
Making Fly

Parviz Deyhim

Obsession

Scalable, Highly-available and Secure

Obsession

Scalable, Highly-available and Secure

Amazon Elastic MapReduce

What is EMR?

Map-Reduce engine Integrated with tools

Hadoop-as-a-service

Massively parallel

Cost effective AWS wrapper

Integrated to AWS services

HDFS

Amazon EMR

HDFS

Amazon EMR

Amazon S3 Amazon

DynamoDB

HDFS

Analytics languagesData management

Amazon EMR

Amazon S3 Amazon

DynamoDB

HDFS

Analytics languagesData management

Amazon EMR
Amazon

RDS

Amazon S3 Amazon

DynamoDB

HDFS

Analytics languagesData management

Amazon

RedShift

Amazon EMR
Amazon

RDS

Amazon S3 Amazon

DynamoDB

Data Pipeline

HDFS

Analytics languagesData management

Amazon

RedShift

Amazon EMR
Amazon

RDS

Amazon S3 Amazon

DynamoDB

Data Pipeline

Amazon EMR Concepts

• Master Node

• Core Nodes

• Task Nodes

Core Nodes

Master
Node

Master instance group

Amazon EMR cluster

Core instance group

HDFS HDFS

DataNode (HDFS)

Core Nodes

Master
Node

Master instance group

Amazon EMR cluster

Core instance group

HDFS HDFS

Can Add Core Nodes:

More CPU

More Memory

More HDFS Space
HDFS

Core Nodes

Master
Node

Master instance group

Amazon EMR cluster

Core instance group

HDFS HDFS

Can’t remove core
nodes:

HDFS corruption

HDFS

Task Nodes

Master
Node

Master instance group

Amazon EMR cluster

Core instance group

HDFS HDFS

No HDFS

Provides compute
resources:

CPU

Memory

Task Nodes

Master
Node

Master instance group

Amazon EMR cluster

Core instance group

HDFS HDFS

Can add and remove
task nodes

Spark On Amazon EMR

Bootstrap Actions

• Ability to run or install additional
packages/software on EMR nodes

• Simple bash script stored on S3

• Script gets executed during node/instance boot
time

• Script gets executed on every node that gets
added to the cluster

Spark on Amazon EMR

• Bootstrap action installs Spark on EMR nodes

• Currently on Spark 0.73 & upgrading to 0.8
very soon

http://bit.ly/sparkemr

Why Spark on Amazon EMR?

• Deploy small and large Spark clusters in
minutes

• EMR handles node recover in case of failures

• Integration with EC2 Spot Market, Amazon
Redshift, Amazon Data pipeline, Amazon
Cloudwatch and etc

Why Spark on Amazon EMR?

• Shipping Spark logs to S3 for debugging

– Define S3 bucket at cluster deploy time

Spark on EC2 Spot Market

• Bid on un-used EC2 capacity

• Spark is memory hungry.

• Bid on large memory instances with the
fraction of the cost

Spark on EC2 Spot Market

Instance Type # of
nodes

On-demand
Cost

Spot Cost Cost/GB Of Memory Using Spot

M1.xlarge 63 $31/h $4.41/h 0.44c/GB/h

CC2.8xlarge 16 $39/h $4.64/h 0.46c/GB/h

M2.4xlarge 15 $24/h $2.25/h 0.22c/GB/h

1TB Memory Cluster

Spark on EC2 Spot Market

Master
Node

Master instance group

Amazon EMR cluster

HDFS HDFS

32GB Memory

• Launch initial
Spark cluster with
core nodes

• HDFS to store and
checkpoint RDDs

Spark on EC2 Spot Market

Master
Node

Master instance group

Amazon EMR cluster

HDFS HDFS

32GB Memory 256GB Memory

• Add Task nodes in
spot market to
increase memory
capacity

Spark on EC2 Spot Market

Master
Node

Master instance group

Amazon EMR cluster

HDFS HDFS

32GB Memory 256GB Memory

Amazon S3

• Create RDDs from
HDFS or Amazon S3
with:

