
Aneka Tutorial Series

Developing MapReduce.NET Applications

Chao Jin and Christian Vecchiola

Abstract
This tutorial describes the MapReduce programming model in
the .NET environment and explains how to create distributed
applications with it over Aneka. It illustrates some examples
provided with the Aneka distribution. It provides a detailed
guide on how to create a MapReduce application by using the
Microsoft Visual Studio 2005 Development Environment. After
having read this tutorial, the users will be able to develop their
own MapReduce.NET application over Aneka.

Document Status
Creation Date: 11/28/08

Version: 0.1

Classification: User

Authors: Chao Jin, Christian Vecchiola

Last Revision Date: 09/17/09

Status: Draft

1. Prerequisites
In order to fully understand this tutorial the user should be familiar with the
general concepts of Grid and Cloud Computing, Object Oriented programming
and generics, distributed systems, and a good understanding of the .NET
framework 2.0 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is
also suggested to have Microsoft Visual Studio 2005 (any edition) with C#
package installed1 even if not strictly required.

2. Introduction
Aneka allows different kind of applications to be executed on the same

1 Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the
components required to complete this tutorial installed except of Aneka, which has to be
downloaded and installed separately.

Grid/Cloud infrastructure. In order to support such flexibility it provides
different abstractions through which it is possible to implement distributed
applications. These abstractions map to different execution models. Currently
Aneka supports three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

Each execution model is composed by four different elements: the WorkUnit,
the Scheduler, the Executor, and the Manager. The WorkUnit defines the
granularity of the model; in other words, it defines the smallest computational
unit that is directly handled by the Aneka infrastructure. Within Aneka, a
collection of related work units define an application. The Scheduler is
responsible for organizing the execution of work units composing the
applications, dispatching them to different nodes, getting back the results,
and providing them to the end user. The Executor is responsible for actually
executing one or more work units, while the Manager is the client component
which interacts with the Aneka system to start an application and collects the
results. A view of the system is given in Figure 1.

In the case of MapReduce the user does not directly express the tasks that
need to be computed but specifies two operations that are applied to the
tasks generated automatically by the infrastructure. Users will not directly
deal with a specific WorkUnit, but we will still have a MapReduce Scheduler, a
MapReduce Executor, and a MapReduce Manager. In order to develop an

Figure 1: System Component View

application for Aneka, the user does not have to know all these components;
Aneka handles a lot of the work by itself without the user's contribution. Only
few things users are required to know:

• how to define Map and Reduce operations specific to the application
that is being defined;

• how to create a MApReduceApplication and use it executing
MapReduce.NET applications;

• how to control the MapReduceApplication and collect the results.

In the remainder of this tutorial will then concentrate on the MapReduce
Model, but many of the concepts described can be applied to other execution
models.

3. MapReduce Model

3.1 MapReduce Overview

MapReduce is triggered by map and reduce operations in functional
languages, such as Lisp. This model abstracts computation problems through
two functions: map and reduce. All problems formulated in this way can be
parallelized automatically.

All data processed by MapReduce are in the form of key/value pairs. The
execution happens in two phases. In the first phase, a map function is invoked
once for each input key/value pair and it can generate output key/value pairs
as intermediate results. In the second one, all the intermediate results are
merged and grouped by keys. The reduce function is called once for each key
with associated values and produces output values as final results.

3.2 Map and Reduce

A map function takes a key/value pair as input and produces a list of
key/value pairs as output. The type of output key and value can be different
from input key and value:

map::(key1,value1) = > list(key2,value2)

A reduce function takes a key and associated value list as input and
generates a list of new values as output:

reduce::list(key2,value2) = > list(value3)

3.3 MapReduce Execution

A MapReduce application is executed in a parallel manner through two
phases. In the first phase, all map operations can be executed independently
with each other. In the second phase, each reduce operation may depend on

the outputs generated by any number of map operations. However, similar to
map operations, all reduce operations can be executed independently.

From the perspective of dataflow, MapReduce execution consists of m
independent map tasks and r independent reduce tasks, each of which may
be dependent on m map tasks. Generally the intermediate results are
partitioned into r pieces for r reduce tasks.

The MapReduce runtime system schedules map and reduce tasks to
distributed resources. It manages many technical problems: parallelization,
concurrency control, network communication, and fault tolerance.
Furthermore, it performs several optimizations to decrease overhead involved
in scheduling, network communication and intermediate grouping of results.

