W

JavaOne

java.sun.com/javaone

Inside The JavaFX™ Script Technology-
Based Runtime APls: Scene Graph &
JWebPane Component

Artem Ananiev
Igor Nekrestyanov

Jim Graham

T5-6610

A close look at two of the libraries JavaFX™
Script software is based on: the Scene

Graph library, and the JWebPane HTML
component.

JavaOne

Java

Agenda

> Project Scene Graph

> Web Component
» Summary and Conclusions

s

v JavaOne

The Scene Graph Project is a Java™
library for Scene Graphs

> A scene graph is a retained view of a graphical scene

> Swing IS a scene graph, but...
By convention elements are fairly high level (GUI components)
Component positioning is limited to integer position and size
And there's no intrinsic support for transforms or animation

> ...and Java 2D™ API is not
It's an “immediate mode” API

> Scene graphs simplify creating graphical applications
Declare where you want things, and when
Let the system figure out how to draw them

< JavaOne

JavaFX Script Software and Scene Graphs

> Object literal syntax simplifies defining scenes

var scene = Circle {
centerX: 100
centerY: 100 cgrce [C)E)K]
radius: 50
fill: Color.CRIMSON
stroke: Color.INDIGO
strokeWidth: 5

};

Frame {
title: "Circle"
content: Canvas { content:scene }
background: Color.BEIGE
visible: true

JavaOne

Java

JavaFX Script Software Implementation
Depends on Project Scene Graph

JavaF X Script Software

Project Scene Graph

Graphics hardware

- JavaOne

Scene Graph Elements

> Nodes
Graphics, text, components, images

> State
Transforms, effects, visibility, ...
> Events/Listeners
Mouse, keyboard, node updates, ...

> Animation
Varying properties over time

= JavaOne

Scene Graph Approaches

> Atomic behaviors
Every node has a single specific role
Nodes can be content
Nodes can be modifiers

Easier to implement, (more customizable)
(SGNode and friends)

> Embellished content
Nodes are content
Modifiers are attributes of nodes
Easier for developers, especially casual developers
(FXNode and friends)

> Project Scene Graph provides both
FXNode for ease of use, SGNode for customization (and

imnlamaentatinn aacea)

< JavaOne

Scene Graph Nodes - SGNode

> SGNode base class
Attributes and Content are both nodes

> Leaves and Parents ¢ A
SGLeaf, SGParent |
> SGLeaf subclassek A A

SGlmage, SGShape, SGText, SGComponent

> SGParent subclasses |
SGGroup: parent of multiple childref® A

SGFilter: state filtering of single chil®
Attributes as SGFilter subclasses
SGTransform, SGComposite, SGClip, etc.

> com.sun.scenario.scenegraph package

A

- JavaOne

—
Java

Scene Graph Nodes - FXNode

> FXNode base class
Provides common attributes
Internally maintains an SG subtree
> FX content subclasses
FXImage: Images
FXShape: Geometry display
FXText: Stroked/filled text
FXComponent: Swing component
> Grouping subclass
FXGroup: parent of multiple children

> com.sun.scenario.scenegraph.fx package

JavaOne

FXNode Attributes map to SGFilter nodes

Breoeo oo oo

Transform
Attributes

Implementation

‘ SGTransform.Translate

OR

‘ SGTransform.Affine

= JavaOne

Nesting — Component Nodes

> Component nodes can embed a Swing component
FXComponent.setComponent(comp)
SGComponent.setComponent(comp)

> Embedded Swing components work as is
Receive events and draw as if part of a Swing application
mouse, keyboard, focus, repaints, etc. all work as usual
But they respond to the Scene Graph attributes/properties
Transforms, Opacity, Clips, Effects, etc.

= JavaOne

Events

> Very similar to AWT events
Add Listeners to any SGNode
Callback methods have AWT event + SGNode

> Mouse events — SGMouselListener
eg. mouseClicked(MouseEvent e, SGNode n)

> Keyboard events — SGKeyListener
eg. keyPressed(KeyEvent e, SGNode n)

> Focus events — SGFocusListener
eg. focusGained(FocusEvent e, SGNode n)

> Node events — SGNodeListener
boundsChanged(SGNodeEvent e)

JavaOne

Animation

> Vary object/node properties over time
This property goes from this value to that value over N seconds

> With interesting behaviors
Non-linear interpolation (acceleration/no acceleration)

Repeating/reversing animations (A->B, A->B or A->B->A)
Chained animations (run A, then start B, etc.)

