Builder

1. JAVA #iHER

mMemento

creabing composites

1.1.1

Wisitar

Adaptor Proey
Bridoe
ormposed Yaing————

avoiding hysteresis—— S0mmand

—sharing states—,

State

Decorator saving stale of feration
] .
) lteratar
aciding enurnerating -
; defining traversais
responsibiities to children <
objects
Composite
changing
Sl varsus
quts defining the grammar
aoding aperations
Flyaeight sharlng terminal srnbois Interpreter
sharing
strategies ciefining the chain
Strateqgy

Chain of Respaonsibility

compley dependancy mahagarmeant

Mediator |
]

defining algonthm's steps

1

Prototype

Zﬁu:u:unﬂgure factory dynamically——

Jsmgfe instance———————1

1.1. BIZEZEC

Abstract Factory—#i% T]

Template Method

Implament waing

Qhsener

Factor Method

Ahstract Factory

Singleton ———— single ihstahee———————

Facade

B MM DA TSGR T, 2224 57 IS AN H 1R (RS R 2 MM Z G R A DY,
HAROMATIAR, EAE IR MM 2322457 805 185
W7 AT T o 225 AR EEIE S A XS) Factory

| pi=e

y NB

I R 55 DA U AU A3

AbstractFactory Client

Create (Product)
? Zﬁ Products J

Factory1 Factory?

AbstractProduct? |

AbstractProduct]
| [2y
L.i..x Product1? | | Product12 Froduct21 Product22

PRI K0T 1 VB AT Ik T B Ah = 5, U) T iR BT
TH P BTSSR T LARZART P2 i o U 27 B O, T 2R th SO (s o
U Qe B g R G] i 5 7 s R

1.1.2. Builder—g&i&EE=R

MM B Z W e “RZAR” XAJUE T, WEIAFHLTT Y MM, ZERE6E FH i A1)
U5 R XA R, A — N2 AE S RENL, _RIAERE A A, L E
MM BT B, RE S I AH R (935 5 B “IRZAR” IXAUE T, AN
MM W] PUASFA S PE, X231 “FZ /R builder. (X Lb3E ZELE R v H 1180
PENLLFSE)

Directaor

L~ | AbstractBuilder

Buildlterns()

s = Product

Euilder

H 7 il PR PN S R it TR A S R A R, DA — ANl o R AR i AT
AR BB R L)77 o 5 o ARG ™ i N R G n] DUBE ST (A4, 20 P AN
GHITE = it A R R 405 o AR mT DA SEAT — i A BREAT) it B
1.1.3. Factory Method— T H kLR
W MM 2522 955 38, A E MM AR AR, BRSO 2 — A
=1, oMK H Factory Method #:58, 45 MM ZIRSS B AB L, Ui« Z— MR,

1.1.4.

1.1.5.

HARZEA 2RI RN, ik MM R S5 I BstAT T o

AbstractProduct AbstractCreator
Factorytethod()
Ferform()
Product
om Creator
FactoryMethod))

Bt T AT T P i A0, e BRI TS 128 i,
BN AN T 0, AT AR T 2R S B L, AN AN
2R I 24 9 S AL X AR 40T

Prototype—JR AR B

PR MM] QQ MR, — s B dey G EIE T, IRIRE T Z BRI G,
BRI copy HE SRR QQ BT T, Xt e & prototype T . (100 Bk —
1y, PREAED)

Client

AbstractPrototype

Ferfarm()

Prototype 1 Prototype?

AT AN SR IR G2 R R B BT L R 2RI, AR S A A A SRR
G TN B 2 2R % SR AR e e B A 3G Insldi b e s, 7
A RN T B AT S e M SR s b, R R IE] FAT AT R S5 R 4544
B R AN RIS — A T T

Singleton— B 5K,

1 6 MEEIEEE, WAIMEARRZER, Bt Z2BATHKENE A Sigleton, b
MBI “2A7, #RFRIIFE—AN, I B (WA T A, AT XA 45 1)
)

1.2.

1.2.1.

1.2.2.

Singleton

Instance
StateData

Create()
Initializel)
Finalize()
Performi)
GetState()

FABIRLCRA PR A — AR — A2l T H B AT LI [A R e At A
S AR, IR N AEAT BB R B S (K SRIN AT

Gy
Adapter—iEHiss (BHZR) K
PR S LRGSR T AN 4 Sarah, WEHERM, RASVIEE, WALY

Mg, AR REIIA kent 1, Al A FAN Sarah 2 8] f¥) Adapter, it 31 Sarah
ATDAHEAZ IR T (A AE AL S A S TR

Adaptes
Client AbstractTarget .
Request() UnigueRequest()
Ferformi) %
Adapter
Fequest()

Adapter's Request
calls Adaptee's
Fequest

FE— AN VAR 8 3 g BT BAASE) o — PP 11, DT A B A AT 2 11 PRI AS
VCRC Ty TAERI AN ERE —ifd T, AL DR IS SR IE — N A& 5K
25 5 7 i o

Bridge—#r42#K

HEREE MM, SR FAF, B RAER] MM, EEUI LA REE] MM ST R
M BRI HR LR, AL MM OB RIS, BRI Sk R ek . AN
R “H AR MM OEHC T N R RVE AU XA @, H O BRIDGE 44— A
WAT T

Client

Abstraction Abstractimplementor

Ferform()

SpecializedAbstraction Implementor1 || Implementor2

B G SEIAG RS, 45 =3 v DM (AR 4k, gl Dk At AT T 2 1]) i
RIRAL Rl 55 ORI, Wil 2T vE — M R R SR S 2 AT A 1R A R R
AR AR ZR, AL AT LABSE AR 1L

1.2.3. Composite—& itz

Mary 4 Kid A4 H .

“HadAH, RESAT ALY

CURL LENE, R, RECHE”

O T MAEEE, K, RS TIE, K, XPMAEAE, K7

“OR, ST =T E, BB NIE AL

“AramF, TSI, RO B, NH, BRUREE K.

MM #f4: F Composite #i:0T, & THA?

AbstractComponent
Client Ferfarmi)
Additem()
Remaoveltem()
FetChild()
_omposite
Leaf
Ferfarm() P —
Ferform() Addltern()
Removeltermni)
GetChild)

G AR R AR RISk b, T AR ORI R SR 5 G R . B ik
RN R G R IR, A R 2 S AR) O R B S i R HY
Koo B AL AL 2 B HE— AN BRI 8 53 X6 G A A AT R) o) 1 [R) A
ElFo

1.2.4. Decorator—3E{fHt =

Mary it5e¢#8 2] Sarly A H, EEAZEMME BT, ARIENHIKE R
booe, EHREFEAALLT ER R, 7215 S RS ALy, o 2RI Fita”,
TR EAL S 2T AMEHECGZAL A K MM AR M), T BE A 4R 25 R B Mike

1.2.5.

1.2.6.

B T SSRGS e, FATTALIE Decorator, fe A HAEAR MG FIX A NS,
Bart, BETH?

AbstractComponent
Ferfarm()
Additerm()
Removeltem()
GetChild)
ZF AbstractDecorator
Ferfarm()
Component Z% ﬁl
Decorator Decorator2
State
Performi)
Ferfarm()

T AiABE X LARE 25 7 s B) 07 X3 et R (M Dhfg, bR R R — M AT %,
MLk AT Z 1 RGP A% nTife, XLeRen] DL sl Ry .
B e — LI D R A HES 4 5 e AR B AR R I D RE .

Facade—|J M=

TR Nikon AHHL, Ttz A TG tRIT, XFERHRT
A AR, H MM] ARRIXEE, 27 P REAS . SEFHIPLA Facade B iz,
AP R A B8, HESNHE PR AT 7 — DT AINL B33, XA MM
] DX AN AHHLA AR T

Facade

Perform()

HMB — AT RGBS B AR — NG T T 54T . TR Rt —
ANEERED, ETFRGES T, - NTRERA AT, mHk
R R —A], e et — g, (B RG] DA 24N TR,

Flyweight—% o8

FERIR MM REE(S, THRESZIET, Bl TAHTFHL, nl e H A
FAAETFHLE, ZERMNE, EREHR, Earmmn b MM BZZma LURIET,
R AFAFET o« FZ A TR Flyweight, MM 14 S50 & BE U Sk 405
FFAE, AR4E bR SO B .

1.2.7.

FlywieightFactory

AbstractFhaweight

GetFlyweight(ey)

Ferform()

SharedFkweight

LinsharedFkweight

State State

Perfarmi) Performi)

Client

FLYWEIGHT feZsili tbepig it g, ool LU= 7 X m it sc ki ok
IR EEXS G 2o R B L2 B R X 2 W ADIRS R MRS . WEDIRES
FAAELEZETC N, AN RS 1) SO AT T ANIR] o AR 252 BE PR B (1) AR 1T 52 11
AR ANRERE M N ZDIRAS, S ATTEA BT . KT DU RS RIS AT LUE
AN RPN R, FA T DL PR S N RBIBR & 2 s A nT LLE £
OIEPILERN G, TR S — AT WA Tt R 5. oo KR
JEE 1R BRARG P A7 P o S B

Proxy—REEER

B MM FEM EROR, —IFSk S “hifRir” , “ORNIRJLKRIEF? 7 “ARZ R T2 7
“HEZ AN 7 X, BN, SRR IR Proxy T, NI LR
WRELF T A, LT PR A R A, B, BRI,

Client AbstractSubject
Ferform()
Subject
Performi) Prosy Proxy's Perform
passes through to
Performi)| | Subject's Perform

ARG I AR SR AU 5, I d A S O S 1 5 T
AELHE — DA T D NBEE - MHURRIATS) . oL, &)
AR EE AR FARS TR, AREDS SR LR AT H xR AR 2 A 1
TER e %0 g HEAS A 800 5 5 S 3 0 o ARBEAREATRT LATF AN RITE B AE 1
BARHNS B, AR AR R L, XA S A RERS QI A