4. MapReduce.NET
MapReduce is one of most popular programming models designed for data
centers. It supports convenient access to the large scale data for performing
computations while hiding all low level details of physical environments. It
been proved to be an effective programming model for developing data
mining, machine learning and search applications in data centers. Especially,
it can improve the productivity for those junior developers without required
experiences of distributed/parallel development.

MapReduce.NET is an implementation of MapReduce for data centers and
resembles Google’s MapReduce with special emphasis on the .NET and
Windows platform. MapReduce.NET supports an object-oriented interface for
programming map and reduce functions, and includes a set of storage APIs to
wrap input key/value pairs into initial files and extract result key/value pairs
from results files. Figure 2 illustrates the big picture of MapReduce.NET from
the point view of users.

Figure 2: MapReduce Execution Model

4.1 Architecture

The design of MapReduce.NET aims to reuse as many existing Windows
services as possible. Figure 3 illustrates the architecture of MapReduce.NET.
Our implementation is assisted by several distributed component services of
Aneka.

MapReduce.NET is based on master-slave architecture. Its main components
include: manager, scheduler, executor and storage.

• Manager: the manager works as an agent of MapReduce computation. It
submits applications to the MapReduce scheduler and collects the final
results after the execution completes successfully.

• Scheduler: after users submit MapReduce.NET applications to the
scheduler, it maps sub tasks to available resources. During the
execution, it monitors the progress of each task and takes
corresponding task migration operation in case some nodes are much
slower than others due to heterogeneity.

• Executor: each executor waits task execution commands from the
scheduler. For a Map task, normally its input data locates locally.
Otherwise, the executor needs to fetch input data from neighbors. For a
Reduce task, the executor has to fetch all the input and merge them
before execution. Furthermore, the executor monitors the progress of
executing task and frequently reports the progress to the scheduler.

• Storage: the storage component of MapReduce.NET provides a
distributed storage service over the .NET platform. It organizes the disk
spaces on all the available resources as a virtual storage pool and
provides an object based interface with a flat name space, which is
used to manage data stored in it.

Figure 4 illustrates an example configuration of MapReduce.NET deployment
with Aneka. Client processes simply contain the libraries required to connect

Figure 3: MapReduce Archtecture

to Aneka and to submit the execution of MapReduce tasks. A typical
configuration will have installed the MapReduce scheduler on the scheduler
node while Mapreduce executors will be deployed on executors node. Each of
the executor nodes will access a shared storage among all the MapReduce
executors by means of the Windows Shared File Service.

4.2 MapReduce.NET API

The implementation of MapReduce.NET exposes APIs similar as Google
MapReduce. A MapReduce.NET based application is then composed by three
main components:

• Mapper: this class represents the base class that users can inherit to
specify their map function.

• Reducer: it represents the base class that uses can inherit to specify
their reduce function.

• MapReduceApplication: represents the driver of the entire application.
This class is configured with the Mapper and the Reducer specific
classes defined by the user and is in charge of starting the execution of
MapReduce.NET, controlling it and collecting the results.

Section 4.2.1 and 4.2.2 will respectively describe in detail the API for

Figure 4: MapReduce System View

implementing the Map function and the Reduce functions. Section 4.2.3 will
then present the API required to execute a MapReduce.NET application and
how to configure them with the specific Map and Reduce functions.

 4.2.1 Map API

namespace Aneka.MapReduce

{

/// <summary>

/// Interface MapInput. Represents a key/value pair.

/// </summary>

public interface MapInput<K,V> : MapInput

{

 /// <summary>

 /// Gets the Key of the key/value pair.

 /// </summary>

 K Key { get; }

 /// <summary>

 /// Gets the value of the key/value pair.

 /// </summary>

 V Value { get; }

}

/// <summary>

/// Delegate MapEmitDelegate. Defines the signature of the method that

/// is called to submit intermediate results.

/// </summary>

/// <param name="key">key</param>

/// <param name="value">value</param>

public delegate void MapEmitDelegate(object key, object value);

/// <summary>

/// Class Mapper. Defines the base class that user can specialize to implement

/// the map function.

/// </summary>

public abstract class Mapper<K,V> : MapperBase

 {

 /// <summary>

 /// Defines the Map function.

 /// </summary>

 /// <param name="input">input value</param>

 protected abstract void Map(MapInput<K,V> input);

 }

}

Listing 1 - Map Related Classes and Interfaces.

To define a map function, users have to inherit the Mapper class and then

override the abstract Map function. The input argument is a MapInput, which
contains one input key/value pair. The type of key and value are specified by
generic parameters, K and V respectively.

