
阿里HBase在搜索领域的设计与实践

徐斌 / 雨田

阿里巴巴高级搜索研发工程师

Agenda

• Overview

• Improvements

• Maintenance

• Extensional Projects

• Q & A

Overview

Upgrade History

2010.08 2012.04 2013.09 NOW

HBase 0.20.5

2013.03

HBase 0.94.5 TODO: HBase 0.98.X

HBase 0.92.1 HBase 0.94.10

Architecture

Features of our scenario

 YARN, HDFS and HBase coexist

 Intensive random read

 Various client type (JavaAPI, MR Job, iStream, Thrift …)

HBase Improvements

Increment Coprocessor
An incremental trigger mechanism to transmit application’s real-time
messages synchronously.

Other Assistant Coprocessors

Name Description

Compare

Compare a Put data with the corresponding storage data, add
additional data(constant value) into the Put if it matches some
conditions.

Trace

Compare a Put data with the corresponding storage data, remove
columns of Put if they are the same with the ones in the storage,
leaving only the changed columns.

Copy

Compare a column data of a Put with some constant value (or
other column data in the same Put), copy values to other columns
according to configurations.

Thrift Server

 API improvements

 Scanner auto-release

 Add metrics to Ganglia

C/C++
Pytho

n
… …

PHP Java

Thrift Server

HBase Cluster

Constant Family Size Region Split Policy

• Set a constant limit for each family, if not, use the region max size limit instead.
• Region split will be triggered if any family reaches its size limit.
• The split point is determined by the family who exceeds the most proportion of its

size limit.

Original Region Split Policy

F1 F2 F3

New Region Split Policy

F1 F2 F3

For example:
SizeOf(F1) = 5M, SizeOf(F2) = 15M, SizeOf(F3) = 10M
LimitOf(F1)= 10M, LimitOf(F2) = 14M, LimitOf(F3) = 8M

Local Region Scanner

Open and read(scan) an online region at local machine in ‘READ ONLY’ mode,
so that we can debug or trace some region issues without changing the region
server’s code.

Client

Region Server Region

Region

Region

Local Scanner

Call API Internal Scanner

Compaction Rate Limit

Check compaction process periodically. If it spends less time than we expected
to compact a certain amount of data (for example: 10M), we should force it to
‘sleep’ a little while to lower the total compaction rate speed. (HBASE-8329)

Online Reload Configurations

MemStoreFlush, Split, HLog, Compaction and more…

hbase-site.xml HMaster

HRegionServer

Push

Push

HBase
Shell

Notify

Notify

Step 1:

Step 2:

Web-based Query Tool
1) Entry on Master’s status page
2) Query by ROWKEY or URL
3) Support multi versions
4) Filter by column family

Cluster Maintenance

Rolling Upgrade

HBase upgrade is always a nightmare for all users and administrators. We
should find some ways to do it without a whole cluster shutdown.

Why do we need this?

Rolling upgrade means upgrade region servers one by one (or group by
group), so any IPC protocol version difference between region servers or
between region server and master will cause catastrophic failures.

When can we use it?

Select a group of 10 ~ 15 region servers. Move all regions out of these nodes
concurrently, shut these servers down, switch to new version, restart region
servers, move back all regions to original locations.

How did we use it?

Cluster Availability Control

• To block all the clients requests when HBase cluster is shutting down.
• Add a ‘cluster unavailable’ znode on HBase zookeeper. When it exists, all

HBase clients(Java API, YARN App, ThriftServer) will be blocked.
• Use master’s coprocessor to control the znode.

YARN

… … iStream M/R
Java API Thrift Server

ZOOKEEPER

HBASE

HBase Monitor (1)
Collect cluster’s read & write requests status, display QPS graph using OpenTSDB.

HBase Monitor (2)

• Use a ‘region probe’ (actually, a special defined Scan operation) to request a single
row from each region on each region server.

• Collect the response time, tag them with NORMAL or TIMEOUT.
• Draw a graph based on the proportion of NORMAL regions in all regions of a

cluster using OpenTSDB.
• Send out warning messages(in form of Email, AliWangWang, SMS or VoiceCall) if

the proportion of TIMEOUT regions of a single region server (or a single HTable)
reaches a certain limit.

Request Profiler

Real-time profiler for any slow request. Filtered by processing time or
response size.

Region Server Read Rate Limit

Region Server

Region A

Region B

Region C

… …

Traffic
Controller

Read Requests

Scan Get

Append Increment

• Launch region-level read rate control if the total size of the past 10s read
operations reaches RegionServer’s read limit(100M/s).

• Throw IOExceptions when a certain region reaches its own limit.
• Cancel the region-level control if all regions obey their limits in the past

10s.

Extensional Projects

HQueue (1)

It’s a distributed and persistent message-oriented middleware based on HBase.

What’s HQueue?

Features

 HQueue is based on HTable, so it also supports auto-failover, multi-
partition(HTable region) and load balance.

 It’s a persistent storage system. (HBase HLog & HDFS Append)
 High performance in both read and write.
 Message is classified by ‘Topic’. (HBase column qualifier)
 Support TTL mechanism. (HBase’s KeyValue level TTL)
 As a lightweight wrapper of HTable, HQueue can upgrade with HBase

cluster seamlessly.
 Allows map/reduce jobs to assign tasks based on locality.
 Support subscribe mechanism.

HQueue (2)

OpenTSDB

What’s OpenTSDB?

OpenTSDB is an open-source, distributed time series database designed to
monitor large clusters of commodity machines at an unprecedented level of
granularity. OpenTSDB allows operation teams to keep track of all the
metrics exposed by operating systems, applications and network equipment,
and makes the data easily accessible.

Performance

Thanks to HBase's scalability, OpenTSDB allows you to collect thousands of
metrics from tens of thousands of hosts and applications, at a high rate
(every few seconds). OpenTSDB will never delete or downsample data and
can easily store hundreds of billions of data points.

Where do we use it?

Etao Search Dump Stats, Web Crawler Stats, HBase Monitor and more …

Phoenix

Apache Phoenix is a SQL skin over HBase delivered as a client-embedded JDBC
driver targeting low latency queries over HBase data.

What’s Phoenix?

Principle

Apache Phoenix takes your SQL query, compiles it into a series of HBase scans,
and orchestrates the running of those scans to produce regular JDBC result
sets.

Direct use of the HBase API, along with coprocessors and custom filters,
results in performance on the order of milliseconds for small queries, or
seconds for tens of millions of rows.

Performance