sc.textFile
OR

sc.sequenceFile

• Run Computation on
RDDs

Spark on EC2 Spot Market

Master
Node

Master instance group

Amazon EMR cluster

HDFS HDFS

32GB Memory 256GB Memory

• Save the resulting
RDDs to HDFS or S3
with:

rdd.saveAsSequenceF
ile OR

rdd.saveAsObjectFile

Amazon S3

saveAsObjectFile

Spark on EC2 Spot Market

Master
Node

Master instance group

Amazon EMR cluster

HDFS HDFS

32GB Memory

• Shutdown
TaskNodes when
your job is done

Elastic Spark With Amazon EMR

Autoscaling Spark

Master Node

Amazon EMR cluster

HDFS HDFS

32GB Memory

Autoscaling Spark

Master Node

Amazon EMR cluster

HDFS HDFS

32GB Memory
256GB Memory

Elastic Spark

• When to Scale?

– Depends on your job

• CPU bounded or Memory intensive?

– Probably both for Spark jobs

• Use CPU/Memory util. metrics to decide when to
scale

Amazon EMR Cloudwatch metrics

• EMR integrates with Cloudwatch

• Provides many metrics.

• Examples:

– Load Metrics

– HDFS Metrics

– S3 Metrics

Amazon EMR Cloudwatch metrics

Basics on Cloudwatch Metrics

• Pick any Cloudwatch metrics

• Pick a threshold that you like to be notified if its
breached

• Setup Cloudwatch Alarms based on your thresholds

• Receive SNS notification in forms of:
– Email
– SNS
– HTTP API Call

Take Manual
Action Such As
Adding More
Task Nodes

Monitor With
Cloudwatch

Receive Email
Notification

Basics on Cloudwatch Metrics

Take Automated
Actions

Monitor With
Cloudwatch

HTTP API Calls

Basics on Cloudwatch Metrics

Spark Autoscaling Based on Load

• Setup Cloudwatch alarm on EMR “TotalLoad”
metric

• Receive Email/SNS/HTTP notification

• Add more worker nodes by adding EMR task
nodes

Spark Autoscaling Based Memory

• Spark needs memory

– Lost of it!!

• How to scale based on the memory usage?

Spark Metrics

• Spark 0.8 provides cluster metrics

• Source and Sink topology

Spark Metrics

• Spark Metric Sources (metrics.properties):

worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource

driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource

executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource

Spark Metrics

• Spark Metric Sinks (metrics.properties):

• Package: org.apache.spark.metrics.sink

ConsoleSink

JmxSink

CsvSink

GangliaSink

Spark Metrics

• Spark Metric Sinks (metrics.properties):

CloudwatchSink

Spark Metrics & Cloudwatch

Spark Metrics & Cloudwatch

• Monitor Spark metrics with Cloudwatch

• Setup Cloudwatch alarms and get notified if any
metrics reached your threshold.

• Example: if JvmHeapUsed > 20G

• Receive notification and take manual or
automated actions

Spark Streaming and Amazon
Kinesis

Amazon Kinesis

Kinesis

Amazon Kinesis

• CreateStream

– Creates a new Data Stream within the Kinesis Service

• PutRecord

– Adds new records to a Kinesis Stream

• DescribeStream

– Provides metadata about the Stream, including name, status, Shards,
etc.

• GetNextRecord

– Fetches next record for processing by user business logic

• MergeShard / SplitShard

– Scales Stream up/ down

• DeleteStream

– Deletes the Stream

Amazon Kinesis

Kinesis

Spark Streaming and Amazon Kinesis

• SparkStreaming Kinesis Receiver

• Extends NetworkReceiver

• Creates a single Receiver per shard and reads
from Kinesis

Misc.

• New AWS instances provide enhanced
networking in VPC

• C3

• I2

• Higher PPS

• Less Jitter

• Great CPU Power

• Suitable for Spark: Serialization and Shuffle