The map function defined by users is invoked once for each input key/value
pair. Normally, the map function produces another key/value pair as output.
Moreover, each input key/value pair might generate a list of output key/value
pairs. The generated intermediate results are collected by the
MapReduce.NET runtime system by using MapEmitDelegate. Its input
argument includes a key and a value for the intermediate key/value pair.

All of the collected intermediate key/value pairs are sorted by keys. Moreover,
all values associated same key are grouped together. Each group of
intermediate values are taken as an input for the reduce function, which
normally performs an aggregate operation on the grouped values and
produce a final result.

 4.2.2 Reduce API

namespace Aneka.MapReduce

{

/// <summary>

/// Interface IReduceInputEnumerator. Defines an enumerator that iterates

/// over the values of the same key.

/// </summary>

public interface IReduceInputEnumerator<V> : IEnumerator<V>,

 IreduceInputEnumerator;
/// <summary>

/// Delegate ReduceEmitDelegate. Defines the signature of the method that

/// is called to submit aggregate results.

/// </summary>

/// <param name="value">value</param>

public delegate void ReduceEmitDelegate(object value);

/// <summary>

/// Class Reducer. Defines the base class that user can specialize to implement

/// the reduce function. The reduce function defined by users will be invoked

/// to perform an aggregation operation on all the values associated with same

 /// intermediate key, which are generated by the map function.

/// </summary>

public abstract class Reducer<K,V> : ReducerBase

 {

 /// <summary>

 /// Defines the Reduce function.

 /// </summary>

 /// <param name="input">input value</param>

 protected abstract void Reduce(IReduceInputEnumerator<V> input);

 }

}

Listing 2 - Reduce Related Classes and Interfaces.

To define a reduce function, users have to inherit the Reducer class and then
override the abstract Reduce function. The input argument is an
IReduceInputEnumerator, which is an enumerator iterating over each element
of one group of values associated with the same key. The
IReduceInputEnumerator interface implements the IEnumerator interface. The
type of key and value are specified by generic parameters, K and V
respectively.

Within the reduce function, users extract each element of input values and
then perform an aggregation operation on all the input values. The
aggregated final result is submitted to the MapReduce.NET runtime system by
using ReduceEmitDelegate. Its input argument is an object. Therefore, it can
accept any type of data as the final result.

All the final results are partitioned into multiple segments. The partition is
achieved by performing a hash function on each key of the final result. The
space of keys is partitioned into multiple pieces according to the
specifications of users, and correspondingly values locate in the same piece
of key space consists of one partition. The final results are collected by users
after the MapReduce computation is completed successfully.

 4.2.3 MapReduceApplication API

To start executing a MapReduce application, users have to configure it by
using the MapReduceApplication class. Listing 3 shows the main methods and
properties of the MapReduceApplication class.

namespace Aneka.MapReduce

{

 /// <summary>

 /// Class MapReduceApplication. Configures a MapReduce application.

 /// </summary>

 public class MapReduceApplication<M, R> :

ApplicationBase<MapReduceManager<M, R>>

 where M : MapReduce.Internal.MapperBase

 where R : MapReduce.Internal.ReducerBase

{

 /// <summary>

 /// Gets, sets a the number of partitions of the final results.

 /// </summary>

 public int Partitions { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the application

 /// should download the final result files to the local machine or not.

 /// </summary>

 public bool FetchResults { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the application

 /// should synchronize the execution of reducer task or not.

 /// </summary>

 public bool SynchReduce { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether to combine results

 /// from the map phase in order to reduce the number of intermediate

 /// values.

 /// </summary>

 public bool UseCombiner { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the input for the

 /// map is already loaded into the storage or not.

 /// </summary>

 public bool IsInputReady { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a the number of times to re-execute a failed task.

 /// </summary>

 public int Attempts { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a the name of the log file for the application.

 /// </summary>

 public string LogFile { get { ... } set { .. } }

 /// <summary>

 /// Fires when the MapReduce application is finished.

 /// </summary>

 public event EventHandler<ApplicationEventArgs> ApplicationFinished

 // <summary>

 /// Initializes a MapReduce application.

 /// </summary>

 /// <param name="configuration">Configuration information</param>

 public MapReduceApplication(Configuration configuration) :
base("MapReduceApplication", configuration) { ... }

 // <summary>

 /// Initializes a MapReduce application.

 /// </summary>

 /// <param name="displayName">Application name</param>

 /// <param name="configuration">Configuration information</param>

 public MapReduceApplication(string displayName,

 Configuration configuration) :

 base(displayName, configuration) { ... }

 // from the ApplicatioBase class...

 /// <summary>

 /// Starts the execution of the MapReduce application.

