
Teradatsa SQL performance

AGENDA

• Teradata Data Distribution & PPI

• Teradata Join Process

• Teradata SQL MISC

• SQL Optimize Strategies

• SQL Practice

Data Distribution

Teradata

Records From Client (in random sequence)

2 32 67 12 90 6 54 75 18 25 80 41
From

Host

Converted

and

Hashed

Distributed

Formatted

Stored

AMP 4AMP 3AMP 1 AMP 2

Parsing

Engine(s)
Parsing

Engine(s)

EBCDIC ASCII

ASCII

Message Passing Layer

18

2
54

41

12

90
75

80

32 6

67
25

Data distribution is

dependent on the

hash value of the

primary index.

Message Passing Layer

Parsing Engine

SQL Request

Parser

Hashing Algorithm

48 Bit TABLE ID 32 Bit Row Hash Index Value

AMP File System

DSW

Logical Block Identifier

Vdisk

Logical Row Identifier

Data

Block

Only the AMP whose
number appears in the
referenced Hash Map is
interrupted.

SELECT * FROM tablename
WHERE primaryindex =

value(s);

Row Retrieval via PI Value – Overview

Partitioned Primary Index

• Description

> A new table organization to optimize the physical database
design for narrow range constraint queries

> Data within a table can be partitioned
• Rows with the same value of a partitioning function are physically grouped
together

• Benefits

> Increases the available options to improve the performance of
range queries
• Only rows of the qualified partitions in a query need to be accessed

> Easy to manage
• Simple specification in CREATE TABLE

• Single operation to alter partitioning

– copy data in dropped partitions to another table

– delete rows of dropped partitions

– drop existing partitions

– add existing partitions

Hash Map

BYNET

Teradata Hash
Function

RowHash (Hash Bucket) Data Fields

Primary Index
Fields

AMP AMP AMP AMP

RH D
Table

Rows ordered by
RH

Before Partitioned Primary Index

Partitioning
Fields

Hash Map

BYNET

User Specified
Partitioning Function

Teradata Hash
Function

Partition# RowHash (Hash Bucket) Data Fields

Primary Index
Fields

AMP AMP AMP AMP

P RH DPartitions
Ordered by P

Table

Rows ordered by
RH

With Partitioned Primary Index

AGENDA

• Teradata Data Distribution & PPI

• Teradata Join Process

• Teradata SQL MISC

• SQL Optimize Strategies

• SQL Practice

SELECT Statement ANSI Join Syntax

With V2R2 (and later), Teradata supports the ANSI join syntax and outer joins.

Where:

cname Column or expression name

tname Table or view name

aname Alias for table or view name

condition Criteria for the join

SELECT cname [, cname , …]

FROM tname [aname]

[INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

tname [aname]

ON condition ;

INNER JOIN All matching rows.

LEFT OUTER JOIN Table to the left is used to qualify, table on the right has nulls

when rows do not match.

RIGHT OUTER JOIN Table to the right is used to qualify, table on the left has nulls

when rows do not match.

FULL OUTER JOIN Both tables are used to qualify and extended with nulls.

CROSS JOIN Product join or Cartesian product join.

Example of ANSI and Teradata JOIN
Syntax

SELECT D.Department_Number AS Dept

,D.Department_Name

,E.Last_Name

,E.Department_Number AS EmpDept

FROM Department D

,Employee E

WHERE E.Department_Number = D.Department_Number;

Teradata JOIN

Syntax

SELECT D.Department_Number AS Dept

,D.Department_Name

,E.Last_Name

,E.Department_Number AS EmpDept

FROM Department D

INNER JOIN Employee E

ON E.Department_Number = D.Department_Number;

ANSI JOIN

Syntax

Dept Department_Name Last_Name EmpDept

402 software support Crane 402

100 executive Trainer 100

501 marketing sales Runyon 501

301 research and development Stein 301

301 research and development Kanieski 301

Output is

same from

either Join

LEFT Outer Join Example

SELECT E.Last_name

,D.Department_Number

,D.Department_Name

FROM Employee E LEFT OUTER JOIN

Department D

ON E.Department_Number = D.Department_Number

;

In addition to output from

inner join:

• Shows employees with

null departments.

• Shows employees with

invalid departments.

Last_Name Department_Number Department_Name

Crane 402 software support

James 111 ?

Runyon 501 marketing and sales

Stein 301 research and develop

Green ? ?

Trainer 100 executive

Kanieski 301 research and develop

Employee Department2 5

RIGHT Outer Join Example

SELECT D.Department_Number

,D.Department_Name

,E.Last_Name

FROM Employee E RIGHT OUTER JOIN

Department D

ON E.Department_Number = D.Department_Number

;

In addition to output from

inner join:

• Shows departments

with no employees.

department_number department_name last_name

600 new department ?

