

Making master/slave systems work better with pgpool-II

SRA OSS, Inc. Japan Tatsuo Ishii

About me

- Running SRA OSS, Inc. Japan
- PostgreSQL developer/committer
 - I18N works
 - Several contrib tools including pgbench
- Writing books/articles about PostgreSQL

About SRA OSS, Inc. Japan

- Established in 2005
- Provids commercial support for PostgreSQL and other OSS
- No MySQL support
- Sells commercial packages based on PostgreSQL
- Trainings and certifications
- Supports PostgreSQL community
 - Funding JPUG
 - Board members

PostgreSQL is quite popular in Japan

From IPA (Information technology promotion agency)'s survey in 2008

2010/7/2

Tatsuo Ishii

What is pgpool-II?

- Yet another cluster middle ware dedicated for PostgreSQL
- Community developed open source software project
- Rich features
 - Synchronous replication
 - Load balancing
 - Automatic failover
 - Connection pooling
 - Parallel query
 - Collaborating with other replication tools
 - Slony-I, Worm standby, Streaming replication

Basic idea of pgpool-II

The architecture of pgpool-II

Replication mode

Pros and cons of pgpool-II replication

Pros

- Synchronous replication: no need to worry about "eventually consistent" problem. No transaction loss
- Automatic failover: no phone calls from angry customers while you are in bed
- Connection pooling and load balancing: boost performance
- Online recovery. Without stopping pgpool-II, you can repair or add a DB node
- Easy to configure

Cons

- Write performance is not good (about 30% overhead)
- Some queries confuse pgpool-II: random(), sequences, functions those have a side effect (write to the database)

2010/7/2

Master slave mode with Slony-I

Pros and cons of master/slave mode

- Pros
 - Write performance is good (10-20% overhead)
 - Automatic failover of slaves
 - Connection pooling and load balancing: boost performance
- Cons
 - Asynchronous replication
 - Replication delay is relatively large
 - No DDL replication
 - Administrator's headache
 - No large objects replication
 - Hard to configure

What we need is:

- Low write overhead
- Low replication delay
- Transparent replication
 - DDL replication
 - Large object replication
- Easy to manage

Sreaming Replication+Hot Standby

Streaming replication+Hot Standby

Low write overhead

Low replication delay

2010/7/2 Tatsuo Ishii 17

However...

- No automatic failover
- No connection pooling, load balancing
- You need to know what the standby dislike:

Data Manipulation Language (DML) - INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE. Note that there are no allowed actions that result in a trigger being executed during recovery.

Data Definition Language (DDL) - CREATE, DROP, ALTER, COMMENT. This also applies to temporary tables also because currently their definition causes writes to catalog tables,

SELECT ... FOR SHARE | UPDATE which cause row locks to be written

Rules on SELECT statements that generate DML commands.

LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.

LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.

Transaction management commands that explicitly set non-read-only state:

BEGIN READ WRITE, START TRANSACTION READ WRITE

SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE

SET transaction_read_only = off

Two-phase commit commands - PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED because even read-only transactions need to write WAL in the prepare phase (the first phase of two phase commit).

Sequence updates - nextval(), setval()

LISTEN, UNLISTEN, NOTIFY

Streaming replication+Hot Standby+pgpool-II configuration

2010/7/2

Tatsuo Ishii

Pros and cons of Streaming replication+ Hot Standby+pgpool-II

- Pros
 - Write performance is good (10-20% overhead)
 - Automatic failover of slaves
 - Connection pooling and load balancing: boost performance
 - DDL replication
 - Large object replication
- Cons
 - Asynchronous replication
 - However replication delay is relatively low

New features in pgpool-II 3.0

- New master/slave "sub_mode" dedicated for Streaming replication and Hot standby
- Automatic query dispatches
 - Send write queries to the primary
- Intelligent load balancing
 - Prior releases: send read queries to the standby whenever possible
 - 3.0: Check the replication delay between the primary and the standby. If it's exceeds "delay_threshold", then send to the primary only.
- Adding standby servers without stopping pgpool-II

Replication delay detection: how it works

SELECT pg_last_xlog_ receive_location()

call the functions every health check periods second. calculate the difference. if it exceeds delay threshold, send read queries to the primary only.

worker process

Logging replication delay

- log_standby_delay
 - 'none': no logging delay
 - 'if_over_threshold': log only when delay exceeds delay_threshold
 - 'always': always log delay

```
2010-06-28 15:51:32 LOG: pid 13223: Replication of node:1 is behind 1228800 bytes from the primary server (node:0)
```

2010-06-28 15:51:42 LOG: pid 13223: Replication of node:1 is behind 3325952 bytes from the primary server (node:0)

2010-06-28 15:51:52 LOG: pid 13223: Replication of node:1 is behind 974848 bytes from the primary server (node:0)

2010-06-28 15:52:02 LOG: pid 13223: Replication of node:1 is behind 2990080 bytes from the primary server (node:0)

2010-06-28 15:52:12 LOG: pid 13223: Replication of node:1 is behind 901120 bytes from the primary server (node:0)

2010-06-28 15:52:22 LOG: pid 13223: Replication of node:1 is behind 2433024 bytes from the primary server (node:0)

2010/7/2 Tatsuo Ishii 23

Scaling up with pgpool-II+Streaming replication+Hot standby

- Streaming replication scales well
 - We can add standby servers without sacrificing performance
 - More standby servers means better read performance with load balancing

Summary

- pgpool-II overview
- Various configurations of pgpool-II and their pros and cons
 - Replication mode
 - Master/Slave mode (Slony-I)
 - Master/Slave mode (Streaming replication + Hot standby)
- pgpool-II 3.0 + Streaming replication + Hot standby will offer one of the ideal replication solutions
 - Easy to use/manage
 - Low replication delay
 - Low write overhead+good scalability

URLS

- pgpool-II can be downloaded here:
 - http://pgfoundry.org/projects/pgpool/
- Visit SRA OSS's website if you need commercial support for pgpool-II and/or PostgreSQL:
 - http://www.srasoss.co.jp/index_en.php