products/javabeans/glasgow/javadocs/javax/activation/DataHandler.html
http://java.sun.com/products/javabeans/glasgow/javadocs/javax/activation/FileDataSource.html
http://java.sun.com/products/javabeans/glasgow/javadocs/javax/activation/URLDataSource.html
http://java.sun.com/products/javabeans/glasgow/javadocs/javax/activation/DataHandler.html

Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);

// Part two is attachment
messageBodyPart = new MimeBodyPart();
DataSource source = new FileDataSource(filename);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);
multipart.addBodyPart(messageBodyPart);

// Put parts in message
message.setContent(multipart);

// Send the message
Transport.send(message);

When including attachments with your messages, if your program is a servlet, your users
must upload the attachment besides telling you where to send the message. Uploading each
file can be handled with a form encoding type of multipart/form-data.

<FORM ENCTYPE="multipart/form-data"
method=post action="/myservlet">

<INPUT TYPE="file" NAME="thefile">
<INPUT TYPE="submit" VALUE="Upload">

</FORM>

Note: Message size is limited by your SMTP server, not the JavaMail API. If you run into
problems, consider increasing the Java heap size by setting the ms and mx parameters.

Exercise: Exercise 5. How to send attachments on page 28

Getting attachments: Getting attachments out of your messages is a little more involved
then sending them because MIME has no simple notion of attachments. The content of your
message is a Multipart object when it has attachments. You then need to process each
Part, to get the main content and the attachment(s). Parts marked with a disposition of
Part.ATTACHMENT from part.getDisposition() are clearly attachments. However,
attachments can also come across with no disposition (and a non-text MIME type) or a
disposition of Part.INLINE. When the disposition is either Part.ATTACHMENT or
Part.INLINE, you can save off the content for that message part. Just get the original
filename with getFileName() and the input stream with getInputStream().

Multipart mp = (Multipart)message.getContent();

for (int i=0, n=multipart.getCount(); i<n; i++) {
Part part = multipart.getBodyPart(i));

String disposition = part.getDisposition();

if ((disposition != null) &&
((disposition.equals(Part.ATTACHMENT) ||

(disposition.equals(Part.INLINE))) {
saveFile(part.getFileName(), part.getInputStream());

}
}

The saveFile() method just creates a File from the filename, reads the bytes from the
input stream, and writes them off to the file. In case the file already exists, a number is added
to the end of the filename until one is found that doesn't exist.

// from saveFile()
File file = new File(filename);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 18

for (int i=0; file.exists(); i++) {
file = new File(filename+i);

}

The code above covers the simplest case where message parts are flagged appropriately.
To cover all cases, handle when the disposition is null and get the MIME type of the part to
handle accordingly.

if (disposition == null) {
// Check if plain
MimeBodyPart mbp = (MimeBodyPart)part;
if (mbp.isMimeType("text/plain")) {

// Handle plain
} else {

// Special non-attachment cases here of image/gif, text/html, ...
}
...

}

Processing HTML messages
Sending HTML-based messages can be a little more work than sending plain text message,
though it doesn't have to be that much more work. It all depends on your specific
requirements.

Sending HTML messages: If all you need to do is send the equivalent of an HTML file as
the message and let the mail reader worry about fetching any embedded images or related
pieces, use the setContent() method of Message, passing along the content as a
String and setting the content type to text/html.

String htmlText = "<H1>Hello</H1>" +
"";

message.setContent(htmlText, "text/html"));

On the receiving end, if you fetch the message with the JavaMail API, there is nothing built
into the API to display the message as HTML. The JavaMail API only sees it as a stream of
bytes. To display the message as HTML, you must either use the Swing JEditorPane or
some third-party HTML viewer component.

if (message.getContentType().equals("text/html")) {
String content = (String)message.getContent();
JFrame frame = new JFrame();
JEditorPane text = new JEditorPane("text/html", content);
text.setEditable(false);
JScrollPane pane = new JScrollPane(text);
frame.getContentPane().add(pane);
frame.setSize(300, 300);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.show();

}

Including images with your messages: On the other hand, if you want your HTML content
message to be complete, with embedded images included as part of the message, you must
treat the image as an attachment and reference the image with a special cid URL, where
the cid is a reference to the Content-ID header of the image attachment.