402 software support Crane

100 executive Trainer

501 marketing sales Runyon

301 research and develop Stein

301 research and develop Kanieski

Employee Department5 1

Join Processing

Rows must be on the same AMP to be joined.

• If necessary, the system creates spool copies of one or both rows and

moves them to a common AMP.

• Join processing NEVER moves or changes the original table rows.

Typical kinds of joins are:

• Merge Join

• Product Join

• Nested Join

• Exclusion Join

The Optimizer chooses the best join strategy based on:

• Available Indexes

• Demographics (COLLECTed STATISTICS or Dynamic Sample)

EXPLAIN shows what kind of join a query uses.

Fu wenxian
same AMP

Optimizer Minimizes Spool Usage

SELECT e.emp_number

e.last_name,

e.first_name,

p.check_num

FROM employee e

INNER JOIN paycheck p

ON e.emp_number = p.emp_number

WHERE e.dept_number = 1025;

Projection List

Explicit Join

Join Condition

Set Condition

The Optimizer minimizes

spool size before the join.

• Applies SET conditions

first (WHERE).

• Only the necessary

columns are used in

Spool.

If the SQL uses all columns from Employee and only uses

emp# and check# from Paycheck, then the following applies:

Employee - 100,000 x 300 bytes = 30 MB

Paycheck - emp# (INT), check# (INT) - 8 x 1,000,000 = 8 MB

Join conditions always reference two different data names:

• A two-table join condition references two different

tables.

• A self-join condition references two alias names for one

table.

Paycheck (1,000,000 Rows,

each 250 Bytes)

Employee (100,000 Rows,

each 300 Bytes)

1st Example:

Fu wenxian
always reference two different data names:

Join Redistribution

SELECT . . .

FROM Table1 T1

INNER JOIN Table2 T2

ON T1.A = T2.A;

Join columns are from the same domain. No Redistribution needed.

T1

A B C

PI

100 214 433

T2

A B C

PI

100 725 002

SELECT . . .

FROM Table3 T3

INNER JOIN Table4 T4

ON T3.A = T4.B;

Join columns are from the same domain. Redistribution needed.

T3

A B C

PI

255 345 225

T4

A B C

PI

867 255 566

SPOOL

A B C

PI

867 255 566

Redistribute T4 rows in spool on column B.

Join Redistribution (cont.)

Join is on columns that isn't the Primary Index of either table.

SELECT . . .

FROM Table5 T5

INNER JOIN Table6 T6

ON T5.B = T6.C;

Join columns are from the same domain. Redistribution needed.

T5

A B C

PI

456 777 876

T6

A B C

PI

993 228 777

Redistribute T5 rows in spool

on column B.

Redistribute T6 rows in spool

on column C.

SPOOL

A B C

PI

456 777 876

SPOOL

A B C

PI

993 228 777

If the columns being joined together are not Primary Index columns (from same

domain), options the Optimizer may choose from include:

• Redistribute both tables in spool (as shown above)

• Duplicate the smaller table in spool across all AMPs

Duplicating a Table in Spool

Table 1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows
SPOOL

(Table is duplicated

on each AMP)

1M rows 1M rows 1M rows 1M rows 1M rows 1M rows 1M rows 1M rowsTable

• For merge joins, the optimizer may choose to duplicate a small table on each

AMP.

• For product joins, the optimizer always duplicates one table across all

AMPs.

• In either case, each AMP must have enough spool space for a complete

copy.

Merge Join

Rows must be on the same AMP to be joined.

• Merge Join reads blocks from both tables only once.

• Usually chosen for an equality join condition.

• Generally more efficient than a product join.

Merge join process:

• Identify the Smaller Table.

• If necessary:

– Put qualifying data of one or both tables into spool(s).

– Move the spool rows to AMPs based on the join column hash.

– Sort the spool rows into join column hash sequence.

Compare the rows with matching join column row hash values.

Causes significantly fewer comparisons than a product join.

A3 Data

A3 Data

A3 Data

B7 Data

B7 Data

C4 Data

C4 Data

Join

Column

Hash

A3 Data

B8 Data

C4 Data

Join

Column

Hash

Fu wenxian
Generally more efficient

Fu wenxian
than a product join.

Fu wenxian
Sort the spool rows

Nested Joins

• This is a special join case.

• This is the only join that doesn't always use all of the AMPs.

• It is the most efficient in terms of system resources.

• It is the best choice for OLTP applications.

• To choose a Nested Join, the Optimizer must have:

– An equality value for a unique index (UPI or USI) on Table1.

– A join on a column of that single row to any index on Table2.