XI5, WARBRT R A R G AR A I IFAE N
1.3. fTAZE
1.3.1. Chain Of Responsibility—Ftf TR
Mo b2 FOEihuR, O TP RRAR SN T s, S FTEAR T A LANESE I MM

MC, $egkatsk, 5B “Hi A DU LA 2 WERANE RS TR, 4840 — A
B /ML 12T, RS, AR RS —HET MM RACRAES 20T T, W BEANE LT,

PR
AbstractHandler
Client
Ferform(]
Handler
Handler?
Performi)
Ferfarm()

TESTAREER D, IR R BN GO T KI5 | e R T R — 454
WSRAEXANEE BAL IS, HREE LE AN Goe B ik . & P R A s EE L
W — A R Z AL FXANE K, RG] AR 2 i R R 0T 2024 1) Fpr 4 2
R RCTTT. JeIHF AN ER:: R THES IO TS PR — /MR TR %%
WA B R S 7

1.3.2. Command—#r &t

AT —/> MM AR, Bk I, LU (5B 11t 26 2 70 FRA 1R 2) %
B R, XA AR, #E k4G thep By 4 IR, XA, i o ARk
k—/> COMMAND, 24 T &iftth, FRIGAMNZ T BiZsii, WREnEfhul: “3RFEM 453K
M =A% COMMAND, StEURE/INS, ARz .7,

. AbstractCommand
Clignt Invoker K———
; Ferfarm()
Recaiver
| Perfarm) Command
D = State
Ferfarm()

RS LSRN W T ¥ NI P (B2 g AU B 3 U S A | Wi v i 0 g

1.3.3.

1.3.4.

FPAT A HITAT D EITF, BIRGARF I G AR SRR I — 5 R —
TIMSEIFR, AL KI5 AS 2 A BafOE SR I — 7 i, A AINE I SR S
AR, CARARAE AT, AT AT LSS B AR AT . RS e 2 1
Mo
Interp reter— R 25,

A A G MM EZZ), LI &M MM X, Eelnid 250z P9 (1 3R
LEWRMINESES,] MM Zan, HE—A Interpreter, G T FIEIA AT
WATLLT .

Client

Zontext

AbstractExpression

InterpretContesxtl) *

b

TerminalExpression MonTerminalExpression

InterpretContesxt() InterpretContesxt()

MBS, MR T Dl SO SGE R —RRoR, RN gt —A
fE e . 2 vt] LU FH XA R 2 R R IX B S Ao R A U A B
FEAER T — /NME RIS, R B R IX Seih) (EMRRS gt 2 L T4 21 1)
T 5 R IRAT AT R S SRS IR T A o AEARRE 2R P 75 e —/MRER X
IR AT A R IR S5, Wate — RV AN . & — a0 S 8a —AMER T
%, AR SRR 32X RIS R A P B AT A S e — A
BE

Iterator—iE R F R

Tz LT Mary, ANE—DP1) iR

Mary: “MZLRIRIRELS, 2NN

B M AFAIARE N, AR

Mary: “BFH BT IBA—swhiigif”

B I, WFE, w27

Mary: “3F b7 A #R 5

e I, WHE, w27

Mary: “IRF LASSERIR 4"

IG5, AAMER 1 b, e kK, IR, dbfHE? 7

1.35.

1.3.6.

Client

Abstractiterator
AbstractAggretate
SetFirst()
Createlterator]) SetMext()
? AtEnd()
Adaregate {F
------------------------------ terator
Createlterator() *
GetFirst()
Gethaxt()
AtEnd()

IR T DU U 1) — N R e R AL BB RENNT RS 24
XGRS AR 2 TR, RN G R A AN R IA RN SR . &
AR IEACE B R — ML TSt WS REAR G, BT
4l TR S . BN RENZH T U — A — AL ERE RS, &
IEAR T BIIEACIRES T LR SRS (1. B ARET LT DS TSR AR R (0 A8 4k

Mediator—iF{EE R

VYA MM FT IR, AH B 2 TRUEN iz e 2 DEREANE 2 T, g U IR 5514,
FE RS B A AR, T TR NP OX L, I TR AT TR, — Dt OK i,
A2 T VU MM [FIHL T

Abstracthediator
ﬁ— Abstract_olleague

1

Colleague
Mediator Colleague 2

WEE B R T — BRI GAHEAE R 72X, A L S A AR B B B AE
Mo AT AFARUE Ao I L R 2 (R AR AR iy, AN SrRp g e 3
)8 G (AN AE o DRUEIX SEAE R AT DA AT (1284 . s Ak 2 06 2
(RAH HAE AR X Z A AR o RS ARt S IRAT A A MR B4k, 4%
GALNREZ AT Ry b5 AR G AR A FH 20 T Ak 3L

Memento— 2% & R AR,

[R LA MM BIERIN, — 58 ZAdE R R I MM Ut T 250 215, A28 MM &
T A E I, 2y ARG, NI 5HAS MM 38T A4 TG 35 DL ik
B S LI PRAT, IXFE] LARH N 2205 LART IR ic M

Qriginator
State —~| Caretaker
CreateMementol) M Y "
setMemental) emento
state
Getatatel)
oetState()

B IS TN G — AN FRAEAE 53 A — KB A BRI 0 5 0 25 s SRk
I BRI B LI T, B DR RIPIRESIRA, JRAMR, gk, M
T DATE KK 0 [P I X AN 5040 5 BT e SR RS
1.3.7. Observer—WigZE R
ALAEMAN T A F] o MM SRS 2 I J T MM SRR AT T, tom 47
TOEEEIR, MRIAHEIRA T — A AR, B A IR, FRATIE
B CGREEE) wnl LR RIS 1 R

Abstractsubject

Perform() AbstractObserver
AttachObserver()

DetachObserver) *Undat
Update() peate

] 1

Subject
= . Observer
tate
State

GetStatel)
SetState() Update()

YWyhen a subject is updated, the N
observers are notified.

The observers call the subject's
GetState to update their own
state.

MG A E LT —Fh—BAZ IO R, ik 2 A ILEEE N G AN Wy e — A
TG o XA FE N FAERE LR, SIEMPraW g x5, b
HEIEH A C.

1.38. State—RAHR

R MM AZAER, — B R A PPIRAS R, AEAS I PPIRAS I Wb (AT K A AN,
L AnpRZy G A R e 22 B HLRE, RHRBEER I MM Sl Ut “A W7, RHRAN TR
(R B LI MM & 30 il , AN ml By B3RS A? 7, CE = BRI MM
AU CJLRAEP? BRI LS ARE? 7, MARRE I R R R s,

1.3.9.

W] AL MM FRPIRZR AN T PRANE WAL 185 XA

Context |-, AbstractState
Ferform() Performi)
State State?
Ferformi(] Ferform()

RSBV — DR R AL RS SR I ST . AN GFE EER
SEBUE T BN RSB TN SIAT A AR A R PR RT R L,
— ARSNGB E T M ZRERI A1 2K . RSB BB LR
PR AR R I, AT bl 2 2 s RS RE ZERH R — AN R 48 nT BEEAS 1R
BONL—RER TR URERRE BN, REESCLE LR 1K,

Strategy—3SRBE L,

FRAFEZRALE) MM 22y, ZERIANRISENS, AR g s, A R 2z
WERURANES, A REIRE R GIE, BH SN T2 MM 1950, REiE MM
Hn#E T ir £ Strategy .

Context AbstractStrategy
Perform() i
Contontinterface Algorithminterface()

EE

Strategy1 Strategy?

Algarithrninterface()| | algorithminterface()

SRS — SR, R NSRRI AT R R O AL SR, A
MAEAFEAT A AN LA e o SemS ARG S0] DIEA R 22 s O NG D0 R A B4R
o SRISAAIEAT A FIAEL)T IEER O ST ERF R AT N IS, S P EAAE BRI
SRR At th T EEIASI IR, AR, B SRA R BB AN
J ¥ o

1.3.10. Template Method—#EAR 75 =M,

B Uik 2 E LR XA ST ? LA MR B BRI AR)20 3%
SPATIE . FTHARR . EITIER. Y. k. s, &P, 35U B (Template
method), (HEES D EREF XS ARG DL, #A A FEIIGE, X A RBEALNAZ i (F
RSEEL);

AbstractClass

TemplateMethodi)
Operation ()
Operation2()
Operation1 and Operation? are
abstract in AbstractClass.
Templatetdethod!) (inherited by
iZlass Class1) calls them.
Operation)
Operation2()

BRI AR e 2 — MR, 512 4 DL ARk DL B AR R i 1 (1) T X
SEIL, ARG IS R O ke A SRR R A . AN [EI R DAL R)
J5 S IX Beqh 5 73, T FE) 42 (RS R A AN RIS o Sl — AN T2 AE 4,
K A2 (R 204 B 4 AR) 728 255000

1.3.11. Visitor—ijj] &=

THNTR T, BEEA MM s —JEERT—3K R, T2 MM & e 2L
BRI N BRE AL BRI R R A N R RO B, FR— D AR TS 2, 82
AL ERAIAL A)E ZARA—F Visitor, B85 AR MM [P sk —aofe, b4l
mi JE SR RN AR R 9K R, XA 2 T

Client Abstract\Visitor

YiistElerment1()
YisitElerment2()

roq

Wisitor Visitor?