 /// </summary>

 public override void SubmitApplication() { ... }

 /// <summary>

 /// Starts the execution of the MapReduce application.

 /// </summary>

 /// <param name="args">Application finish callback</param>

 public override void InvokeAndWait(EventHandler<ApplicationEventArgs> args)

 { ... }

 }

}

Listing 3 - MapReduceApplication class public interface.

By looking at the content of Listing 3 we can identify three different elements
that compose the interface of the MapReduceApplication. In the following we
will explain their meaning and their function in the execution of
MapReduce.NET applications.

Type Parameters

• MapperBase class: specifies the Mapper class defined by users.

• ReducerBase class: specifies the Reducer class defined by users.

Configuration Parameters

• Partitions: the intermediate results are partition into r pieces, which
correspond to r reduce tasks. ReducePartitionNumber specifies r.

• Attempts: each map or reduce task may have errors during its
execution. The errors may be caused by various types of reasons. Users
can specify a number n, by using Attempts, to force the
MapReduce.NET to re-execute its failed task n times for tolerating those
faults that are not caused by the MapReduce application itself.

• UseCombiner and SynchReduce are parameters that control the
behavior of the internal execution of MapReduce and are generally set
to true.

• LogFile (optional): it is possible to store all the log messages generated
by the application into a file for analyzing the execution of the
application off line.

ApplicationBase Methods

• SubmitApplication() is called to submit MapReduce application and
input files to the MapReduce scheduler and starts execution.

• ApplicationFinished is used to specify a function handler that is fired
after the application is completed.

• InvokeAndWait(EventHandler<ApplicationEventArgs> args) this is a
convenience method that is used to start the application and wait for its
termination.

In order to create a MapReduceApplication it is necessary to specify the
specific types of Mapper and Reduce that the application will use. This is done
by specializing the template definition of the MapReduceApplication class.
Moreovoer, in order to create an instance of this class it is necessary to pass
an instance of the Configuration class, which contains all the customization
settings for the application. Configuration is general class for all the
programming models supported by Aneka and provides some features to
support the definition of custom parameters.

namespace Aneka.Entity

{

 /// <summary>

 /// Class Configuration. Wraps the configuration parameters required

 /// to run distributed applications.

 /// </summary>

 [Serializable]

 public class Configuration

 {

 /// <summary>

 /// Gets, sets the user credentials to authenticate the client to Aneka.

 /// </summary>

 public virtual ICredential UserCredential { get { ... } set { .. } }

 /// <summary>

 /// If true, the submission of jobs to the grid is performed only once.

 /// </summary>

 public virtual bool SingleSubmission { get { ... } set { ... } }

 /// <summary>

 /// If true, uses the file transfer management system.

 /// </summary>

 public virtual bool UseFileTransfer { get { ... } set { ... } }

 /// <summary>

 /// Specifies the resubmission strategy to adopt when a task fails.

 /// </summary>

 public virtual ResubmitMode ResubmitMode { get { ... } set { ... } }

 /// <summary>

 /// Gets and sets the time polling interval used by the application to query

 /// the grid for job status.

 /// </summary>

 public virtual int PollingTime { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the Uri used to contact the Aneka scheduler service which is

 /// the gateway to Aneka grids.

 /// </summary>

 public virtual Uri SchedulerUri { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the path to the local directory that will be used

 /// to store the output files of the application.

 /// </summary>

 public virtual string Workspace { get { ... } set { ... } }

 /// <summary>

 /// If true all the output files for all the work units are stored

 /// in the same output directory instead of creating sub directory

 /// for each work unit.

 /// </summary>

 public virtual bool ShareOutputDirectory { get { ... } set { ... } }

 /// <summary>

 /// If true activates logging.

 /// </summary>

 public virtual bool LogMessages { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the Configuration class.

 /// </summary>

 public Configuration() { ... }

 /// <summary>

 /// Loads the configuration from the default config file.

 /// </summary>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration() { ... }

 /// <summary>

 /// Loads the configuration from the given config file.

 /// </summary>

 /// <param name="confPath">path to the configuration file</param>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration(string confPath) { ... }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <param name="bStrict">boolean value indicating whether to raise

 /// exceptions if the property does not exist</param>

 /// <returns>Property value</returns>

 public string this[string propertyName, bool bStrict]

 { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets the property group corresponding to the given name.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name, or

 /// null</returns>

 public PropertyGroup GetGroup(string groupName) { ... }

 /// <summary>
 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="group">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(PropertyGroup group) { ... }

 /// <summary>

 /// Removes the group of properties corresponding to the given name from the

 /// configuration if present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name if successfully

 /// removed, null otherwise</returns>

 public PropertyGroup RemoveGroup(string groupName) { ... }

 /// <summary>

 /// Checks whether the given instance is a configuration object and

 /// whether it contains the same information of the current instance.