• The system retrieves the single row from Table1.

• It hashes the join column value to access matching Table2 row(s).

Example:

SELECT E.Name

,D.Name

FROM Employee E

INNER JOIN Department D

ON E.Dept = D.Dept

WHERE E.Enum = 5;

Employee

Enum Name Dept

PK FK

UPI

1 BROWN 200

2 SMITH 310

3 JONES 310

4 CLAY 400

5 PETERS 150

6 FOSTER 400

7 GRAY 310

8 BAKER 310

Department

Dept Name

PK

UPI

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

Fu wenxian
most efficient in

Product Join

Rows must be on the

same AMP to be joined.

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

• Does not sort the rows.

• May re-read blocks from one table if AMP memory size is exceeded.

• It compares every qualifying Table1 row to every qualifying Table2 row.

• Those that match the WHERE condition are saved in spool.

• It is called a Product Join because:

Total Compares = # Qualified Rows Table 1 * # Qualified Rows Table 2

• The internal compares become very costly when there are more rows than AMP

memory can hold at one time.

• They are generally unintentional and often give meaningless output.

• Product Join process:

– Identify the Smaller Table and duplicate it in spool on all AMPs.

– Join each spool row for Smaller Table to every row for Larger Table.

Fu wenxian
same

Fu wenxian
Does not sort the rows.

Fu wenxian
re-read

Cartesian Product

• This is an unconstrained Product join.

• Each row of Table1 is joined to every row in Table2.

• Cartesian Product Joins consume significant system resources.

• Cartesian Product Joins rarely have practical business use.

• The Teradata Database supports them for ANSI compatibility.

• Cartesian Product Joins frequently occur when:

– A join condition is missing.

– Join conditions are not based on equality.

– There are too few join conditions.

– A referenced table is not named in any join condition.

– Table aliases are incorrectly used.

• The transaction aborts if it exceeds the user's spool limit.

Table row count is critical:
Table 1 (50K rows) Table 2 (300K rows)

X = 15,000,000,000 Rows

Number of tables is even more critical:
T2 (50 rows)

X X
T1 (50 rows) T8 (50 rows)

X. . . = 39,062,000,000,000 Rows

Fu wenxian
missing.

Fu wenxian
condition

Fu wenxian
equality.

Fu wenxian
too few

Fu wenxian
aliases

Fu wenxian
not

Fu wenxian
condition.

Hash Join

This optimizer technique effectively places the smaller table in cache memory

and joins it to the larger table in unsorted spool.

Row Hash Join Process:

• Identify the smaller table.

• Redistribute or duplicate the smaller table in memory across the AMPs.

• Sort the cache memory into join column row hash sequence.

• Hold the rows in memory.

• Use the join column row hash of the larger table to binary search memory for a match.

This join eliminates the sorting, and possible redistribution or copying, of the

larger table.

EXPLAIN plans will contain terminology such as “Single Partition Hash Join”.

Join Column

Hash

C4 Data

A3 Data

C6 Data

F6 Data

B7 Data

C4 Data

A3 Data

A3 Data

B8 Data

C4 Data

Join Column

Hash

Cache Memory

Fu wenxian
unsorted

Fu wenxian
memory

Fu wenxian
Cache

Fu wenxian
Memory

Fu wenxian
“Single Partition Hash Join”.

Join Distribution Strategies

• Join costs rise with the number of rows that are moved and sorted.

• Join plans for the same tables change as the demographics change.

OR

OR

REDISTRIBUTE one or both sides (depending on the Primary Indexes used in the join)

and SORT on join column row hash..M2

Do nothing if Primary Indexes match and are the join columns.M1

M3

DUPLICATE the smaller Table on all AMPs and SORT on join column row hash.

A spool copy is built LOCALLY of the Larger Table and SORT on join column row hash.

MERGE JOIN - Rows must be in JOIN COLUMN Row Hash sequence.

P1 DUPLICATE the Smaller Table on all AMPs.

PRODUCT JOIN - Rows do not have to be in any sequence.

Row Redistribution (Merge Join Plan — M1)

Primary Indexes match: no duplication or sorting needed

Example: SELECT *

FROM Employee E

INNER JOIN Employee_Phone P

ON E.Enum = P.Enum ;

Employee

Enum Name Dept

PK FK

UPI

1 BROWN 200

2 SMITH 310

3 JONES 310

4 CLAY 400

5 PETERS 150

6 FOSTER 200

7 GRAY 310

8 BAKER 310

9 TYLER 450

10 CARR 450

Employee rows hash distributed on Enum (UPI)

6 FOSTER 200

8 BAKER 310

4 CLAY 400

3 JONES 310

9 TYLER 450

1 BROWN 200

7 GRAY 310

5 PETERS 150

2 SMITH 310

10 CARR 450

Employee_Phone rows hash distributed on Enum (NUPI)

6 203 8337461

8 301 2641616

8 301 6675885

4 415 6347180

3 408 3628822

1 213 3241576

1 213 4950703

5 312 7463513

Employee_Phone

Enum Area_Code Phone

PK

FK

NUPI

1 213 3241576

1 213 4950703

3 408 3628822

4 415 6347180

5 312 7463513

6 203 8337461

8 301 6675885

8 301 2641616

Row Redistribution (Merge Join Plan — M2)

REDISTRIBUTE one side and SORT on join column row hash.