The process of embedding an image is quite similar to attaching a file to a message, the only

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 19

difference is you have to tell the MimeMultipart that the parts are related by setting its
subtype in the constructor (or with setSubType()) and set the Content-ID header for the
image to a random string which is used as the src for the image in the img tag. The
following demonstrates this completely.

String file = ...;

// Create the message
Message message = new MimeMessage(session);

// Fill its headers
message.setSubject("Embedded Image");
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,
new InternetAddress(to));

// Create your new message part
BodyPart messageBodyPart = new MimeBodyPart();
String htmlText = "<H1>Hello</H1>" +
"";

messageBodyPart.setContent(htmlText, "text/html");

// Create a related multi-part to combine the parts
MimeMultipart multipart = new MimeMultipart("related");
multipart.addBodyPart(messageBodyPart);

// Create part for the image
messageBodyPart = new MimeBodyPart();

// Fetch the image and associate to part
DataSource fds = new FileDataSource(file);
messageBodyPart.setDataHandler(new DataHandler(fds));
messageBodyPart.setHeader("Content-ID","memememe");

// Add part to multi-part
multipart.addBodyPart(messageBodyPart);

// Associate multi-part with message
message.setContent(multipart);

Exercise: Exercise 6. How to send HTML messages with images on page 29

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 20

Section 7. Searching with SearchTerm

Introduction
The JavaMail API includes a filtering mechanism found in the javax.mail.search
package to build up a SearchTerm . Once built, you then ask a Folder what messages
match, retrieving an array of Message objects:

SearchTerm st = ...;
Message[] msgs = folder.search(st);

There are 22 different classes available to help you build a search term.

* AND terms (class AndTerm)
* OR terms (class OrTerm)
* NOT terms (class NotTerm)
* SENT DATE terms (class SentDateTerm)
* CONTENT terms (class BodyTerm)
* HEADER terms (FromTerm / FromStringTerm, RecipientTerm /

RecipientStringTerm, SubjectTerm, etc..)

Essentially, you build up a logical expression for matching messages, then search. For
instance the following term searches for messages with a (partial) subject string of ADV or a
from field of friend@public.com. You might consider periodically running this query and
automatically deleting any messages returned.

SearchTerm st =
new OrTerm(

new SubjectTerm("ADV:"),
new FromStringTerm("friend@public.com"));

Message[] msgs = folder.search(st);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 21

http://java.sun.com/products/javamail/javadocs/javax/mail/search/SearchTerm.html

Section 8. Exercises

About the exercises
These exercises are designed to provide help according to your needs. For example, you
might simply complete the exercise given the information and the task list in the exercise
body; you might want a few hints; or you may want a step-by-step guide to successfully
complete a particular exercise. You can use as much or as little help as you need per
exercise. Moreover, because complete solutions are also provided, you can skip a few
exercises and still be able to complete future exercises requiring the skipped ones.

Each exercise has a list of any prerequisite exercises, a list of skeleton code for you to start
with, links to necessary API pages, and a text description of the exercise goal. In addition,
there is help for each task and a solutions page with links to files that comprise a solution to
the exercise.

Exercise 1. How to set up a JavaMail environment
In this exercise you will install Sun's JavaMail reference implementation. After installing, you
will be introduced to the demonstration programs that come with the reference
implementation.

Task 1: Download the latest version of the JavaMail API implementation from Sun.

Task 2: Download the latest version of the JavaBeans Activation Framework from Sun.

Task 3: Unzip the downloaded packages. You get a ZIP file for all platforms for both
packages.

Help for task 3: You can use the jar tool to unzip the packages.