WiistElernert 10| hiistElement1()
YisitElement2(| visitElement2()

AbstractElement

DbjectStructure

ﬂaccept\ﬂsnnrﬂ

T

Element Element2

AcceptVisitor) AcceptVisitor)
Ferform(] Performi)

U i) B H KRB S T M e A M s R B, - HIX

BAETEAE U, B2 IXA R BRG] DL ORFFANAR . U] FAR Al 2
SRR AR E RS, EIER S MR E] T 45k LA [R S AR BT, (845
BRAELES T LRI At A3 U) A AR A B I (R AR AR A 5y, il 3
APV HE DS V7 A B AT ORI T N R B AN U AR SR, AR 2 L
B AR RS AU BRI, BRI B2 (R G & AR T)
BRA, MAEBENE R TR Vi BT LS LA RIS et v i & 1A
(7] R S 2 S RAI TR F 2K

2. J2EE %=

Apply Zero ar mor

Elntercepting Filtei

Centralize Contral

¥

Dispateh to Front Contreller
Target Wiaw

Crispatch to Lelegate Processing

Composite View

‘e to Helpers
* * Compose Wiew
YView Helper from Sub-YWiews
Cispatch to Celegate Processing
bzl to Helpers l
|—-1 Front Controlleri Front Controller i_l
|]] Acess
Lightreight Auoess Contral Business
| |:.;.|-.tr._:.| EILISII‘_IESS Fracessing © Saenices
uses F'r-:-cessmlg Senices uses
|— — Dispatr.:her View Service To Worke I
Acess Acess
Business Business
Senices : Sernvices

Business Delegate
I'n.ﬂer:liate Locate
Business .
X Senrices
lProcessmg
Sessionh Facade Locate —={ Service Locatori
Senrices

M odel Obtain FAocess Business
Inwoke Coarze-graine Composite List
Business Business Walue Objects
Processing Companent Encapsulate Dat
Crispatch to ¥
Asynchronous Transfer Dbject Assembler Value List Handler
Frocesszing

Encapsulate

[rata

Encapsulate -
[ata _""| Transfer Clbjer.:t r

Encapsulate Fuocess
#osess Data Data [rata Sources
Sources

j Service Activato:i

Composite Entity

| ¥

Data Access Object

2.1.

2.1.1.

Fo/ZR
Intercepting Filter— #4485 S A=,

Context

The presentation-tier request handling mechanism receives many different types of
requests, which require varied types of processing. Some requests are simply forwarded to
the appropriate handler component, while other requests must be modified, audited, or
uncompressed before being further processed.

Problem

Preprocessing and post-processing of a client Web request and response are required.

When a request enters a Web application, it often must pass several entrance tests
prior to the main processing stage. For example,

Has the client been authenticated?

Does the client have a valid session?

Is the client's IP address from a trusted network?

Does the request path violate any constraints?

What encoding does the client use to send the data?

Do we support the browser type of the client?

Some of these checks are tests, resulting in a yes or no answer that determines
whether processing will continue. Other checks manipulate the incoming data stream into a
form suitable for processing.

The classic solution consists of a series of conditional checks, with any failed check
aborting the request. Nested if/else statements are a standard strategy, but this solution leads
to code fragility and a copy-and-paste style of programming, because the flow of the
filtering and the action of the filters is compiled into the application.

The key to solving this problem in a flexible and unobtrusive manner is to have a
simple mechanism for adding and removing processing components, in which each
component completes a specific filtering action.

Forces

Common processing, such as checking the data-encoding scheme or logging
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting existing
components, so that they can be used in a variety of combinations, such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input
Solution

Create pluggable filters to process common services in a standard manner without
requiring changes to core request processing code. The filters intercept incoming requests
and outgoing responses, allowing preprocessing and post-processing. We are able to add
and remove these filters unobtrusively, without requiring changes to our existing code.

We are able, in effect, to decorate our main processing with a variety of common
services, such as security, logging, debugging, and so forth. These filters are components

that are independent of the main application code, and they may be added or removed
declaratively. For example, a deployment configuration file may be modified to set up a
chain of filters. The same configuration file might include a mapping of specific URLSs to
this filter chain. When a client requests a resource that matches this configured URL
mapping, the filters in the chain are each processed in order before the requested target
resource is invoked.

Client FilterManager Target

Filter One

2.1.2.

FilterChain / Fitter Two

Fiiter Three

Front Controller—g i 2 i A A=,

Context

The presentation-tier request handling mechanism must control and coordinate
processing of each user across multiple requests. Such control mechanisms may be
managed in either a centralized or decentralized manner.
Problem

The system requires a centralized access point for presentation-tier request handling
to support the integration of system services, content retrieval, view management, and
navigation. When the user accesses the view directly without going through a centralized
mechanism, two problems may occur:

Each view is required to provide its own system services, often resulting in duplicate
code.

View navigation is left to the views. This may result in commingled view content and
view navigation.

Additionally, distributed control is more difficult to maintain, since changes will
often need to be made in numerous places.
Forces

Common system services processing completes per request. For example, the security
service completes authentication and authorization checks.

Logic that is best handled in one central location is instead replicated within
nUMerous views.

Decision points exist with respect to the retrieval and manipulation of data.

Multiple views are used to respond to similar business requests.

A centralized point of contact for handling a request may be useful, for example, to
control and log a user's progress through the site.

System services and view management logic are relatively sophisticated.

Solution

Use a controller as the initial point of contact for handling a request. The controller
manages the handling of the request, including invoking security services such as
authentication and authorization, delegating business processing, managing the choice of an
appropriate view, handling errors, and managing the selection of content creation strategies.

The controller provides a centralized entry point that controls and manages Web
request handling. By centralizing decision points and controls, the controller also helps
reduce the amount of Java code, called scriptlets, embedded in the JavaServer Pages (JSP)
page.

Centralizing control in the controller and reducing business logic in the view
promotes code reuse across requests. It is a preferable approach to the
alternative-embedding code in multiple views-because that approach may lead to a more
error-prone, reuse-by-copy- and-paste environment.

Typically, a controller coordinates with a dispatcher component. Dispatchers are
responsible for view management and navigation. Thus, a dispatcher chooses the next view
for the user and vectors control to the resource. Dispatchers may be encapsulated within the
controller directly or can be extracted into a separate component.

While the Front Controller pattern suggests centralizing the handling of all requests,
it does not limit the number of handlers in the system, as does a Singleton. An application
may use multiple controllers in a system, each mapping to a set of distinct services.

Client Controller

2.1.3.

==Femnlet== ==l5P==
SenvetFront JSPFront

View Helper—) Bl BYFAH

Context

The system creates presentation content, which requires processing of dynamic
business data.
Problem

Presentation tier changes occur often and are difficult to develop and maintain when
business data access logic and presentation formatting logic are interwoven. This makes the
system less flexible, less reusable, and generally less resilient to change.

Intermingling the business and systems logic with the view processing reduces
modularity and also provides a poor separation of roles among Web production and
software development teams.

Forces

Business data assimilation requirements are nontrivial.

Embedding business logic in the view promotes a copy-and-paste type of reuse. This
causes maintenance problems and bugs because a piece of logic is reused in the same or
different view by simply duplicating it in the new location.

It is desirable to promote a clean separation of labor by having different individuals
fulfill the roles of software developer and Web production team member.

One view is commonly used to respond to a particular business request.

Solution

A view contains formatting code, delegating its processing responsibilities to its
helper classes, implemented as JavaBeans or custom tags. Helpers also store the view's
intermediate data model and serve as business data adapters.

There are multiple strategies for implementing the view component. The JSP View
Strategy suggests using a JSP as the view component. This is the preferred strategy, and it is
the one most commonly used. The other principal strategy is the Servlet View Strategy,
which utilizes a servlet as the view (see the section "Strategies™ for more information).

Encapsulating business logic in a helper instead of a view makes our application
more modular and facilitates component reuse. Multiple clients, such as controllers and
views, may leverage the same helper to retrieve and adapt similar model state for
presentation in multiple ways. The only way to reuse logic embedded in a view is by
copying and pasting it elsewhere. Furthermore, copy-and-paste duplication makes a system
harder to maintain, since the same bug potentially needs to be corrected in multiple places.

A signal that one may need to apply this pattern to existing code is when scriptlet
code dominates the JSP view. The overriding goal when applying this pattern, then, is the
partitioning of business logic outside of the view. While some logic is best encapsulated
within helper objects, other logic is better placed in a centralized component that sits in
front of the views and the helpers-this might include logic that is common across multiple
requests, such as authentication checks or logging services, for example. Refer to the
"Intercepting Filter" on page 4 and "Front Controller" on page 21 for more information on
these issues.

If a separate controller is not employed in the architecture, or is not used to handle all
requests, then the view component becomes the initial contact point for handling some
requests. For certain requests, particularly those involving minimal processing, this scenario
works fine. Typically, this situation occurs for pages that are based on static information,
such as the first of a set of pages that will be served to a user to gather some information
(see "Dispatcher View" on page 232). Additionally, this scenario occurs in some cases when
a mechanism is employed to create composite pages (see "Composite View" on page 203).

The View Helper pattern focuses on recommending ways to partition your application
responsibilities. For related discussions about issues dealing with directing client requests
directly to a view, please refer to the section "Dispatcher View" on page 232.

Client 1 View 0+ Helper
2.1.4. Composite View—5 &V B,
Context

Sophisticated Web pages present content from numerous data sources, using multiple
subviews that comprise a single display page. Additionally, a variety of individuals with
different skill sets contribute to the development and maintenance of these Web pages.
Problem

Instead of providing a mechanism to combine modular, atomic portions of a view into
a composite whole, pages are built by embedding formatting code directly within each view.

Modification to the layout of multiple views is difficult and error prone, due to the
duplication of code.

Forces

Atomic portions of view content change frequently.

Multiple composite views use similar subviews, such as a customer inventory table.
These atomic portions are decorated with different surrounding template text, or they appear
in a different location within the page.

Layout changes are more difficult to manage and code harder to maintain when
subviews are directly embedded and duplicated in multiple views.

Embedding frequently changing portions of template text directly into views also
potentially affects the availability and administration of the system. The server may need to
be restarted before clients see the modifications or updates to these template components.
Solution

Use composite views that are composed of multiple atomic subviews. Each
component of the template may be included dynamically into the whole and the layout of
the page may be managed independently of the content.