Example: SELECT *

FROM Employee E

INNER JOIN Department D

ON E.Dept = D.Dept ;

Employee

Enum Name Dept

PK FK

UPI

1 BROWN 200

2 SMITH 310

3 JONES 310

4 CLAY 400

5 PETERS 150

6 FOSTER 200

7 GRAY 310

8 BAKER 310

9 TYLER 450

10 CARR 450

Department

Dept Name

PK

UPI

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE

450 ADMIN
310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200

8 BAKER 310

4 CLAY 400

3 JONES 310

9 TYLER 450

1 BROWN 200

7 GRAY 310

5 PETERS 150

2 SMITH 310

10 CARR 450

5 PETERS 150 7 GRAY 310

3 JONES 310

8 BAKER 310

2 SMITH 310

1 BROWN 200

9 TYLER 450

10 CARR 450

6 FOSTER 400

4 CLAY 400

Spool file after redistribution on Employee.Dept row hash

Row Redistribution (Merge Join Plan —
M3)

Example:

SELECT *

FROM Employee E

INNER JOIN Department D

ON E.Dept = D.Dept ;

Employee

Enum Name Dept

PK FK

UPI

1 BROWN 200

2 SMITH 310

3 JONES 310

4 CLAY 400

5 PETERS 150

6 FOSTER 200

7 GRAY 310

8 BAKER 310

9 TYLER 450

10 CARR 450

Department

Dept Name

PK

UPI

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

DUPLICATE and SORT the Smaller Table on all AMPs.

LOCALLY BUILD a copy of the Larger Table and SORT.

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE

450 ADMIN
310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200

8 BAKER 310

4 CLAY 400

3 JONES 310

9 TYLER 450

1 BROWN 200

7 GRAY 310

5 PETERS 150

2 SMITH 310

10 CARR 450

Spool file after duplicating and sorting on Department.Dept row hash.

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

Spool file after locally building and sorting on Employee.Dept row hash

6 FOSTER 200

8 BAKER 310

3 JONES 310

4 CLAY 400

9 TYLER 450

1 BROWN 200

7 GRAY 310

5 PETERS 150

2 SMITH 310

10 CARR 450

Row Redistribution (Product Join Plan —
P1)

DUPLICATE the Smaller Table on every AMP.

Employee

Enum Name Dept

PK FK

UPI

1 BROWN 200

2 SMITH 310

3 JONES 310

4 CLAY 400

5 PETERS 150

6 FOSTER 200

7 GRAY 310

8 BAKER 310

9 TYLER 450

10 CARR 450

Department

Dept Name

PK

UPI

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE

450 ADMIN
310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200

8 BAKER 310

4 CLAY 400

3 JONES 310

9 TYLER 450

1 BROWN 200

7 GRAY 310

5 PETERS 150

2 SMITH 310

10 CARR 450

Spool file after duplicating the Department rows.

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

150 PAYROLL

200 FINANCE

310 MFG.

400 EDUCATION

450 ADMIN

Example: SELECT *

FROM Employee E

INNER JOIN Department D

ON E.Dept > D.Dept ;

Exclusion Joins

• Find rows that DON'T have a match.

• May be done as merge or product joins.

• Are caused in NOT IN subqueries and EXCEPT operations.

• Use 3-value logic (= , <> , unknown) on nullable columns.

• Define NOT IN columns as NOT NULL on the CREATE TABLE if possible.

• Use: WHERE colname IS NOT NULL in queries against nullable join columns.

Set_A

1

2

3

4

Set_B

1

3

5

NOT IN Result

2

4

=

Set_A

1

2

3

4

Set_B

1

3

5

NULL

NOT IN Result

NULL

=

Exclusion Join Example

This is an example of an Exclusion Merge Join.