 /// </summary>

 /// <param name="other">instance to compare with</param>

 /// <returns>true if the given instance is of type Configuration

 /// contains the same information of the current instance.</returns>

 public override bool Equals(object other) { ... }

}

}

Listing 1 - Configuration class public interface.

Listing 4 reports the public interface of the Configuration class. An instance of

the Configuration can be created programmatically or by reading the
application configuration file that comes with any .NET executable application.
In case we provide the configuration parameters through the application
configuration file it is possible to get the corresponding Configuration instance
simply by calling the static method Configuration.GetConfiguration() or by
using the overloaded version that allows us to specify the path of the
configuration file. These methods expect to find an XML file whose structure is
shown in Figure 5.

As it can be noticed the specific parameters required by the MapReduce
model are contained in a specific tag <Group name=”MapReduce”>
...</Group>. The properties contained in this tag are the same ones excosed
by the MapReduceApplication class. The user can then customize the
execution of the MapReduce model by simply editing the values of the
properties contained in this file. The runtime will automatically, read this
configuration values and link them to the properties of the
MapReduceApplication class. It is possible to omit some of the properties
contained in this tag or even omit the entire tag. In these cases the runtime
will automatically update the configuration with the missing parameters by
providing the default values.

For what concerns the MapReduce programming model the only other
parameters that are of interest in the Configuration are: SchedulerUri and the
Workspace. The first one identifies the uri of the Aneka scheduler while the
second one points to the local directory that is used to store the output files.
All the other parameters directly exposed by the Configuration class are of a
general use for the other models but are not relevant for the execution of
MapReduce.NET.

NOTE: The level of integration of MapReduce into the architecture
of Aneka is still at an early stage. For this reason, some of
the components that are implemented in the model do not
comply with the general programming and design guidelines
of the framework. For example MapReduce has a custom
and optimized storage management system, which is
separated from the storage service provided by the
framework. Another feature that differs strongly from the
other implementations is the scheduling service, which, at
the moment, cannot be configured for supporting the
persistence mode configured with the framework.

The configuration of the MapReduce.NET application is an example of the
extensibility model of the Configuration class. It is possible to inetgrate user
properties to the configuration by organizing them into groups and adding the
groups to the configuration file or the Configuration instance. Once added to
the file the runtime will automatically load them into the configuration object
and expose them in the following format: GroupName.PropertyName

By using this syntax it is possible to retrieve them by using the indexer
method exposed by the Configuration class. For example if we want to
retrieve the UseCombiner of the MapReduce group we could use the following
statements:

Configuration conf = Configuration.GetConfiguration();

string useCombinerProperty = conf["MapReduce.UseCombiner"];

This is basically what the MapReduceApplication does with some additional
casts and checks. Specific applications can create groups and store the
parameters they need into the configuration file very easily. The
Configuration class provides specific API for adding, removing, and retrieving
PropertyGroup objects. Please refer to the documentation of the API for more
details.

 4.2.4 File API

MapReduce applications work intensively with files. The infrastructure stores
and reads all the values that needs to execute Map and Reduce tasks from
files. This is done in a completely transparent manner to the developer that
does not have to care about file management. Hence, it is important to have
a brief overview of the API that the model provides for file management.

Given the specific way in which data are manipulated the model there is only
one type of file that is used by the infrastructure: sequence file. A sequence
file contains a list of key/value pairs and it is represented by the

Figure 5: MapReduce Archtecture

Aneka.MapReduce.DiskIO.SequenceFile class. If needed developers can read
and write a sequence file by using the SeqReader and the SeqWriter classes
whose public interface is listed in Listing 5.

namespace Aneka.MapReduce.DiskIO

{
/// <summary>

/// Class SeqReader. Provides an enumerator to read key/value pairs in a

/// Sequence File.

/// </summary>

public class SeqReader

{

 /// <summary>

 /// Creates a SeqReader instance for accessing the

 /// data contained in the file passed as parameter.

 /// </summary>

 /// <param name="file">path to the file to read</param>

 public SeqReader(string file) { ... }

 /// <summary>

 /// Set the type of key/value pair in the contained in the file.

 /// </summary>

 /// <param name="keyType">type of the key istances in the file</param>

 /// <param name="valueType">type of the value instances in the file</param>

 public void SetType(Type keyType, Type valueType) { ... }

 /// <summary>

 /// Closes the reader and releases the resources allocated

 /// for reading the sequence file.