This solution provides for the creation of a composite view based on the inclusion
and substitution of modular dynamic and static template fragments. It promotes the reuse of
atomic portions of the view by encouraging modular design. It is appropriate to use a
composite view to generate pages containing display components that may be combined in
a variety of ways. This scenario occurs, for example, with portal sites that include numerous
independent subviews, such as news feeds, weather information, and stock quotes on a
single page. The layout of the page is managed and modified independent of the subview
content.

Another benefit of this pattern is that Web designers can prototype the layout of a site,
plugging static content into each of the template regions. As site development progresses,
the actual content is substituted for these placeholders.

This pattern is not without its drawbacks. There is a runtime overhead associated with
it, a tradeoff for the increased flexibility that it provides. Also, the use of a more
sophisticated layout mechanism brings with it some manageability and development issues,
since there are more artifacts to maintain and a level of implementation indirection to

understand.

Basic\iew

View CompositeView

2.15.

Service to Worker— LYEH IR B
Context

The system controls flow of execution and access to business data, from which it
creates presentation content.

Note

The Service to Worker pattern, like the Dispatcher View pattern, describes a common
combination of other patterns from the catalog. Both of these macro patterns describe the
combination of a controller and dispatcher with views and helpers. While describing this
common structure, they emphasize related but different usage patterns.

Problem

The problem is a combination of the problems solved by the Front Controller and
View Helper patterns in the presentation tier. There is no centralized component for
managing access control, content retrieval, or view management, and there is duplicate
control code scattered throughout various views. Additionally, business logic and
presentation formatting logic are intermingled within these views, making the system less
flexible, less reusable, and generally less resilient to change.

Intermingling business logic with view processing also reduces modularity and
provides a poor separation of roles among Web production and software development
teams.

Forces

Authentication and authorization checks are completed per request.

Scriptlet code within views should be minimized.

Business logic should be encapsulated in components other than the view.

Control flow is relatively complex and based on values from dynamic content.

View management logic is relatively sophisticated, with multiple views potentially
mapping to the same request.

Solution

Combine a controller and dispatcher with views and helpers (see "Front Controller"
on page 172 and "View Helper" on page 186) to handle client requests and prepare a
dynamic presentation as the response. Controllers delegate content retrieval to helpers,

which manage the population of the intermediate model for the view. A dispatcher is
responsible for view management and navigation and can be encapsulated either within a
controller or a separate component.

Service to Worker describes the combination of the Front Controller and View Helper
patterns with a dispatcher component.

While this pattern and the Dispatcher View pattern describe a similar structure, the
two patterns suggest a different division of labor among the components. In Service to
Worker, the controller and the dispatcher have more responsibilities.

Since the Service to Worker and Dispatcher View patterns represent a common
combination of other patterns from the catalog, each warrants its own name to promote
efficient communication among developers. Unlike the Service to Worker pattern, the
Dispatcher View pattern suggests deferring content retrieval to the time of view processing.

In the Dispatcher View pattern, the dispatcher typically plays a limited to moderate
role in view management. In the Service to Worker pattern, the dispatcher typically plays a
moderate to large role in view management.

A limited role for the dispatcher occurs when no outside resources are utilized in
order to choose the view. The information encapsulated in the request is sufficient to
determine the view to dispatch the request. For example,

http://some.server.com/servlet/Controller?next=login.jsp

The sole responsibility of the dispatcher component in this case is to dispatch to the
view login.jsp.

An example of the dispatcher playing a moderate role is the case where the client
submits a request directly to a controller with a query parameter that describes an action to
be completed:

http://some.server.com/servlet/Controller?action=login

The responsibility of the dispatcher component here is to translate the logical name
login into the resource name of an appropriate view, such as login.jsp, and dispatch to that
view. To accomplish this translation, the dispatcher may access resources such as an XML
configuration file that specifies the appropriate view to display.

On the other hand, in the Service to Worker pattern, the dispatcher might be more
sophisticated. The dispatcher may invoke a business service to determine the appropriate
view to display.

The shared structure of Service to Worker and Dispatcher View consists of a
controller working with a dispatcher, views, and helpers.

==5em|et== =2 |SP==

Client Dispatcher g =

Controller View

1.70.7
Helper

2.1.6.

Dispatcher View—24r & 1 B,
Context

System controls flow of execution and access to presentation processing, which is
responsible for generating dynamic content.

Note

The Dispatcher View pattern, like the Service to Worker pattern, describes a common
combination of other patterns from the catalog. Both of these macro patterns describe the
combination of a controller and dispatcher with views and helpers. While describing this
common structure, they emphasize related but different usage patterns.

Problem

The problem is a combination of the problems solved by the Front Controller and
View Helper patterns in the presentation tier. There is no centralized component for
managing access control, content retrieval or view management, and there is duplicate
control code scattered throughout various views. Additionally, business logic and
presentation formatting logic are intermingled within these views, making the system less
flexible, less reusable, and generally less resilient to change.

Intermingling business logic with view processing also reduces modularity and
provides a poor separation of roles among Web production and software development
teams.

Forces

Authentication and authorization checks are completed per request.

Scriptlet code within views should be minimized.

Business logic should be encapsulated in components other than the view.

Control flow is relatively simple and is typically based on values encapsulated with
the request.

View management logic is limited in complexity.

Solution

Combine a controller and dispatcher with views and helpers (see "Front Controller”
on page 172 and "View Helper" on page 186) to handle client requests and prepare a
dynamic presentation as the response. Controllers do not delegate content retrieval to
helpers, because these activities are deferred to the time of view processing. A dispatcher is
responsible for view management and navigation and can be encapsulated either within a
controller, a view, or a separate component.

Dispatcher View describes the combination of the Front Controller and View Helper
patterns with a dispatcher component. While this pattern and the Service to Worker pattern
describe a similar structure, the two patterns suggest a different division of labor among the
components. The controller and the dispatcher typically have limited responsibilities, as
compared to the Service to Worker pattern, since the upfront processing and view
management logic are basic. Furthermore, if centralized control of the underlying resources
is considered unnecessary, then the controller is removed and the dispatcher may be moved
into a view.

Since the Service to Worker and Dispatcher View patterns represent a common
combination of other patterns from the catalog, each warrants its own name to promote

efficient communication among developers. Unlike the Service to Worker pattern, the
Dispatcher View pattern suggests deferring content retrieval to the time of view processing.

In the Dispatcher View pattern, the dispatcher typically plays a limited to moderate
role in view management. In the Service to Worker pattern, the dispatcher typically plays a
moderate to large role in view management.

A limited role for the dispatcher occurs when no outside resources are utilized in
order to choose the view. The information encapsulated in the request is sufficient to
determine the view to dispatch the request. For example:

http://some.server.com/servlet/Controller?next=login.jsp

The sole responsibility of the dispatcher component in this case is to dispatch to the
view login.jsp.

An example of the dispatcher playing a moderate role is the case where the client
submits a request directly to a controller with a query parameter that describes an action to
be completed:

http://some.server.com/servlet/Controller?action=login

The responsibility of the dispatcher component here is to translate the logical name
login into the resource name of an appropriate view, such as login.jsp, and dispatch to that
view. To accomplish this translation, the dispatcher may access resources such as an XML
configuration file that specifies the appropriate view to display.

On the other hand, in the Service to Worker pattern, the dispatcher might be more
sophisticated. The dispatcher may invoke a business service to determine the appropriate
view to display.

The shared structure of these two patterns, as mentioned above, consists of a
controller working with a dispatcher, views, and helpers.

Client ==genlat== Dispatcher | | <<ssp-»
Controller 1. View
1.*
Helper

2.2. W EHC
2.2.1. Business Delegate—V 5 AR,

Context

A multi-tiered, distributed system requires remote method invocations to send and
receive data across tiers. Clients are exposed to the complexity of dealing with distributed
components.
Problem

Presentation-tier components interact directly with business services. This direct
interaction exposes the underlying implementation details of the business service
application program interface (API) to the presentation tier. As a result, the presentation-tier
components are vulnerable to changes in the implementation of the business services: When
the implementation of the business services change, the exposed implementation code in the
presentation tier must change too.

Additionally, there may be a detrimental impact on network performance because
presentation-tier components that use the business service APl make too many invocations
over the network. This happens when presentation-tier components use the underlying API
directly, with no client-side caching mechanism or aggregating service.

Lastly, exposing the service APIs directly to the client forces the client to deal with
the networking issues associated with the distributed nature of Enterprise JavaBeans (EJB)
technology.

Forces

Presentation-tier clients need access to business services.

Different clients, such as devices, Web clients, and thick clients, need access to
business service.

Business services APIs may change as business requirements evolve.

It is desirable to minimize coupling between presentation-tier clients and the business
service, thus hiding the underlying implementation details of the service, such as lookup
and access.

Clients may need to implement caching mechanisms for business service information.

It is desirable to reduce network traffic between client and business services.

Solution

Use a Business Delegate to reduce coupling between presentation-tier clients and
business services. The Business Delegate hides the underlying implementation details of the
business service, such as lookup and access details of the EJB architecture.

The Business Delegate acts as a client-side business abstraction; it provides an
abstraction for, and thus hides, the implementation of the business services. Using a
Business Delegate reduces the coupling between presentation-tier clients and the system's
business services. Depending on the implementation strategy, the Business Delegate may
shield clients from possible volatility in the implementation of the business service API.
Potentially, this reduces the number of changes that must be made to the presentation-tier
client code when the business service API or its underlying implementation changes.

However, interface methods in the Business Delegate may still require modification if
the underlying business service API changes. Admittedly, though, it is more likely that
changes will be made to the business service rather than to the Business Delegate.

Often, developers are skeptical when a design goal such as abstracting the business
layer causes additional upfront work in return for future gains. However, using this pattern
or its strategies results in only a small amount of additional upfront work and provides
considerable benefits. The main benefit is hiding the details of the underlying service. For
example, the client can become transparent to naming and lookup services. The Business
Delegate also handles the exceptions from the business services, such as java.rmi.Remote
exceptions, Java Messages Service (JMS) exceptions and so on. The Business Delegate may

intercept such service level exceptions and generate application level exceptions instead.
Application level exceptions are easier to handle by the clients, and may be user friendly.
The Business Delegate may also transparently perform any retry or recovery operations
necessary in the event of a service failure without exposing the client to the problem until it
is determined that the problem is not resolvable. These gains present a compelling reason to
use the pattern.