Task 4: Add the mail.jar file from the JavaMail 1.2 download and the activation.jar
file from the JavaBeans Activation Framework download to your CLASSPATH.

Help for task 4: Copy the files to your extension library directory. For Microsoft Windows,
using the default installation copy, the command might look like the following:

cd \javamail-1.2
copy mail.jar \jdk1.3\jre\lib\ext
cd \jaf-1.0.1
copy activation.jar \jdk1.3\jre\lib\ext

If you don't like copying the files to the extension library directory, detailed instructions are
available from Sun for setting your CLASSPATH on Windows NT.

Task 5: Go into the demo directory that comes with the JavaMail API implementation and
compile the msgsend program to send a test message.

Help for task 5:
javac msgsend.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 22

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail/classpath-NT.html
http://java.sun.com/products/javamail/classpath-NT.html

Task 6: Execute the program passing in a from address with the -o option, your SMTP
server with the -M option, and the to address (with no option). You'll then enter the subject,
the text of your message, and the end-of-file character (CTRL-Z) to signal the end of the
message input.

Help for task 6: Be sure to replace the from address, SMTP server, and to address.

java msgsend -o from@address -M SMTP.Server to@address

If you are not sure of your SMTP server, contact your system administrator or check with
your Internet Service Provider.

Task 7: Check to make sure you received the message with your normal mail reader
(Eudora, Outlook Express, pine, ...).

Exercise 1. How to set up a JavaMail environment:
Solution
Upon successful completion, the JavaMail reference implementation will be in your
CLASSPATH.

Exercise 2. How to send your first message
In the last exercise you sent a mail message using the demonstration program provided with
the JavaMail implementation. In this exercise, you'll create the program yourself.

For more help with exercises, see About the exercises on page 22 .

Prerequisites:
* Exercise 1. How to set up a JavaMail environment on page 22

Skeleton code:
* MailExample.java

Task 1: Starting with the skeleton code , get the system Properties.

Help for task 1:
Properties props = System.getProperties();

Task 2: Add the name of your SMTP server to the properties for the mail.smtp.host key.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 23

exercises/MailSending/MailExample.java
exercises/MailSending/MailExample.java
exercises/MailSending/MailExample.java

Help for task 2:
props.put("mail.smtp.host", host);

Task 3: Get a Session object based on the Properties.

Help for task 3:
Session session = Session.getDefaultInstance(props, null);

Task 4: Create a MimeMessage from the session.

Help for task 4:
MimeMessage message = new MimeMessage(session);

Task 5: Set the from field of the message.

Help for task 5:
message.setFrom(new InternetAddress(from));

Task 6: Set the to field of the message.

Help for task 6:
message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

Task 7: Set the subject of the message.

Help for task 7:
message.setSubject("Hello JavaMail");

Task 8: Set the content of the message.

Help for task 8:
message.setText("Welcome to JavaMail");

Task 9: Use a Transport to send the message.

Help for task 9:
Transport.send(message);

Task 10: Compile and run the program, passing your SMTP server, from address, and to
address on the command line.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 24

Help for task 10:
java MailExample SMTP.Server from@address to@address

Task 11: Check to make sure you received the message with your normal mail reader
(Eudora, Outlook Express, pine, ...).

Exercise 2. How to send your first message: Solution
The following Java source file represents a solution to this exercise:

* Solution/MailExample.java

Exercise 3. How to check for mail
In this exercise, create a program that displays the from address and subject for each
message and prompts to display the message content.

For more help with exercises, see About the exercises on page 22 .

Prerequisites:
* Exercise 1. How to set up a JavaMail environment on page 22

Skeleton Code
* GetMessageExample.java

Task 1: Starting with the skeleton code , get or create a Properties object.

Help for task 1:
Properties props = new Properties();

Task 2: Get a Session object based on the Properties.

Help for task 2:
Session session = Session.getDefaultInstance(props, null);

Task 3: Get a Store for your e-mail protocol, either pop3 or imap.