Example: SELECT L_Name

FROM Employee

WHERE Job_Code = 3100

AND Enum

NOT IN (SELECT Sales_Emp_Number

FROM Customer);

Employee

Enum L_Name Job_Code

PK FK

UPI

1 BROWN 3100

2 SMITH 2101

3 JONES 3100

4 CLAY 1201

5 PETERS 3100

6 FOSTER 3100

7 GRAY 1302

8 BAKER 3100

9 TYLER 3100

10 CARR 1302

Customer

Cust_Num Sales_Emp_Number

PK FK

UPI

23 6

24 3

25 8

26 1

27 6

28 8

29 1

30 3

31 8

Customer rows hash distributed on Cust_Num (UPI).

30 6

24 3

31 8

23 6

29 1

28 8

27 6

30 10

25 8

26 1

Customer.Sales_Enum after hashing and duplicate elimination.

6

8

3 1

Employee rows hash distributed on Enum (UPI).

6 FOSTER 3100

8 BAKER 3100

3 JONES 3100

9 TYLER 3100
1 BROWN 3100 5 PETERS 3100

n-Table Joins

• All n-Table joins are reduced to a series of two-table joins.

• The Optimizer attempts to determine the best join order.

• Collected Statistics on Join columns help the Optimizer choose wisely.

SELECT …. FROM Table_A, Table_B, Table_C, Table_D WHERE . . . ;

SPOOL

FILE

Table_A Table_B Table_C Table_D

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

RESULT

Join Plan 1

SPOOL

FILE

Table_A Table_B Table_C Table_D

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

SPOOL

FILE

RESULT

Join Plan 2

AGENDA

• Teradata Data Distribution & PPI

• Teradata Join Process

• Teradata SQL MISC

• SQL Optimize Strategies

• SQL Practice

EXPLAIN Terminology

Most EXPLAIN text is easy to understand. The following additional definitions may help:

• ... (Last Use) …

A spool file is no longer needed and will be released when this step completes.

• ... with no residual conditions …

All applicable conditions have been applied to the rows.

• ... END TRANSACTION …

Transaction locks are released, and changes are committed.

• ... eliminating duplicate rows ...

Duplicate rows only exist in spool files, not set tables. Doing a DISTINCT operation.

• ... by way of the sort key in spool field1 …

Field1 is created to allow a tag sort.

• ... we do an ABORT test …

Caused by an ABORT or ROLLBACK statement.

• ... by way of a traversal of index #n extracting row ids only …

A spool file is built containing the Row IDs found in a secondary index (index #n)

EXPLAIN Terminology (cont.)

• ... we do a SMS (set manipulation step) …

Combining rows using a UNION, MINUS, or INTERSECT operator.

• ... we do a BMSMS (bit map set manipulation step)

Doing a NUSI Bit Map operation.

• ... which is redistributed by hash code to all AMPs.

Redistributing data in preparation for a join.

• ... which is duplicated on all AMPs.

Duplicating data from the smaller table (in terms of SPOOL) in preparation for a join.

• ... (group_AMPs)

V2R5 feature in which a subset of AMPs will be used instead of all AMPs.

• ... ("NOT (table_name.column_name IS NULL)")

V2R5 feature in which optimizer realizes that column being joined to is NOT NULL or

has referential integrity.

Transaction Mode Examples

ANSI Mode

UPDATE A … ;

UPDATE B … ;

COMMIT;

(Both commit)

UPDATE A … ;

UPDATE B … ; (Fails)

COMMIT;

(A commits)

UPDATE A … ;

UPDATE B … ;

ROLLBACK ;

(Both rollback)

UPDATE A … ;

UPDATE B … ;

LOGOFF;

(Both rollback)

BTET Mode (explicit)

BT;

UPDATE A … ;

UPDATE B … ;

ET;

(Both commit)

BT;

UPDATE A … ;

UPDATE B … ; (Fails)

(Both rollback)

BT;

UPDATE A … ;

UPDATE B … ;

ROLLBACK ;

(Both rollback)

BT;

UPDATE A … ;

UPDATE B … ;

LOGOFF;

(Both rollback)

BTET Mode (implicit)

UPDATE A … ; (A commits)

UPDATE B … ; (B commits)

UPDATE A … ; (A commits)

UPDATE B … ; (Fails)

(Rollback B)

(No explicit ROLLBACK

in implicit Txn)

UPDATE A … ; (A commits)

UPDATE B … ; (B commits)

LOGOFF;

Multi-Statement Requests

This is an example of 1 request - 3 statements. This one request is considered

an “implicit transaction”.

Notes:

• A semi-colon at the end of a line defines the end of the request (BTEQ convention).

• You cannot mix DDL and DML within a single request.

The 3 table-level write locks (in this example) will be:

• Acquired in TID order.

• Held until done.

Advantage: Minimizes deadlocks at the table level when many users execute

requests on the same tables.