 /// </summary>

 public void Close() { ... }

 /// <summary>

 /// Moves the reader to the next key/value pair.

 /// </summary>

 /// <returns>true if there are still key/value pairs, false otherwise

 /// </returns>

 public bool HaxNext() { ... }

 /// <summary>

 /// Return the current key.

 /// </summary>
 /// <returns>current value of the key.</returns>

 public Object NextKey() { ... }

 /// <summary>

 /// Return the current value.

 /// </summary>

 /// <returns>current value.</returns>

 public Object NextValue() { ... }

 }

/// <summary>

/// Class SeqWriter. Provides an interface to write key/value pairs to a

/// SequenceFile. The only way to write a SequenceFile is to add the new

/// key/value pair to the tail of the file.

/// </summary>

public class SeqWriter

{

 /// <summary>

 /// Creates an instance of SeqWriter for writing to file.

 /// </summary>

 /// <param name="file">path to the file to write</param>

 public SeqWriter(string file) { ... }

 /// <summary>

 /// Closes the SeqWriter and releases all the resources allocated for

 /// writing to the sequence file.

 /// </summary>

 public void Close() { ... }

 /// <summary>

 /// Append the key/value pair to the taile of the SequenceFile.

 /// </summary>

 /// <param name="key">key value to add to the file</param>

 /// <param name="value">value to add to the file</param>

 public void Append(Object key, Object value) { ... }

}

}

Listing 2 - SeqReader and SeqWriter public interfaces.

The SeqReader class opens a sequence file and supports an enumerator-like
method to access the key/value pairs in the file. Users can check if there is
still key/value pairs by HasNext(), and get key and value by NextKey() and
NextValue() seperately. Before reading the sequence file, users have to
specify the correct types of key/value pair by using SetType(…). Close() is
used to close the sequence file and its reader.

The SeqWriter class opens a sequence file and writes key/value pairs into the
file. The only way to write content into a sequence file is by using
Append(key, value). Each key/value pair is appended to the tail of the
sequence file. Close() is used to close the sequence file and its writer.

5. MapReduce Application Deployment

5.1 Overview

The deployment of MapReduce application is simplified by Aneka. In order to
execute a MapReduce.NET application it is sufficient to create a
MapReduceApplication class and specialize the template with the desired
Mapper and Reducer that characterize the application. The specific behavior
of the is then controlled by the Configuration object that can be loaded from a
file (see section 4.2.3 for details).

Once the MapReduceApplication has ben set up it is possible to execute the
application by invoking the MapReduceApplication.SubmitApplication()
method. This method submits all input files that the application requires to be
execute and then starts the execution of the application.

During execution, the status of the application is constantly monitored until it
completes successfully or fails. If the application completes successfully,
MapReduceApplication collects back the result files and put them into a local
directory if the FetchResults property is set to true. The location into which
the files are placed is defined by the Workspace property of the configuration.
In case that the application cannot complete due to any failures, the reason of
failure is sent back to users. The result of execution is implemented by the
ApplicationEventArgs class, which contains the name list of result files.

5.2 Configuring the MapReduce.NET Infrastructure

The MapReduce.NET inrastructure is composed – as any other programming
model supported by Aneka – of a scheduler service and an executor service.
The only difference is the use of the storage. MapReduce.NET as a specific
and optimized storage that is only used to store the files required by
MapReduce applications.

In order to configure the components of the model it is possible to use the
configuration wizard integrated into the Manager Console or the Aneka MSI
installer (please see the Aneka Installation Guide for more details). We will
briefly review the configuration settings for these components:

MapReduceScheduler

• Username: user name of the account who has the rights to execute
MapReduce service.

• Password: password for the account who has the rights to execute
MapReduce service.

MapReduceExecutor

• Username: user name of the account who has the rights to execute
MapReduce service.

• Password: password for the account who has the rights to execute
MapReduce service.

• StorageDirectory: local directory that is used to stage files by the
MapReduceExecutor.

For what concerns the storage component there is no need of any specific
configuration.

It is now possible to execute MapReduce application on Aneka and try the
examples introduced in the next section.

6. Examples
In order to get the feeling of how to program MapReduce.NET applications two
examples are presented: WordCounter and PiEstimator.

6.1 WordCounter

WordCounter is a benchmark example for the MapReduce programming
model. It counts the number of each word which appears in a large number of
documents. Normally, the disk space required to store all the documents
cannot be reached by one machine. Therefore, these documents distribute
over a collection of machines.