Help for task 3:
Store store = session.getStore("pop3");

Task 4: Connect to your mail host's store with the appropriate username and password.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 25

exercises/MailSending/Solution/MailExample.java
exercises/MailGetting/GetMessageExample.java
exercises/MailGetting/GetMessageExample.java
exercises/MailGetting/GetMessageExample.java

Help for task 4:
store.connect(host, username, password);

Task 5: Get the folder you want to read. More than likely, this will be the INBOX.

Help for task 5:
Folder folder = store.getFolder("INBOX");

Task 6: Open the folder read-only.

Help for task 6:
folder.open(Folder.READ_ONLY);

Task 7: Get a directory of the messages in the folder. Save the message list in an array
variable named message.

Help for task 7:
Message message[] = folder.getMessages();

Task 8: For each message, display the from field and the subject.

Help for task 8:
System.out.println(i + ": " + message[i].getFrom()[0]
+ "\t" + message[i].getSubject());

Task 9: Display the message content when prompted.

Help for task 9:
System.out.println(message[i].getContent());

Task 10: Close the connection to the folder and store.

Help for task 10:
folder.close(false);
store.close();

Task 11: Compile and run the program, passing your mail server, username, and password
on the command line. Answer YES to the messages you want to read. Just hit ENTER if you
don't. If you want to stop reading your mail before making your way through all the
messages, enter QUIT.

Help for task 11:
java GetMessageExample POP.Server username password

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 26

Exercise 3. How to check for mail: Solution
The following Java source file represents a solution to this exercise.

* Solution/GetMessageExample.java

Exercise 4. How to reply to mail
In this exercise, create a program that creates a canned reply message and attaches the
original message if it's plain text.

For more help with exercises, see About the exercises on page 22 .

Prerequisites:
* Exercise 3. How to check for mail on page 25

Skeleton Code:
* ReplyExample.java

Task 1: The skeleton code already includes the code to get the list of messages from the
folder and prompt you to create a reply.

Task 2: When answered affirmatively, create a new MimeMessage from the original
message.

Help for task 2:
MimeMessage reply = (MimeMessage)message[i].reply(false);

Task 3: Set the from field to your e-mail address.

Task 4: Create the text for the reply. Include a canned message to start. When the original
message is plain text, add each line of the original message, prefix each line with the "> "
characters.

Help for task 4: To check for plain text messages, check the messages MIME type with
mimeMessage.isMimeType("text/plain").

Task 5: Set the message's content, once the message content is fully determined.

Task 6: Send the message.

Task 7: Compile and run the program, passing your mail server, SMTP server, username,
password, and from address on the command line. Answer YES to the messages you want
to send replies. Just hit ENTER if you don't. If you want to stop going through your mail before

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 27

exercises/MailGetting/Solution/GetMessageExample.java
exercises/MailReply/ReplyExample.java
exercises/MailReply/ReplyExample.java
exercises/MailReply/ReplyExample.java

making your way through all the messages, enter QUIT.

Help for task 7:
java ReplyExample POP.Server SMTP.Server username password from@address

Task 8: Check to make sure you received the message with your normal mail reader
(Eudora, Outlook Express, pine, ...).

Exercise 4. How to reply to mail: Solution
The following Java source file represents a solution to this exercise.

* Solution/ReplyExample.java

Exercise 5. How to send attachments
In this exercise, create a program that sends a message with an attachment.

For more help with exercises, see About the exercises on page 22 .

Prerequisites:
* Exercise 2. How to send your first message on page 23

Skeleton Code:
* AttachExample.java

Task 1: The skeleton code already includes the code to get the initial mail session.

Task 2: From the session, get a Message and set its header fields: to, from, and subject.

Task 3: Create a BodyPart for the main message content and fill its content with the text of
the message.

Help for task 3:
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setText("Here's the file");

Task 4: Create a Multipart to combine the main content with the attachment. Add the
main content to the multipart.