This applies for all types of requests:

• Multi-statement requests (as above)

• Single-statement DDL or DML requests

• Macros

UPDATE Dept SET Salary_Change_Date = CURRENT_DATE

; UPDATE Manager SET Salary_Amt = Salary_Amt * 1.06

; UPDATE Employee SET Salary_Amt = Salary_Amt * 1.04 ;

UPDATE Dept SET Salary_Change_Date = CURRENT_DATE

; UPDATE Manager SET Salary_Amt = Salary_Amt * 1.06

; UPDATE Employee SET Salary_Amt = Salary_Amt * 1.04 ;

Fu wenxian
Advantage:

Fu wenxian
Minimizes

Fu wenxian
deadlocks

Fu wenxian
many

Fu wenxian
users

Fu wenxian
same

Fu wenxian
tables.

Calendar Table Layout

calendar_date DATE UNIQUE (Standard Teradata date)

day_of_week BYTEINT, (1-7, where 1 = Sunday)

day_of_month BYTEINT, (1-31)

day_of_year SMALLINT, (1-366)

day_of_calendar INTEGER, (Julian days since 01/01/1900)

weekday_of_month BYTEINT, (nth occurrence of day in month)

week_of_month BYTEINT, (partial week at start of month is 0)

week_of_year BYTEINT, (0-53) (partial week at start of year is 0)

week_of_calendar INTEGER, (0-n) (partial week at start is 0)

month_of_quarter BYTEINT, (1-3)

month_of_year BYTEINT, (1-12)

month_of_calendar INTEGER, (1-n) (Starting Jan, 1900)

quarter_of_year BYTEINT, (1-4)

quarter_of_calendar INTEGER, (Starting Q1, 1900)

year_of_calendar SMALLINT, (Starting 1900)

Columns from the

System Calendar:

System Calendar is a 4-level nested view of dates.

Underlying table is Sys_calendar.Caldates:

– Has one column called ‘cdate’ - DATE data type.

– Has one row for each date of calendar.

– Unique Primary Index is cdate.

– Each level of view adds intelligence to date.

Note:

System calendar includes

Jan 1, 1900 through

Dec. 31, 2100.

One Row in the Calendar

SELECT * FROM Sys_calendar.Calendar

WHERE calendar_date = '2003-12-15' ;

calendar_date 2003-12-15

day_of_week 2

day_of_month 15

day_of_year 349

day_of_calendar 37969

weekday_of_month 3

week_of_month 2

week_of_year 50

week_of_calendar 5424

month_of_quarter 3

month_of_year 12

month_of_calendar 1248

quarter_of_year 4

quarter_of_calendar 416

year_of_calendar 2003

Note: SELECT CURRENT_DATE is the ANSI standard equivalent of SELECT DATE.

S M T W T F S

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

December 2003

Temporary Table Choices

Derived Tables

• Local to the query (table and columns are named within query)

• Incorporated into SQL query syntax (populated in query via SELECT in FROM)

• Materialized in SPOOL – Spool rows are discarded when query finishes

• No data dictionary involvement

• Commonly used with aggregation

Volatile Tables

• Local to a session – uses SPOOL space

• Uses CREATE VOLATILE TABLE syntax

• Discarded automatically at session end

• No data dictionary involvement

(Global) Temporary Tables

• Local to a session – uses TEMPORARY space

• Uses CREATE GLOBAL TEMPORARY TABLE syntax

• Materialized instance of table discarded at session end

• Creates and keeps table definition in data dictionary

Date Review

(99 * 10000) + (12 * 100) + 31 = 991231

For December 31, 1999

You may have seen that dates are handled like this:

(YYY * 10000) + (MM * 100) + DD

And that, internally, dates are stored as INTEGERs

and treated as INTEGERs like this:

If DATE = December 31, 1999

Then: DATE + 1 = January 1, 2000

Which is stored as

1000101

yyymmdd

Date Data Conversions

O p e r a n d

1 O p e r a t o r s

O p e r a n d

2 R e s u l t
D A T E + o r - I N T E G E R

S M A L L I N T

B Y T E I N T

D E C (N , M)

D A T E

D A T E *

/

M O D

I N T E G E R

S M A L L I N T

B Y T E I N T

I N T E G E R

D A T E *

/

D E C (N , M) D E C (1 5 , M)

D A T E +

-

*

/

F L O A T F L O A T

D A T E -

/

D A T E I N T E G E R

NULLIF - Revisited

The syntax: NULLIF(ColA, ColB)

Follows the logic: If ColA = ColB return Null

Else Return the value of ColA

The syntax: NULLIF(ColA, ColB)

Follows the logic: If ColA = ColB return Null

Else Return the value of ColA

Using this logic:

• NULLIF(ColA, ColA) - Returns Null even when ColA

is Null

• NULLIF(ColA, ColB) - Returns Null when equal or

ColA is Null. Returns ColA when not equal.