The WordCounter application uses the Map and Reduce operations in order to
respectively count the occurrences of one word into a document and to sum
all the occurrences of the same words computed from different files. In order
to implement the application two C# projects have been developed:

• WordCounter.Library: is a class library containing the definition of the
mapper and the reducer classes required by the WordCounter
application. The definition of these classes is contained in the
WordCounter.cs file and displayed in Listing 6.

• WordCounter: this is a simple console program that contains the code
required to initialize the MapReduceApplication with the previously
defined mapper and reducer classes, load the configuration of the
application, and execute it on Aneka. The listing of the driver program is
displayed in Listing 7.

using System;

using Aneka.MapReduce;

namespace Aneka.Examples.MapReduce.WordCounter

{

/// <summary>

/// Class WordCounterMapper. Mapper implementation for the WordCounter

/// application. The Map method reads the input and splits it into

/// words. For each of the words found the word is emitted to the

 /// output file with a value of 1.

/// </summary>

public class WordCounterMapper : Mapper<string, string>

{

 /// <summary>

 /// Checks whether the given character is a space or not.

 /// </summary>

 /// <param name="letter">test character</param>

 /// <returns>true if the character is a spece, false otherwise</returns>

 static bool IsSpace(char letter)

 {

 return !char.IsLetter(letter);

 }

 /// <summary>

 /// Reads the input and splits into words. For each of the words found

 /// emits the word as a key with a vaue of 1.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Map(MapInput<string, string> input)

 {

string value = input.Value;

 string[] words = value.Split(

" \t\n\r\f\"\'|!-=()[]<>:{}.#".ToCharArray(),
StringSplitOptions.RemoveEmptyEntries);

 foreach(string word in words)

 {

 this.Emit(word, 1);

 }

 }

 }

/// <summary>

/// Class WordCounterReducer. Reducer implementation for the WordCounter

/// application. The Reduce method iterates all over values of the enumerator

/// and sums the values before emitting the sum to the output file.

/// </summary>

public class WordCounterMapper : Reducer<string, int>

{

 /// <summary>

 /// Iterates all over the values of the enumerator and sums up

 /// all the values before emitting the sum to the output file.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Reduce(IReduceInputEnumerator<int> input)

 {

int account = 0;

 while(reduceInput.MoveNext())

 {

 int value = reduceInput.Current;

 account += value;

 }

 this.Emit(account);

 }

 }

}

Listing 3 - WordCounterMapper and WordCounterReducer implementation.

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using Aneka.MapReduce;

using Aneka.Entity;

using Aneka.MapReduce.DiskIO;

using System.Diagnostics;

namespace Aneka.Examples.MapReduce.WordCounter

{

/// <summary>

/// Class Program. Main application driver of the WordCounter application.

/// </summary>

 class Program

 {

 /// <summary>

 /// Reference to the configuration object.

 /// </summary>

 static Configuration configuration = null;

 /// <summary>

 /// Location of the configuration file.

 /// </summary>

 static string configurationFileLocation = "conf.xml";

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void Main(string[] args)

 {

 try

 {

 // process the arguments

 ProcessArgs(args);

 Console.WriteLine("Use " + configurationFileLocation + ", to " +

 "specify different configuration file, please " +

 "use -c [config-file] option!");

 // get the configuration

 configuration =

Configuration.GetConfiguration(configurationFileLocation);

 // configure MapReduceApplication

 MapReduceApplication<WordCountMapper,

 WordCountReducer> application =

 new MapReduceApplication<WordCountMapper,

 WordCountReducer>("WordCounter",

 configuration);

 // invoke and wait for result

 application.InvokeAndWait(

 new EventHandler<ApplicationEventArgs>(OnApplicationFinished));

 }

catch(Exception ex)

{

 Usage();

 }

 }

 /// <summary>

 /// Hooks the ApplicationFinished events and process the results

 /// if the application has been successful.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="e">event information</param>

 static void OnApplicationFinished(object sender, ApplicationEventArgs e)

 {

 if (e.Exception != null)

 {

 Console.WriteLine(e.Exception.Message);

 }

 else

 {

 ParseResult();

 }

 Console.WriteLine("Press enter to finish!");

 Console.ReadLine();

 }

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void ProcessArgs(string[] args)

 {

 for(int i = 0; i < args.Length; i++)

 {

 switch(args[i])

 {

 case "-c":

 i++;

 configurationFileLocation = args[i];

 break;

 default:

 break;

 }

 }

 }

 /// <summary>

 /// Displays a simple informative message explaining the usage of the

 /// application.