Another benefit is that the delegate may cache results and references to remote
business services. Caching can significantly improve performance, because it limits
unnecessary and potentially costly round trips over the network.

A Business Delegate uses a component called the Lookup Service. The Lookup
Service is responsible for hiding the underlying implementation details of the business
service lookup code. The Lookup Service may be written as part of the Delegate, but we
recommend that it be implemented as a separate component, as outlined in the Service
Locator pattern (See "Service Locator" on page 368.)

When the Business Delegate is used with a Session Facade, typically there is a
one-to-one relationship between the two. This one-to-one relationship exists because logic
that might have been encapsulated in a Business Delegate relating to its interaction with
multiple business services (creating a one-to-many relationship) will often be factored back
into a Session Facade.

Finally, it should be noted that this pattern could be used to reduce coupling between
other tiers, not simply the presentation and the business tiers.

2.2.2.

Client Businessne|egate BusinessService
Uses
M
|
|
|
LookupService lookupicreate _l

Transfer Object—f&#ixt SR,
Context

Application clients need to exchange data with enterprise beans.
Problem

Java 2 Platform, Enterprise Edition (J2EE) applications implement server-side
business components as session beans and entity beans. Some methods exposed by the
business components return data to the client. Often, the client invokes a business object's
get methods multiple times until it obtains all the attribute values.

Session beans represent the business services and are not shared between users. A
session bean provides coarse-grained service methods when implemented per the Session
Facade pattern.

Entity beans, on the other hand, are multiuser, transactional objects representing

persistent data. An entity bean exposes the values of attributes by providing an accessor
method (also referred to as a getter or get method) for each attribute it wishes to expose.

Every method call made to the business service object, be it an entity bean or a
session bean, is potentially remote. Thus, in an Enterprise JavaBeans (EJB) application such
remote invocations use the network layer regardless of the proximity of the client to the
bean, creating a network overhead. Enterprise bean method calls may permeate the network
layers of the system even if the client and the EJB container holding the entity bean are both
running in the same JVM, OS, or physical machine. Some vendors may implement
mechanisms to reduce this overhead by using a more direct access approach and bypassing
the network.

As the usage of these remote methods increases, application performance can
significantly degrade. Therefore, using multiple calls to get methods that return single
attribute values is inefficient for obtaining data values from an enterprise bean.

Forces

All access to an enterprise bean is performed via remote interfaces to the bean. Every
call to an enterprise bean is potentially a remote method call with network overhead.

Typically, applications have a greater frequency of read transactions than update
transactions. The client requires the data from the business tier for presentation, display, and
other read-only types of processing. The client updates the data in the business tier much
less frequently than it reads the data.

The client usually requires values for more than one attribute or dependent object
from an enterprise bean. Thus, the client may invoke multiple remote calls to obtain the
required data.

The number of calls made by the client to the enterprise bean impacts network
performance. Chattier applications-those with increased traffic between client and server
tiers-often degrade network performance.

Solution

Use a Transfer Object to encapsulate the business data. A single method call is used
to send and retrieve the Transfer Object. When the client requests the enterprise bean for the
business data, the enterprise bean can construct the Transfer Object, populate it with its
attribute values, and pass it by value to the client.

Clients usually require more than one value from an enterprise bean. To reduce the
number of remote calls and to avoid the associated overhead, it is best to use Transfer
Obijects to transport the data from the enterprise bean to its client.

When an enterprise bean uses a Transfer Object, the client makes a single remote
method invocation to the enterprise bean to request the Transfer Object instead of numerous
remote method calls to get individual attribute values. The enterprise bean then constructs a
new Transfer Object instance, copies values into the object and returns it to the client. The
client receives the Transfer Object and can then invoke accessor (or getter) methods on the
Transfer Object to get the individual attribute values from the Transfer Object. Or, the
implementation of the Transfer Object may be such that it makes all attributes public.
Because the Transfer Object is passed by value to the client, all calls to the Transfer Object
instance are local calls instead of remote method invocations.

ValueOhject

/M
Createal

Client BusinessOhject

2.2.3.

==EntityEJB== ==5e5sionEJB== DataAccessObject
BusinessEntity | |BusinessSession

Session Facade—£-1% [T,
Context

Enterprise beans encapsulate business logic and business data and expose their
interfaces, and thus the complexity of the distributed services, to the client tier.
Problem

In a multitiered Java 2 Platform, Enterprise Edition (J2EE) application environment,
the following problems arise:

Tight coupling, which leads to direct dependence between clients and business
objects;

Too many method invocations between client and server, leading to network
performance problems;

Lack of a uniform client access strategy, exposing business objects to misuse.

A multitiered J2EE application has numerous server-side objects that are
implemented as enterprise beans. In addition, some other arbitrary objects may provide
services, data, or both. These objects are collectively referred to as business objects, since
they encapsulate business data and business logic.

J2EE applications implement business objects that provide processing services as
session beans. Coarse-grained business objects that represent an object view of persistent
storage and are shared by multiple users are usually implemented as entity beans.

Application clients need access to business objects to fulfill their responsibilities and
to meet user requirements. Clients can directly interact with these business objects because
they expose their interfaces. When you expose business objects to the client, the client must
understand and be responsible for the business data object relationships, and must be able to
handle business process flow.

However, direct interaction between the client and the business objects leads to tight
coupling between the two, and such tight coupling makes the client directly dependent on

the implementation of the business objects. Direct dependence means that the client must
represent and implement the complex interactions regarding business object lookups and
creations, and must manage the relationships between the participating business objects as
well as understand the responsibility of transaction demarcation.

As client requirements increase, the complexity of interaction between various
business objects increases. The client grows larger and more complex to fulfill these
requirements. The client becomes very susceptible to changes in the business object layer;
in addition, the client is unnecessarily exposed to the underlying complexity of the system.

Tight coupling between objects also results when objects manage their relationship
within themselves. Often, it is not clear where the relationship is managed. This leads to
complex relationships between business objects and rigidity in the application. Such lack of
flexibility makes the application less manageable when changes are required.

When accessing the enterprise beans, clients interact with remote objects. Network
performance problems may result if the client directly interacts with all the participating
business objects. When invoking enterprise beans, every client invocation is potentially a
remote method call. Each access to the business object is relatively fine-grained. As the
number of participants increases in a scenario, the number of such remote method calls
increases. As the number of remote method calls increases, the chattiness between the client
and the server-side business objects increases. This may result in network performance
degradation for the application, because the high volume of remote method calls increases
the amount of interaction across the network layer.

A problem also arises when a client interacts directly with the business objects. Since
the business objects are directly exposed to the clients, there is no unified strategy for
accessing the business objects. Without such a uniform client access strategy, the business
objects are exposed to clients and may reduce consistent usage.

Forces

Provide a simpler interface to the clients by hiding all the complex interactions
between business components.

Reduce the number of business objects that are exposed to the client across the
service layer over the network.

Hide from the client the underlying interactions and interdependencies between
business components. This provides better manageability, centralization of interactions
(responsibility), greater flexibility, and greater ability to cope with changes.

Provide a uniform coarse-grained service layer to separate business object
implementation from business service abstraction.

Avoid exposing the underlying business objects directly to the client to keep tight
coupling between the two tiers to a minimum.

Solution

Use a session bean as a facade to encapsulate the complexity of interactions between
the business objects participating in a workflow. The Session Facade manages the business
objects, and provides a uniform coarse-grained service access layer to clients.

The Session Facade abstracts the underlying business object interactions and provides
a service layer that exposes only the required interfaces. Thus, it hides from the client's view
the complex interactions between the participants. The Session Facade manages the

interactions between the business data and business service objects that participate in the
workflow, and it encapsulates the business logic associated with the requirements. Thus, the
session bean (representing the Session Facade) manages the relationships between business
objects. The session bean also manages the life cycle of these participants by creating,
locating (looking up), modifying, and deleting them as required by the workflow. In a
complex application, the Session Facade may delegate this lifestyle management to a
separate object. For example, to manage the lifestyle of participant session and entity beans,
the Session Facade may delegate that work to a Service Locator object (see “Service
Locator” on page 368).

It is important to examine the relationship between business objects. Some
relationships between business objects are transient, which means that the relationship is
applicable to only that interaction or scenario. Other relationships may be more permanent.
Transient relationships are best modeled as workflow in a facade, where the facade manages
the relationships between the business objects. Permanent relationships between two
business objects should be studied to determine which business object (if not both objects)
maintains the relationship.

Use Cases and Session Facades

So, how do you identify the Session Facades through studying use cases? Mapping
every use case to a Session Facade will result in too many Session Facades. This defeats the
intention of having fewer coarse-grained session beans. Instead, as you derive the Session
Facades during your modeling, look to consolidate them into fewer numbers of session
beans based on some logical partitioning.

For example, for a banking application, you may group the interactions related to
managing an account into a single facade. The use cases Create New Account, Change
Account Information, View Account information, and so on all deal with the coarse-grained
entity object Account. Creating a session bean facade for each use case is not recommended.
Thus, the functions required to support these related use cases could be grouped into a
single Session Facade called AccountSessionFacade.

In this case, the Session Facade will become a highly coarse-grained controller with
high-level methods that can facilitate each interaction (that is, createNewAccount,
changeAccount, getAccount). Therefore, we recommend that you design Session Facades to
aggregate a group of the related interactions into a single Session Facade. This results in
fewer Session Facades for the application, and leverages the benefits of the Session Facade
pattern.