= JavaOne

Animation classes

> com.sun.scenario.animation package
Usable with either FXNodes or SGNodes
> Clip — a single animation event
Specify a property, duration, repeat count, interpolation type
Can trigger other Clips on begin/end
Specify TimingTargets to notify, or BeanProperties to modify
All attributes on SGNode and FXNode classes are Bean-friendly
> Timeline — several scheduled animations
A list of Clip objects with relative starting times

$:
= JavaOne

Scene Graph Effects Framework

> aka “Eye Candy 2008”

» com.sun.scenario.effect package
Designed to stand on its own as a pixel effects package
Transparent interoperability with SGEffect or FXNode.setEffect

> Flexible implementations

Run everywhere with fast Java technology-based and native
backends

Run faster on D3D and OpenGL hardware (where supported)

> Easily apply many advanced effects to nodes or trees:
DropShadow, InnerShadow, Reflection, Perspective
Gaussian/Motion Blur, Glow, Bloom, Phong Lighting
Blend, ColorAdjust, SepiaTone
Chains of any of the above effects

| N, [P ol oS TSGR 1 JE R

< JavaOne

Java

Using Project Scene Graph with Java
Platform

> Create a JSGPanel component
> Set its scene property to your root SGNode
> Add the JSGPanel to a JFrame, and voila

JFrame f = new JFrame ("Scene") ; JSGPanel
SGGroup rootNode = new SGGroup(); @
// add the rest of your scene to rootNode ‘

JSGPanel p = new JSGPanel () ;
p.setScene (rootNode) ;

f.add (panel) ;

f.pack() ;

f.setVisible (true) ;

= JavaOne

JSGPanel

Adding a Text Node

> Create the SGText node
> Set its content and state
> Add it into the scene

SGText textNode = new SGText(); A
textNode.setText (“Blah”) ;
textNode. setMode (SGText.FILL) ;
textNode.setFillPaint (Color.RED) ;

rootNode. add (textNode) ; ‘
‘ — Blah

< JavaOne

Java

Adding an Alpha Composite Filter

> Create a SGComposite (an SGFilter) node
> Set its state

> Parent the child that it affects
> Add it to the scene

// Make textNode translucent
SGComposite ¢ = new SGComposite() ;
c.setOpacity (.5f) ; 4
c.setChild (textNode) ;
rootNode.add(c) ;

= JavaOne

Animating a Node's Property

> Create an animation Clip JScPane
Set the duration, object/property,
and values to be animated

> Start the Clip at the desired time

// Fade comp filter over 1 sec
Clip fader = Clip.create(

1000, // duration in ms
c, // animating obj
“opacity”, // animating prop
1.0f, // “from” wvalue
0.5f) ; // “to” wvalue

fader.start () ;

S JavaOne

Animating a sequence of Clips - Timeline

> Create several animation Clips
> Schedule the Clips in a Timeline
> Start the Timeline at the desired time

Clip cl = Clip.create(1000, ...);
Clip c2 = Clip.create (2000, ...);
Clip c3 = Clip.create (1000, ...);

Timeline t = new Timeline() ;

t.schedule(cl, 0);

t.schedule(c2, 500) ; cl [
t.schedule(c3, 1000); c2 I
t.start () ;

c3 — [0

| | | |
+0s +1s +2s +3s

$:
= JavaOne

Animating values - KeyFrames

> Create several KeyFrame objects
Include fraction(0..1), value

> Collect KeyFrame objects into KeyFrames
Include object, property, list of KeyFrame objects

> Create a clip to drive the KeyFrames
> Start the clip at the desired time

kfl = KeyFrame.create(0.0, 10.0f);
kf2 = KeyFrame.create (0.2, 40.0f);
kf3 = KeyFrame.create(1.0, 50.0f);

keyframes = KeyFrames.create (

obj, “foo”, kfl, kf2, kf3);
c = Clip.create (10000, keyframes)
c.start () ;

= JavaOne

Adding Effects

> Create an Effect instance or chain
> Insert into SGNode tree using SGEffect
> Add to an FXNode using FXNode.setEffect

DropShadow shadow = new DropShadow () ;
shadow.setRadius (5f) ;
shadow.setOffsetX (3) ;
shadow.setOffsetY (3) ;

shadow.setColor (Color.DARK GRAY) ;

FXText node = new FXText () ; B Shadow Text (=13
node.setText (YHello World”) ;

node.setEffect (shadow) ; H@]]O wor]d

JavaOne

Rendering the Scene

> Nothing to do!
> A visible scene knows how to draw itself

JavaOne

I @9 i irHepri I
'% S umlargcn

& JavaOne

Java

Summary

> FXNodes are fun and easy to use!
> SGNodes give full control for the tinkerers

> Both designed to give you optimal results
> Open Source project approach...