(Typical case)

• NULLIF(0, ColA - ColA) - Returns Null when ColA

not Null. Returns 0 when ColA is Null.

• NULLIF(1, (ColA - ColA + 1)) - Returns Null when

ColA not Null. Returns 1 when ColA is Null.

• NULLIF(ABS(ColA), -1 * ColA) - Returns Null when

ColA is LE 0 or Null. Returns ColA when ColA is > 0.

COALESCE - The syntax: COALESCE(ColA, ColB, ColC)

Follows the logic: If ColA = Null return the value of the

first Non-Null column in the following

list.

If they are all Null return Null
(If ColA is NOT NULL then use the value

for ColA)

The syntax: COALESCE(ColA, ColB, ColC)

Follows the logic: If ColA = Null return the value of the

first Non-Null column in the following

list.

If they are all Null return Null
(If ColA is NOT NULL then use the value

for ColA)

Using this logic:

• COALESCE(ColA, 0) - If ColA is Null then use 0.

(Typical case)

• COALESCE(ColA, ColB) - If ColA is Null use

ColB if not Null, else use ColA.

• COALESCE(ColA + ColB, 0) - If ColA plus ColB is

Null then use 0 else use ColA plus ColB.

• COALESCE (ColA, 0) + COALESCE(ColB, 0) - If

either ColA or ColB are Null change their value to 0

and then add them.

• Does: COALESCE(ColA + ColB, 0) =

COALESCE(ColA,0) + COALESCE(ColB,0)?

AGENDA

• Teradata Data Distribution & PPI

• Teradata Join Process

• Teradata SQL MISC

• SQL Optimize Strategies

• SQL Practice

SQL TUNING

• Improved performance SQL queries may be rewritten or
"tuned" using the following:

• – The CASE feature for complex, derived reports.

• – Optimized INSERT SELECTs in empty tables.

• – Joins and Aggregates in views and derived tables.

• – Correlated subqueries.

• – Temporary tables to enhance the performance of inserting
or deleting many rows from a populated table.

• – Combine split queries into one complex query.

• – The EXTRACT and Add_Months functions to manipulate
dates.

• – Application Utilities to replace applications.

• – Use Stored Procedures.

• As you tune your queries, use EXPLAIN.

ROW SELECTION

• WHERE clause conditions that may use indexing if available*:

• condition1 AND condition2

• t1.col_x = t2.col_x

• colname IN (subquery)

• colname IN (explicit list of values)

• colname IS NULL

• colname = value
• *Access methods for the above depend on whether the column(s) are indexed,

type of index, and selectivity of the index.

ROW SELECTION

• {[HAVING], [WHERE]} clause conditions that typically cause a Full Table Scan
> missing a WHERE clause
> INDEX (colname)
> SUBSTRING (colname)
> SUM
> MIN
> MAX
> AVG
> COUNT
> DISTINCT
> ANY
> ALL
> non-equality comparisons
> colname IS NOT NULL
> colname NOT IN (explicit list of values)
> colname BETWEEN ... AND ... /*/
> colname NOT IN (subquery)
> NOT (condition1)
> Join condition1 OR Join condition2
> t1.col_x [computation] = value
> t1.col_x [computation] = t1.col_y
> col1 || col2 = value

ROW SELECTION

• The following functions affect output only, not base row
selection:

• GROUP BY

• HAVING

• WITH

• WITH ... BY ...

• ORDER BY

• UNION

• INTERSECT

• EXCEPT

• t1.col_x = t1.col_y

• condition1 OR condition2

• colname = ANY, SOME or ALL

AGENDA

• Teradata Data Distribution & PPI

• Teradata Join Process

• Teradata SQL MISC

• SQL Optimize Strategies

• SQL Practice

Evaluation Of The “IN”
Operator

The two queries below are interpreted and executed

by the optimizer in the same fashion.

The two queries below are interpreted and executed

by the optimizer in the same fashion.

SELECT C1, C2, . . . Cn

FROM T1

WHERE Cx IN (‘A’, ‘B’, ‘C’);

SELECT C1, C2, . . . Cn

FROM T1

WHERE Cx = ‘A’

OR Cx = ‘B’

OR Cx = ‘C’;

Both are

optimized as

this query.