Help for task 4:
Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 28

exercises/MailReply/Solution/ReplyExample.java
exercises/MailAttach/AttachExample.java
exercises/MailAttach/AttachExample.java
exercises/MailAttach/AttachExample.java

Task 5: Create a second BodyPart for the attachment.

Task 6: Get the attachment as a DataSource.

Help for task 6:
DataSource source = new FileDataSource(filename);

Task 7: Set the DataHandler for the message part to the data source. Carry the original
filename along.

Help for task 7:
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);

Task 8: Add the second part of the message to the multipart.

Task 9: Set the content of the message to the multipart.

Help for task 9:
message.setContent(multipart);

Task 10: Send the message.

Task 11: Compile and run the program, passing your SMTP server, from address, to
address, and filename on the command line. This will send the file as an attachment.

Help for task 11:
java AttachExample SMTP.Server from@address to@address filename

Task 12: Check to make sure you received the message with your normal mail reader
(Eudora, Outlook Express, pine, ...).

Exercise 5. How to send attachments: Solution
The following Java source file represents a solution to this exercise.

* Solution/AttachExample.java

Exercise 6. How to send HTML messages with images
In this exercise, create a program that sends an HTML message with an image attachment
where the image is displayed within the HTML message.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 29

exercises/MailAttach/Solution/AttachExample.java

For more help with exercises, see About the exercises on page 22 .

Prerequisites:
* Exercise 5. How to send attachments on page 28

Skeleton code:
* logo.gif
* HtmlImageExample.java

Task 1: The skeleton code already includes the code to get the initial mail session, create
the main message, and fill its headers (to, from, subject).

Task 2: Create a BodyPart for the HTML message content.

Task 3: Create a text string of the HTML content. Include a reference in the HTML to an
image () that is local to the mail message.

Help for task 3: Use a cid URL. The content-id will need to be specified for the image later.

String htmlText = "<H1>Hello</H1>" +
"";

Task 4: Set the content of the message part. Be sure to specify the MIME type is
text/html.

Help for task 4:
messageBodyPart.setContent(htmlText, "text/html");

Task 5: Create a Multipart to combine the main content with the attachment. Be sure to
specify that the parts are related. Add the main content to the multipart.

Help for task 5:
MimeMultipart multipart = new MimeMultipart("related");
multipart.addBodyPart(messageBodyPart);

Task 6: Create a second BodyPart for the attachment.

Task 7: Get the attachment as a DataSource, and set the DataHandler for the message
part to the data source.

Task 8: Set the Content-ID header for the part to match the image reference specified in
the HTML.

Help for task 8:
messageBodyPart.setHeader("Content-ID","memememe");

Task 9: Add the second part of the message to the multipart, and set the content of the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 30

exercises/MailHtml/logo.gif
exercises/MailHtml/HtmlImageExample.java
exercises/MailHtml/HtmlImageExample.java
exercises/MailHtml/HtmlImageExample.java

message to the multipart.

Task 10: Send the message.

Task 11: Compile and run the program, passing your SMTP server, from address, to
address, and filename on the command line. This will send the images as an inline image
within the HTML text.

Help for task 11:
java HtmlImageExample SMTP.Server from@address to@address filename

Task 12: Check if your mail reader recognizes the message as HTML and displays the
image within the message, instead of as a link to an external attachment file.

Help for task 12: If your mail reader can't display HTML messages, consider sending the
message to a friend.

Exercise 6. How to send HTML messages with images:
Solution
The following Java source files represent a solution to this exercise.

* Solution/logo.gif
* Solution/HtmlImageExample.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 31

exercises/MailHtml/Solution/logo.gif
exercises/MailHtml/Solution/HtmlImageExample.java

Section 9. Wrapup

In summary
The JavaMail API is a Java package used for reading, composing, and sending e-mail
messages and their attachments. It lets you build standards-based e-mail clients that
employ various Internet mail protocols, including SMTP, POP, IMAP, and MIME, as well as
related protocols such as NNTP, S/MIME, and others.