Client ==EJBZession=» 1+ BusinessOhject
SessionFacade -

ACCESSRS

==EntityEJB== ==BessionEJB==
BusinessEntity BusinessSession

P - - ~
e - -
accesses -3 ,é:"j ACCRSSES
DataAccessObject

2.2.4. Composite Entity—% & Szttt

Context

Entity beans are not intended to represent every persistent object in the object model.
Entity beans are better suited for coarse-grained persistent business objects.

Problem

In a Java 2 Platform, Enterprise Edition (J2EE) application, clients -- such as
applications, JavaServer Pages (JSP) pages, servlets, JavaBeans components -- access entity
beans via their remote interfaces. Thus, every client invocation potentially routes through
network stubs and skeletons, even if the client and the enterprise bean are in the same JVM,
0OS, or machine. When entity beans are fine-grained objects, clients tend to invoke more
individual entity bean methods, resulting in high network overhead.

Entity beans represent distributed persistent business objects. Whether developing or
migrating an application to the J2EE platform, object granularity is very important when
deciding what to implement as an entity bean. Entity beans should represent coarse-grained
business objects, such as those that provide complex behavior beyond simply getting and
setting field values. These coarse-grained objects typically have dependent objects. A
dependent object is an object that has no real domain meaning when not associated with its
coarse-grained parent.

A recurring problem is the direct mapping of the object model to an Enterprise
JavaBeans (EJB) model (specifically entity beans). This creates a relationship between the
entity bean objects without consideration of coarse-grained versus fine-grained (or
dependent) objects. Determining what to make coarse-grained versus fine-grained is
typically difficult and can best be done via modeling relationships in Unified Modeling
Language (UML) models.

There are a number of areas impacted by the fine-grained entity bean design
approach:

Entity Relationships - Directly mapping an object model to an EJB model does not

take into account the impact of relationships between the objects. The inter-object
relationships are directly transformed into inter-entity bean relationships. As a result, an
entity bean might contain or hold a remote reference to another entity bean. However,
maintaining remote references to distributed objects involves different techniques and
semantics than maintaining references to local objects. Besides increasing the complexity of
the code, it reduces flexibility, because the entity bean must change if there are any changes
in its relationships.

Also, there is no guarantee as to the validity of the entity bean references to other
entity beans over time. Such references are established dynamically using the entity's home
object and the primary key for that entity bean instance. This implies a high maintenance
overhead of reference validity checking for each such entity-bean-to-entity-bean reference.

Manageability - Implementing fine-grained objects as entity beans results in a large
number of entity beans in the system. An entity bean is defined using several classes. For
each entity bean component, the developer must provide classes for the home interface, the
remote interface, the bean implementation, and the primary key.

In addition, the container may generate classes to support the entity bean
implementation. When the bean is created, these classes are realized as real objects in the
container. In short, the container creates a number of objects to support each entity bean
instance. Large numbers of entity beans result in more classes and code to maintain for the
development team. It also results in a large number of objects in the container. This can
negatively impact the application performance.

Network Performance - Fine-grained entity beans potentially have more inter-entity
bean relationships. Entity beans are distributed objects. When one entity bean invokes a
method on another entity bean, the call is potentially treated as a remote call by the
container, even if both entity beans are in the same container or JVM. If the number of
entity-bean-to-entity-bean relationships increases, then this decreases system scalability due
to heavy network overhead.

Database Schema Dependency - When the entity beans are fine-grained, each entity
bean instance usually represents a single row in a database. This is not a proper application
of the entity bean design, since entity beans are more suitable for coarse-grained
components. Fine-grained entity bean implementation typically is a direct representation of
the underlying database schema in the entity bean design. When clients use these
fine-grained entity beans, they are essentially operating at the row level in the database,
since each entity bean is effectively a single row. Because the entity bean directly models a
single database row, the clients become dependent on the database schema. When the
schema changes, the entity bean definitions must change as well. Further, since the clients
are operating at the same granularity, they must observe and react to this change. This
schema dependency causes a loss of flexibility and increases the maintenance overhead
whenever schema changes are required.

Object Granularity (Coarse-Grained versus Fine-Grained) - Object granularity
impacts data transfer between the enterprise bean and the client. In most applications,
clients typically need a larger chunk of data than one or two rows from a table. In such a
case, implementing each of these fine-grained objects as an entity bean means that the client
would have to manage the relationships between all these fine-grained objects. Depending

on the data requirements, the client might have to perform many lookups of a number of
entity beans to obtain the required information.
Forces

Entity beans are best implemented as coarse-grained objects due to the high overhead
associated with each entity bean. Each entity bean is implemented using several objects,
such as EJB home object, remote object, bean implementation, and primary key, and each is
managed by the container services.

Applications that directly map relational database schema to entity beans (where each
row in a table is represented by an entity bean instance) tend to have a large number of
fine-grained entity beans. It is desirable to keep the entity beans coarse-grained and reduce
the number of entity beans in the application.

Direct mapping of object model to EJB model yields fine-grained entity beans.
Fine-grained entity beans usually map to the database schema. This entity-to-database row
mapping causes problems related to performance, manageability, security, and transaction
handling. Relationships between tables are implemented as relationships between entity
beans, which means that entity beans hold references to other entity beans to implement the
fine-grained relationships. It is very expensive to manage inter-entity bean relationships,
because these relationships must be established dynamically, using the entity home objects
and the enterprise beans' primary keys.

Clients do not need to know the implementation of the database schema to use and
support the entity beans. With fine-grained entity beans, the mapping is usually done so that
each entity bean instance maps to a single row in the database. This fine-grained mapping
creates a dependency between the client and the underlying database schema, since the
clients deal with the fine-grained beans and they are essentially a direct representation of
the underlying schema. This results in tight coupling between the database schema and
entity beans. A change to the schema causes a corresponding change to the entity bean, and
in addition requires a corresponding change to the clients.

There is an increase in chattiness of applications due to intercommunication among
fine-grained entity beans. Excessive inter-entity bean communication often leads to a
performance bottleneck. Every method call to the entity bean is made via the network layer,
even if the caller is in the same address space as the called bean (that is, both the client, or
caller entity bean, and the called entity bean are in the same container). While some
container vendors optimize for this scenario, the developer cannot rely on this optimization
in all containers.

Additional chattiness can be observed between the client and the entity beans because
the client may have to communicate with many fine-grained entity beans to fulfill a
requirement. It is desirable to reduce the communication between or among entity beans
and to reduce the chattiness between the client and the entity bean layer.

Solution

Use Composite Entity to model, represent, and manage a set of interrelated persistent
objects rather than representing them as individual fine-grained entity beans. A Composite
Entity bean represents a graph of objects.

In order to understand this solution, let us first define what is meant by persistent
objects and discuss their relationships.

A persistent object is an object that is stored in some type of data store. Multiple
clients usually share persistent objects. Persistent objects can be classified into two types:
coarse-grained objects and dependent objects.

A coarse-grained object is self-sufficient. It has its own life cycle and manages its
relationships to other objects. Each coarse-grained object may reference or contain one or
more other objects. The coarse-grained object usually manages the lifecycles of these
objects. Hence, these objects are called dependent objects. A dependent object can be a
simple self-contained object or may in turn contain other dependent objects.

The life cycle of a dependent object is tightly coupled to the life cycle of the
coarse-grained object. A client may only indirectly access a dependent object through the
coarse-grained object. That is, dependent objects are not directly exposed to clients because
their parent (coarse-grained) object manages them. Dependent objects cannot exist by
themselves. Instead, they always need to have their coarse-grained (or parent) object to
justify their existence.

Typically, you can view the relationship between a coarse-grained object and its
dependent objects as a tree. The coarse-grained object is the root of the tree (the root node).
Each dependent object can be a standalone dependent object (a leaf node) that is a child of
the coarse-grained object. Or, the dependent object can have parent-child relationships with
other dependent objects, in which case it is considered a branch node.

A Composite Entity bean can represent a coarse-grained object and all its related
dependent objects. Aggregation combines interrelated persistent objects into a single entity
bean, thus drastically reducing the number of entity beans required by the application. This
leads to a highly coarse-grained entity bean that can better leverage the benefits of entity
beans than can fine-grained entity beans.

Without the Composite Entity approach, there is a tendency to view each
coarse-grained and dependent object as a separate entity bean, leading to a large number of

entity beans.
“E ntmiEJE}.b ; CoarseGrainedObject
CompositeEntity contains

1

containg
0.
DependentOhject .
0.
1
contains

2.2.5. Transfer Object Assembler—f&#i%} % 40 3 58,

Context

In a Java 2 Platform, Enterprise Edition (J2EE) application, the server-side business
components are implemented using session beans, entity beans, DAOs, and so forth.
Application clients frequently need to access data that is composed from multiple objects.
Problem

Application clients typically require the data for the model or parts of the model to
present to the user or to use for an intermediate processing step before providing some
service. The application model is an abstraction of the business data and business logic
implemented on the server side as business components. A model may be expressed as a
collection of objects put together in a structured manner (tree or graph). In a J2EE
application, the model is a distributed collection of objects such as session beans, entity
beans, or DAOs and other objects. For a client to obtain the data for the model, such as to
display to the user or to perform some processing, it must access individually each
distributed object that defines the model. This approach has several drawbacks:

Because the client must access each distributed component individually, there is a
tight coupling between the client and the distributed components of the model over the
network

The client accesses the distributed components via the network layer, and this can
lead to performance degradation if the model is complex with numerous distributed
components. Network and client performance degradation occur when a number of
distributed business components implement the application model and the client directly
interacts with these components to obtain model data from that component. Each such
access results in a remote method call that introduces network overhead and increases the
chattiness between the client and the business tier.

The client must reconstruct the model after obtaining the model's parts from the
distributed components. The client therefore needs to have the necessary business logic to
construct the model. If the model construction is complex and numerous objects are
involved in its definition, then there may be an additional performance overhead on the
client due to the construction process. In addition, the client must contain the business logic
to manage the relationships between the components, which results in a more complex,
larger client. When the client constructs the application model, the construction happens on
the client side. Complex model construction can result in a significant performance
overhead on the client side for clients with limited resources.