Distribution Of “AND/OR”
(1 of 2)

Recalling early arithmetic: Multiplication is said to be

distributive over addition and subtraction.

a (b + c) = a (b) + a (c)

Recalling early arithmetic: Multiplication is said to be

distributive over addition and subtraction.

a (b + c) = a (b) + a (c)

As in arithmetic, AND is distributive over OR, so that - -

WHERE C1 = a AND (C2 = b OR C3 = c)

is equivalent to writing - -

WHERE (C1 = a AND C2 = b) OR (C1 = a AND C3 = c)

As in arithmetic, AND is distributive over OR, so that - -

WHERE C1 = a AND (C2 = b OR C3 = c)

is equivalent to writing - -

WHERE (C1 = a AND C2 = b) OR (C1 = a AND C3 = c)

Unlike arithmetic, however, OR is distributive over AND

as well, so that - -

WHERE C1 = a OR (C2 = b AND C3 = c)

is equivalent to writing - -

WHERE (C1 = a OR C2 = b) AND (C1 = a OR C3 = c)

Unlike arithmetic, however, OR is distributive over AND

as well, so that - -

WHERE C1 = a OR (C2 = b AND C3 = c)

is equivalent to writing - -

WHERE (C1 = a OR C2 = b) AND (C1 = a OR C3 = c)

These forms are treated differently by the optimizer!

Distribution Of “AND/OR”
(2 of 2)

Also recall that you can factor in multiplication so that - -

a (b) + a (c) = a (b + c)

Also recall that you can factor in multiplication so that - -

a (b) + a (c) = a (b + c)

SQL can be treated in much the same way so that C1,

in the following - -

WHERE (C1 = a AND C2 = b) OR (C1 = a AND C3 = c)

can be factored into - -

WHERE C1 = a AND (C2 = b OR C3 = c)

And C1, in the following - -

WHERE (C1 = a OR C2 = b) AND (C1 = a OR C3 = c)

can be factored into - -

WHERE C1 = a OR (C2 = b AND C3 = c)

SQL can be treated in much the same way so that C1,

in the following - -

WHERE (C1 = a AND C2 = b) OR (C1 = a AND C3 = c)

can be factored into - -

WHERE C1 = a AND (C2 = b OR C3 = c)

And C1, in the following - -

WHERE (C1 = a OR C2 = b) AND (C1 = a OR C3 = c)

can be factored into - -

WHERE C1 = a OR (C2 = b AND C3 = c)

What causes either form to be used depends upon how

the business question has been asked or interpreted.

DISTINCT VS Group By

SELECT State FROM TableA

GROUP BY 1 ORDER BY 1;

SELECT State FROM TableA

GROUP BY 1 ORDER BY 1;

SELECT DISTINCT State

FROM TableA;

SELECT DISTINCT State

FROM TableA;

Vs

•if the values that are the object of the DISTINCT are
nearly unique then, because there is no local
aggregation phase, DISTINCT may greatly outperform
a GROUP BY -- even for smaller tables!

其他事项

• 表定义表定义表定义表定义

• 临时表临时表临时表临时表：：：：

> 索引尽量选择后续索引尽量选择后续索引尽量选择后续索引尽量选择后续SQL可以用到的可以用到的可以用到的可以用到的，，，，并尽可能考虑唯一性并尽可能考虑唯一性并尽可能考虑唯一性并尽可能考虑唯一性

> 字符类型使用字符类型使用字符类型使用字符类型使用CASESPECIFIC、、、、CHAR（（（（定长定长定长定长））））而非而非而非而非VARCHAR

> 使用的字段尽量消除使用的字段尽量消除使用的字段尽量消除使用的字段尽量消除NULL值值值值

> 注意表之间的字段类型定义一致注意表之间的字段类型定义一致注意表之间的字段类型定义一致注意表之间的字段类型定义一致,特别要注意特别要注意特别要注意特别要注意 JOIN 条件中字段条件中字段条件中字段条件中字段

> Ins…Sel…; TmpTbl->DatTbl, 注意注意注意注意PI一致一致一致一致

• 对百万级及以上的表对百万级及以上的表对百万级及以上的表对百万级及以上的表，，，，若若若若UPDATE比例超过比例超过比例超过比例超过5-10％，％，％，％，尽可能采用其他方法尽可能采用其他方法尽可能采用其他方法尽可能采用其他方法

• 对查询应用对查询应用对查询应用对查询应用，，，，考虑使用考虑使用考虑使用考虑使用LOCK MODIFIER以减少互锁以减少互锁以减少互锁以减少互锁，，，，即即即即

> lock table for access …

• 多多使用多多使用多多使用多多使用 EXPLAIN ！！！！

Fu wenxian
•
多
多
使
用
EXPLAIN ！！！！

Cognos Usage

• ODBC setting

> Quiet mode

> Response buffer size

• EDIT SQL(《ReportStudio UserGuide》P85－91)

• others

> Session Cache,

> max connects,

> Query Time,

> Query Counts

> … …

• Schedule Report