The API divides naturally into two parts. The first focuses on sending, receiving, and
managing messages independent of the protocol used, whereas the second focuses on
specific use of the protocols. The purpose of this tutorial was to show how to use the first part
of the API, without attempting to deal with protocol providers.

The core JavaMail API consists of seven classes -- Session, Message, Address,
Authenticator, Transport, Store, and Folder -- all of which are found in
javax.mail, the top-level package for the JavaMail API. We used these classes to work
through a number of common e-mail-related tasks, including sending messages, retrieving
messages, deleting messages, authenticating, replying to messages, forwarding messages,
managing attachments, processing HTML-based messages, and searching or filtering mail
lists.

Finally, we provided a number of step-by-step exercises to help illustrate the concepts
presented. Hopefully, this will help you add e-mail functionality to your platform-independent
Java applications.

Resources
You can do much more with the JavaMail API than what's found here. The lessons and
exercises found here can be supplemented by the following resources:

* Download the JavaMail 1.2 API from the JavaMail API home page .
* The JavaBeans Activation Framework is required for versions 1.2 and 1.1.3 of the

JavaMail API.
* The JavaMail-interest mailing list is a Sun-hosted discussion forum for developers.
* Sun's JavaMail FAQ addresses the use of JavaMail in applets and servlets, as well as

prototol-specific questions.
* Tutorial author John Zukowski maintains jGuru's JavaMail FAQ .
* Want to see how others are using JavaMail? Check out Sun's list of third-party

products.
* If you want more detail about JavaMail, read Rick Grehan's "How JavaMail keeps it

simple" (Lotus Developer Network, June 2000).
* Benoit Marchal shows how to use Java and XML to produce plain text and HTML

newsletters in this two-part series, "Managing e-zines with JavaMail and XSLT" Part 1
(developerWorks, March 2001) and Part 2 (developerWorks, April 2001).

* "Linking Applications with E-mail" (Lotus Developer Network, May 2000) discusses how
groupware can facilitate communication, collaboration, and coordination among
applications.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Fundamentals of the JavaMail API Page 32

http://java.sun.com/products/javamail
http://java.sun.com/products/javamail
http://java.sun.com/products/javamail
http://java.sun.com/products/javamail
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://mail.java.sun.com/archives/javamail-interest.html
http://mail.java.sun.com/archives/javamail-interest.html
http://mail.java.sun.com/archives/javamail-interest.html
http://java.sun.com/products/javamail/FAQ.html
http://java.sun.com/products/javamail/FAQ.html
http://www.jguru.com/faq/JavaMail
http://www.jguru.com/faq/JavaMail
http://www.jguru.com/faq/JavaMail
http://java.sun.com/products/javamail/Third_Party.html
http://java.sun.com/products/javamail/Third_Party.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/05f5822f60151980852568cb006c5d5d/1f06f2650de47935852569000047a49c?OpenDocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/05f5822f60151980852568cb006c5d5d/1f06f2650de47935852569000047a49c?OpenDocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/05f5822f60151980852568cb006c5d5d/1f06f2650de47935852569000047a49c?OpenDocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/05f5822f60151980852568cb006c5d5d/1f06f2650de47935852569000047a49c?OpenDocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/05f5822f60151980852568cb006c5d5d/1f06f2650de47935852569000047a49c?OpenDocument&origin=j
http://www-106.ibm.com/developerworks/java/library/x-xmlist1/index.html
http://www-106.ibm.com/developerworks/java/library/x-xmlist1/index.html
http://www-106.ibm.com/developerworks/java/library/x-xmlist2/index.html
http://www-106.ibm.com/developerworks/java/library/x-xmlist2/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/articles/doc2000053000&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/articles/doc2000053000&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/articles/doc2000053000&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.lotus.com/developers/devbase.nsf/articles/doc2000053000&origin=j