Because the client is tightly coupled to the model, changes to the model require
changes to the client. Furthermore, if there are different types of clients, it is more difficult
to manage the changes across all client types. When there is tight coupling between the
client and model implementation, which occurs when the client has direct knowledge of the
model and manages the business component relationships, then changes to the model
necessitate changes to the client. There is the further problem of code duplication for model
access, which occurs when an application has many types of clients. This duplication makes
client (code) management difficult when the model changes.

Forces

Separation of business logic is required between the client and the server-side

components.

Because the model consists of distributed components, access to each component is
associated with a network overhead. It is desirable to minimize the number of remote
method calls over the network.

The client typically needs only to obtain the model to present it to the user. If the
client must interact with multiple components to construct the model on the fly, the
chattiness between the client and the application increases. Such chattiness may reduce the
network performance.

Even if the client wants to perform an update, it usually updates only certain parts of
the model and not the entire model.

Clients do not need to be aware of the intricacies and dependencies in the model
implementation. It is desirable to have loose coupling between the clients and the business
components that implement the application model.

Clients do not otherwise need to have the additional business logic required to
construct the model from various business components.

Solution

Use a Transfer Object Assembler to build the required model or submodel. The
Transfer Object Assembler uses Transfer Objects to retrieve data from various business
objects and other objects that define the model or part of the model.

The Transfer Object Assember constructs a composite Transfer Object that represents
data from different business components. The Transfer Object caries the data for the model
to the client in a single method call. Since the model data can be complex, it is
recommended that this Transfer Object be immutable. That is, the client obtains such
Transfer Objects with the sole purpose of using them for presentation and processing in a
read-only manner. Clients are not allowed to make changes to the Transfer Objects.

When the client needs the model data, and if the model is represented by a single
coarse-grained component (such as a Composite Entity), then the process of obtaining the
model data is simple. The client simply requests the coarse-grained component for its
composite Transfer Object. However, most real-world applications have a model composed
of a combination of many coarse-grained and fine-grained components. In this case, the
client must interact with numerous such business components to obtain all the data
necessary to represent the model. The immediate drawbacks of this approach can be seen in
that the clients become tightly coupled to the model implementation (model elements) and
that the clients tend to make numerous remote method invocations to obtain the data from
each individual component.

In some cases, a single coarse-grained component provides the model or parts of the
model as a single Transfer Object (simple or composite). However, when multiple
components represent the model, a single Transfer Object (simple or composite) may not
represent the entire model. To represent the model, it is necessary to obtain Transfer Objects
from various components and assemble them into a new composite Transfer Object. The
server, not the client, should perform such "on-the-fly" construction of the model.

YalueOhject

I

|)

| contains
I

Client ==5essionEJB==

BusinessOhject

uses 1.7

YalueOhjectAssembler

2.2.6.

==5e55ionEJB== ==EntityEJB==

BusinessSession BusinessEntity

™ s

“ HCCESSES Py
\\ -~

“ /,/ accesses
y f

DataAccessOhject

Value List Handler—{E 1R AL B 884K
Context

The client requires a list of items from the service for presentation. The number of
items in the list is unknown and can be quite large in many instances.
Problem

Most Java 2 Platform, Enterprise Edition (J2EE) applications have a search and query
requirement to search and list certain data. In some cases, such a search and query operation
could yield results that can be quite large. It is impractical to return the full result set when
the client's requirements are to traverse the results, rather than process the complete set.
Typically, a client uses the results of a query for read-only purposes, such as displaying the
result list. Often, the client views only the first few matching records, and then may discard
the remaining records and attempt a new query. The search activity often does not involve
an immediate transaction on the matching objects. The practice of getting a list of values
represented in entity beans by calling an ejbFind() method, which returns a collection of
remote objects, and then calling each entity bean to get the value, is very network expensive
and is considered a bad practice.

There are consequences associated with using Enterprise JavaBeans (EJB) finder
methods that result in large results sets. Every container implementation has a certain
amount of finder method overhead for creating a collection of EJBObject references. Finder
method behavior performance varies, depending on a vendor's container implementation.

According to the EJB specification, a container may invoke ejbActivate() methods on
entities found by a finder method. At a minimum, a finder method returns the primary keys
of the matching entities, which the container returns to the client as a collection of
EJBObject references. This behavior applies for all container implementations. Some
container implementations may introduce additional finder method overhead by associating
the entity bean instances to these EJBObject instances to give the client access to those
entity beans. However, this is a poor use of resources if the client is not interested in
accessing the bean or invoking its methods. This overhead can significantly impede
application performance if the application includes queries that produce many matching
results.

Forces

The application client needs an efficient query facility to avoid having to call the
entity bean's ejbFind() method and invoking each remote object returned.

A server-tier caching mechanism is needed to serve clients that cannot receive and
process the entire results set.

A query that is repeatedly executed on reasonably static data can be optimized to
provide faster results. This depends on the application and on the implementation of this
pattern.

EJB finder methods are not suitable for browsing entire tables in the database or for
searching large result sets from a table.

Finder methods may have considerable overhead when used to find large numbers of
result objects. The container may create a large number of infrastructure objects to facilitate
the finders.

EJB finder methods are not suitable for caching results. The client may not be able to
handle the entire result set in a single call. If so, the client may need server-side caching and
navigation functions to traverse the result set.

EJB finder methods have predetermined query constructs and offer minimum
flexibility. The EJB specification 2.0 allows a query language, EJB QL, for
container-managed entity beans. EJB QL makes it easier to write portable finders and offers
greater flexibility for querying.

Client wants to scroll forward and backward within a result set.

Solution

Use a Value List Handler to control the search, cache the results, and provide the
results to the client in a result set whose size and traversal meets the client's requirements.

This pattern creates a ValueListHandler to control query execution functionality and
results caching. The ValueListHandler directly accesses a DAO that can execute the
required query. The ValueListHandler stores the results obtained from the DAO as a
collection of Transfer Objects. The client requests the ValueListHandler to provide the
query results as needed. The ValueListHandler implements an Iterator pattern [GoF] to
provide the solution.

interface
Valnel istiterator

+oetsizef)int
+getCurrentE fernentl :Qbfect
+etPreviolsE fiermaentsicounting) st
+eihextEiementsicount indl List
+reset hoes woid

£

Client ValueListHandler <=List=» ValueObject

iterates WalueList |

M

I
:pruvides data
I

DataAccessObject
dICRSSRS
2.2.7. Service Locator—fR 45 i A e
Context
Service lookup and creation involves complex interfaces and network operations.
Problem

J2EE clients interact with service components, such as Enterprise JavaBeans (EJB)
and Java Message Service (JMS) components, which provide business services and
persistence capabilities. To interact with these components, clients must either locate the
service component (referred to as a lookup operation) or create a new component. For
instance, an EJB client must locate the enterprise bean's home object, which the client then
uses either to find an object or to create or remove one or more enterprise beans. Similarly,
a JMS client must first locate the JMS Connection Factory to obtain a JMS Connection or a
JMS Session.

All Java 2 Platform, Enterprise Edition (J2EE) application clients use the JNDI
common facility to look up and create EJB and JMS components. The JNDI API enables
clients to obtain an initial context object that holds the component name to object bindings.
The client begins by obtaining the initial context for a bean's home object. The initial
context remains valid while the client session is valid. The client provides the JNDI
registered name for the required object to obtain a reference to an administered object. In
the context of an EJB application, a typical administered object is an enterprise bean's home
object. For IMS applications, the administered object can be a JIMS Connection Factory (for

a Topic or a Queue) or a JMS Destination (a Topic or a Queue).

So, locating a JNDI-administered service object is common to all clients that need to
access that service object. That being the case, it is easy to see that many types of clients
repeatedly use the JNDI service, and the JNDI code appears multiple times across these
clients. This results in an unnecessary duplication of code in the clients that need to look up
services.

Also, creating a JNDI initial context object and performing a lookup on an EJB home
object utilizes significant resources. If multiple clients repeatedly require the same bean
home object, such duplicate effort can negatively impact application performance.

Let us examine the lookup and creation process for various J2EE components.

The lookup and creation of enterprise beans relies upon the following:

A correct setup of the JNDI environment so that it connects to the naming and
directory service used by the application. Setup entails providing the location of the naming
service and the necessary authentication credentials to access that service.

The JNDI service can then provide the client with an initial context that acts as a
placeholder for the component name-to-object bindings. The client requests this initial
context to look up the EJBHome object for the required enterprise bean by providing the
JNDI name for that EJBHome object.

Find the EJBHome object using the initial context's lookup mechanism.

After obtaining the EJBHome object, create, remove, or find the enterprise bean,
using the EJBHome object's create, move, and find (for entity beans only).

The lookup and creation of JMS components (Topic, Queue, QueueConnection,
QueueSession, TopicConnection, TopicSession, and so forth) involves the following steps.
Note that in these steps, Topic refers to the publish/subscribe messaging model and Queue
refers to the point-to-point messaging model.

Set up the JNDI environment to the naming service used by the application. Setup
entails providing the location of the naming service and the necessary authentication
credentials to access that service.

Obtain the initial context for the JMS service provider from the JNDI naming service.

Use the initial context to obtain a Topic or a Queue by supplying the JNDI name for
the topic or the queue. Topic and Queue are JMSDestination objects.

Use the initial context to obtain a TopicConnectionFactory or a
QueueConnectionFactory by supplying the JNDI name for the topic or queue connection
factory.

Use the TopicConnectionFactory to obtain a TopicConnection or
QueueConnectionFactory to obtain a QueueConnection.

Use the TopicConnection to obtain a TopicSession or a QueueConnection to obtain a
QueueSession.

Use the TopicSession to obtain a TopicSubscriber or a TopicPublisher for the required
Topic. Use the QueueSession to obtain a QueueReceiver or a QueueSender for the required
Queue.