JavaOne

JWebPane HTML Component

JavaOne

Web Content to Enrich Applications

> Why embed a “street” HTML viewer in you application?
Show web advertisements (and make some money!)
Display customer locations using Web map service
Mix-in web clients for IM, shopping, media playback, etc

Create new user interfaces for Web browsing
View web content from you new email/IM/calendar/etc clients

> Street HTML is in the AIR that we breathe

- JavaOne

—
Java

Requirements

> Support modern Web pages

JavaScript™, CSS, ...
Street HTML
> Should look and behave as part of Java application
environment/JavaFX application
e.g. under transform or after LAF change

> Interaction support
Notifications on important web page events
Browser emulation for web pages (status bar, etc.)
Control of page behavior (opening new windows, etc.)
Execute scripts in the context of the web page from Java code
Access to web page content from Java code

> Cross-platform support

s

javar

JavaOne

Existing HTML Support in Java
Applications

> javax.swing.text.html
Good for rich text formatting

No support for advanced features (e.g. JavaScript technology) and
street HTML

> Java.awt.Desktop

Opens Web page in the external browser window
Not a part of application

No support for interaction

> JDIC and JDICPIlus

Embedded browser such as IE or Mozilla

Heavyweight component
Hard to embed into Swing and JavaFX applications

Experimental code from SwingLabs
> Niimher nf R nhartv lihrarieg

& JavaOne

New HTML Component
> Based on WebKit

Native open source web User Application
browser engine
Available on many platforms t

Supports HTML4, CSS,

JavaScript programming Co::“::,'ent
language, DOM
Supports street HTML

> Java technology Web Component

implementation of WebKit browser engine
Platform Abstraction
Metrics calculation
Painting
Networking

Event dispatching
> Beneflts Nnaratinn Qvetam

= JavaOne

APl at a Glance

> JWebPane

Abstraction of web page ‘ : >
browser LoadStateListener

\. J

> LoadStateListener) L

Notifications on loading PolicyDelegate
progress

> PolicyDelegate
Decisions on sensitive actions

> UlDelegate

Customized “browser”
appearance

> APl is evolving

User Application

.

JavaOne

JWebPane

> Web page browser component
Load/Print web page
Zoom page or scale text
Copy/Search page content
Navigate through history
> An extension of JComponent
Lightweight
> Example: display web page
JWebPane webpane = new JWebPane () ;
jframe.add (webpane) ;

webpane.load (new URL (“http://www.sun.com”)) ;

http://www.sun.com/

& JavaOne

—
Java

LoadStateListener

> Notifications on web page loading progress
Including partial load status and loading of resources

> Example: create a thumbnail of web page

class ThumbnailMaker extends LoadStateAdapter {

BufferedImage bi = .

public void loadingFinished (LoadStateEvent e) {
Graphics2D g = (Graphics2D) bi.getGraphics() ;
JWebPane wp = e.getFrame () .getWebPane () ;
g.setTransform(getScale (wp.getSize()))
e.getFrame () .getWebPane () .paint(qg) ;
processThumbnail (bi) ;

}
}

webpane.addlLoadStateListener (new ThumbnailCreator())

= JavaOne

UlDelegate

> User defined logic for standard JavaScript programming
language calls to browser
Show/Hide menu or toolbar
Set status bar text

> Example: custom status bar
class MyUI implements UIDelegate ({
JLabel statuslabel;
public void setStatusbarText (
JWebPane pane, String message) ({
statuslLabel. setText (message) ;

}

- JavaOne

—
Java

PolicyDelegate

> Delegation of behavioral decisions
Accept/reject: page navigation, opening windows, script execution,
redirection, etc.

> Example: popup blocker

class MyPolicy implements PolicyDelegate ({

public boolean permitAction (PolicyRequest r) {

if (PolicyRequest.RequestType.NEW WINDOW
== r.getType()) {
return isTrustedSite(r.getURL()) ;

}
return true;

}

}
JWebPane p = new JWebPane (new MyPolicy (), null);

= JavaOne

Advanced features

> Executing JavaScript code in context of web page
Persistent cookie support

Access to DOM tree

Plugins

Resource management
Cache management
History depth

Sharing resources between Web Component and Java/JavaFX
code

> Example: simple JavaScript code
webpane.executeScript (

"window.status='Hello from javascript!';"

>
-
-
>

JavaOne

I @9 i irHepri I
'% S umlargcn

& JavaOne

Summary

> JWebPane is a Web Browser component
Supports Web 2.0 content and street HTML
Looks and behaves like a regular Swing component
Execution of JavaScript code snippets from Java code
Access to DOM tree
> Support for plugins and some other advanced features
planned for future release

Artem Ananiev
lgor Nekrestyanov
Jim Graham

TS-6610

i%%ti KRR
Py urml.arg.cn