The process to look up and create components involves a vendor-supplied context
factory implementation. This introduces vendor dependency in the application clients that
need to use the JNDI lookup facility to locate the enterprise beans and JMS components,

such as topics, queues, and connection factory objects.
Forces

EJB clients need to use the JNDI API to look up EJBHome objects by using the
enterprise bean's registered JNDI name.

JMS clients need to use JNDI API to look up JMS components by using the JNDI
names registered for JMS components, such as connection factories, queues, and topics.

The context factory to use for the initial JNDI context creation is provided by the
service provider vendor and is therefore vendor- dependent. The context factory is also
dependent on the type of object being looked up. The context for JMS is different from the
context for EJB, with different providers.

Lookup and creation of service components could be complex and may be used
repeatedly in multiple clients in the application.

Initial context creation and service object lookups, if frequently required, can be
resource-intensive and may impact application performance. This is especially true if the
clients and the services are located in different tiers.

EJB clients may need to reestablish connection to a previously accessed enterprise
bean instance, having only its Handle object.

Solution

Use a Service Locator object to abstract all JNDI usage and to hide the complexities
of initial context creation, EJB home object lookup, and EJB object re-creation. Multiple
clients can reuse the Service Locator object to reduce code complexity, provide a single
point of control, and improve performance by providing a caching facility.

This pattern reduces the client complexity that results from the client's dependency on
and need to perform lookup and creation processes, which are resource-intensive. To
eliminate these problems, this pattern provides a mechanism to abstract all dependencies
and network details into the Service Locator.

Chient ==5ingleton==
e uses Servicel ocator creates
_______ —
uses :
I
Vi
InitialContext
uses
uses T
quksup:
uses - W
ServiceFactory
looksup or creates

BusinessSenice f<—— — — — — — — — —

2.3.

2.3.1.

E- Yo
Data Access Object—33E 15 Ial it AR,

Context

Access to data varies depending on the source of the data. Access to persistent storage,
such as to a database, varies greatly depending on the type of storage (relational databases,
object-oriented databases, flat files, and so forth) and the vendor implementation.

Problem

Many real-world Java 2 Platform, Enterprise Edition (J2EE) applications need to use
persistent data at some point. For many applications, persistent storage is implemented with
different mechanisms, and there are marked differences in the APIs used to access these
different persistent storage mechanisms. Other applications may need to access data that
resides on separate systems. For example, the data may reside in mainframe systems,
Lightweight Directory Access Protocol (LDAP) repositories, and so forth. Another example
is where data is provided by services through external systems such as business-to-business
(B2B) integration systems, credit card bureau service, and so forth.

Typically, applications use shared distributed components such as entity beans to
represent persistent data. An application is considered to employ bean-managed persistence
(BMP) for its entity beans when these entity beans explicitly access the persistent
storage-the entity bean includes code to directly access the persistent storage. An
application with simpler requirements may forego using entity beans and instead use
session beans or servlets to directly access the persistent storage to retrieve and modify the
data. Or, the application could use entity beans with container-managed persistence, and
thus let the container handle the transaction and persistent details.

Applications can use the JDBC API to access data residing in a relational database
management system (RDBMS). The JDBC API enables standard access and manipulation
of data in persistent storage, such as a relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the standard means for accessing RDBMS
tables. However, even within an RDBMS environment, the actual syntax and format of the
SQL statements may vary depending on the particular database product.

There is even greater variation with different types of persistent storage. Access
mechanisms, supported APIs, and features vary between different types of persistent stores
such as RDBMS, object-oriented databases, flat files, and so forth. Applications that need to
access data from a legacy or disparate system (such as a mainframe, or B2B service) are
often required to use APIs that may be proprietary. Such disparate data sources offer
challenges to the application and can potentially create a direct dependency between
application code and data access code. When business components-entity beans, session
beans, and even presentation components like servlets and helper objects for JavaServer
Pages (JSP) pages --need to access a data source, they can use the appropriate API to
achieve connectivity and manipulate the data source. But including the connectivity and
data access code within these components introduces a tight coupling between the
components and the data source implementation. Such code dependencies in components
make it difficult and tedious to migrate the application from one type of data source to
another. When the data source changes, the components need to be changed to handle the

new type of data source.
Forces

Components such as bean-managed entity beans, session beans, servlets, and other
objects like helpers for JSP pages need to retrieve and store information from persistent
stores and other data sources like legacy systems, B2B, LDAP, and so forth.

Persistent storage APIs vary depending on the product vendor. Other data sources
may have APIs that are nonstandard and/or proprietary. These APIs and their capabilities
also vary depending on the type of storage-RDBMS, object-oriented database management
system (OODBMS), XML documents, flat files, and so forth. There is a lack of uniform
APIs to address the requirements to access such disparate systems.

Components typically use proprietary APIs to access external and/or legacy systems
to retrieve and store data.

Portability of the components is directly affected when specific access mechanisms
and APIs are included in the components.

Components need to be transparent to the actual persistent store or data source
implementation to provide easy migration to different vendor products, different storage
types, and different data source types.

Solution

Use a Data Access Object (DAQ) to abstract and encapsulate all access to the data
source. The DAO manages the connection with the data source to obtain and store data.

The DAO implements the access mechanism required to work with the data source.
The data source could be a persistent store like an RDBMS, an external service like a B2B
exchange, a repository like an LDAP database, or a business service accessed via CORBA
Internet Inter-ORB Protocol (1IOP) or low-level sockets. The business component that relies
on the DAO uses the simpler interface exposed by the DAO for its clients. The DAO
completely hides the data source implementation details from its clients. Because the
interface exposed by the DAO to clients does not change when the underlying data source
implementation changes, this pattern allows the DAO to adapt to different storage schemes
without affecting its clients or business components. Essentially, the DAO acts as an adapter
between the component and the data source.

2.3.2.

BusinessOhject DataAccessObject
Uses] encapsulates DataSource
- I
- - |
“~ .. obtains/modifies |
e |createsfuses
-
- I
- e
S W
TransferOhject

Service Activator— IR 553 & 5K

Context

Enterprise beans and other business services need a way to be activated
asynchronously.
Problem

When a client needs to access an enterprise bean, it first looks up the bean's home
object. The client requests the Enterprise JavaBeans (EJB) component's home to provide a
remote reference to the required enterprise bean. The client then invokes business method
calls on the remote reference to access the enterprise bean services. All these method calls,
such as lookup and remote method calls, are synchronous. The client has to wait until these
methods return.

Another factor to consider is the life cycle of an enterprise bean. The EJB
specification permits the container to passivate an enterprise bean to secondary storage. As
a result, the EJB container has no mechanism by which it can provide a process-like service
to keep an enterprise bean constantly in an activated and ready state. Because the client
must interact with the enterprise bean using the bean's remote interface, even if the bean is
in an activated state in the container, the client still needs to obtain its remote interface via
the lookup process and still interacts with the bean in a synchronous manner.

If an application needs synchronous processing for its server-side business
components, then enterprise beans are an appropriate choice. Some application clients may
require asynchronous processing for the server-side business objects because the clients do
not need to wait or do not have the time to wait for the processing to complete. In cases
where the application needs a form of asynchronous processing, enterprise beans do not
offer this capability in implementations prior to the EJB 2.0 specification.

The EJB 2.0 specification provides integration by introducing message-driven bean,
which is a special type of stateless session bean that offers asynchronous invocation
capabilities. However, the new specification does not offer asynchronous invocation for
other types of enterprise beans, such as stateful or entity beans.

In general, a business service such as a session or entity bean provides only
synchronous processing and thus presents a challenge to implementing asynchronous
processing.

Forces

Enterprise beans are exposed to their clients via their remote interfaces, which allow
only synchronous access.

The container manages enterprise beans, allowing interactions only via the remote
references. The EJB container does not allow direct access to the bean implementation and
its methods. Thus, implementing the JMS message listener in an enterprise bean is not
feasible, since this violates the EJB specification by permitting direct access to the bean
implementation.

An application needs to provide a publish/subscribe or point-to-point messaging
framework where clients can publish requests to enterprise beans for asynchronous
processing.

Clients need asynchronous processing capabilities from the enterprise beans and
other business components that can only provide synchronous access, so that the client can
send a request for processing without waiting for the results.

Clients want to use the message-oriented middleware (MOM) interfaces offered by
the Java Messaging Service (JMS). These interfaces are not integrated into EJB server
products that are based on the pre-EJB 2.0 specification.

An application needs to provide daemon-like service so that an enterprise bean can be
in a quiet mode until an event (or a message) triggers its activity.

Enterprise beans are subject to the container life cycle management, which includes
passivation due to time-outs, inactivity and resource management. The client will have to
invoke on an enterprise bean to activate it again.

The EJB 2.0 specification introduces a message-driven bean as a stateless session
bean, but it is not possible to invoke other types of enterprise beans asynchronously.
Solution

Use a Service Activator to receive asynchronous client requests and messages. On
receiving a message, the Service Activator locates and invokes the necessary business
methods on the business service components to fulfill the request asynchronously.

The ServiceActivator is a JMS Listener and delegation service that requires
implementing the JMS message listener-making it a JMS listener object that can listen to
JMS messages. The ServiceActivator can be implemented as a standalone service. Clients
act as the message generator, generating events based on their activity.

Any client that needs to asynchronously invoke a business service, such as an
enterprise bean, may create and send a message to the Service Activator. The Service
Activator receives the message and parses it to interpret the client request. Once the client's
request is parsed or unmarshalled, the Service Activator identifies and locates the necessary
business service component and invokes business methods to complete processing of the
client's request asynchronously.

The Service Activator may optionally send an acknowledgement to the client after
successfully completing the request processing. The Service Activator may also notify the
client or other services on failure events if it fails to complete the asynchronous request
processing.

The Service Activator may use the services of a Service Locator to locate a business
component. See "Service Locator" on page 368.

Meassage Messagelistanay
Request | . Receives |SenviceActivator
i |
[
: Creates (sends) | Aetivates
| 4
I ==EJl==

Client

BusinessOhject