 /// </summary>

 static void Usage()

 {

 Console.WriteLine("WordCounter.exe -c configuration_file");

 }

 /// <summary>

 /// Parses the results obtained from the MapReduceApplication

 /// and dumps the them into a single file where for each key

 /// is put along with a value. Then starts the Notepad application

 /// to show the content of this file.

 /// </summary>

 static void ParseResult()

 {

 DirectoryInfo sources = null;

 try

 {

 sources = new DirectoryInfo(configuration.Workspace);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Reason {0}", ex.ToString());

 return;

 }

 FileStream resultFile = new FileStream("WordResult.txt",

FileMode.Create,

FileAccess.Write);

 StreamWriter resultWriter = new StreamWriter(resultFile);

 FileInfo[] resultList = sources.GetFiles();

 foreach(FileInfo result in resultList)

 {

 SeqReader seqReader = null;

 try

 {

 seqReader = new SeqReader(result.FullName);

 }

 catch(SequenceFileException ex)

 {

 Console.WriteLine(ex.ToString());

 return;

 }

 seqReader.SetType(typeof(string), typeof(int));

 while(seqReader.HaxNext())

 {

 Object key = seqReader.NextKey();

 Object value = seqReader.NextValue();

 resultWriter.WriteLine("{0}\t{1}", key, value);

 }

 seqReader.Close();

 }

 resultWriter.Close();

 resultFile.Close();

 Console.WriteLine("Please open WordResult.txt to see the result!");

 StartNotePad("WordCounter.txt");

 }

 /// <summary>

 /// Starts the Notepad application and instructs it to open the

 /// the file pointed by the parameter name.

 /// </summary>

 /// <param name="name">file name to open</param>

 public static void StartNotePad(string name)

 {

 Process notepad = Process.Start("notepad", name);

 }

 }

}

Listing 4 - WordCounter driver application.

The WordCounter application is configured with the file conf.xml that can be
found its directory. Except for the general parameters of the Configuration
class and the properties set for the MapReduce runtime there are no other
parameters requested.

6.2 PiCalculator

PiCalculator is an application that uses the montecarlo simulation to estimate
the value of π. The estimation of π can be structured as a MapReduce
application by adopting the following strategy: the Map operation selects a
collection of random values (between 0 and 1) and checks whether the value
locates inside the circle of radius equal to 1 if this happens it collects the
value; the Reduce operation all the values that are accessed via the input are
summed together. Once the distributed execution the client component of the
application estimates the value of π.

In order to implement the application two C# projects have been developed:

• PiCalculator.Library: is a class library containing the definition of the
mapper and the reducer classes required by the PiCalculator
application. The definition of these classes is contained in the
PiCalculator.cs file and displayed in Listing 8.

• PiCalculator: this is a simple console program that contains the code
required to initialize the MapReduceApplication with the previously
defined mapper and reducer classes, load the configuration of the
application, and execute it on Aneka. The listing of the driver program is
displayed in Listing 9.

using System;

using Aneka.MapReduce;

namespace Aneka.Examples.MapReduce.PiCalculator

{

/// <summary>

/// Class PiMapper. Mapper implementation for the PiCalculator

/// application. The Map method generates the random number between

/// 0.0 and 1.0. If the generated values locates inside the circle they

 /// are emitted to the output file.

/// </summary>

public class PiMapper : Mapper<long, long>

{

 /// <summary>

 /// Random number generator.

 /// </summary>

 Random random = new Random();

 /// <summary>

 /// Number of elements inside the circle.

 /// </summary>

 long numInside = 0;

 /// <summary>

 /// Number of elements outside the circle.

 /// </summary>

 long numOutside = 0;

 /// <summary>

 /// Reads the input and splits into words. For each of the words found

 /// emits the word as a key with a vaue of 1.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Map(MapInput<string, string> input)

 {

 long nSample = input.Key;

 for(long idx = 0; idx < nSample; idx++)

 {

 double x = random.NextDouble();

 double y = random.NextDouble();

 double d = (x - 0.5) * (x - 0.5) + (y - 0.5) * (y - 0.5);

 if (d > 0.25)

 {

 numOutside++;

 }

 else

 {

 numInside++;

 }

 }

 this.Emit((long)0, numInside);

 }

 }

/// <summary>

/// Class PiReducer. Reducer implementation for the WordCounter

/// application. The Reduce method iterates all over values of the enumerator

/// and sums the values before emitting the sum to the output file.

/// </summary>

public class PiReducer : Reducer<string, int>

{

 /// <summary>

 /// Iterates all over the values of the enumerator and sums up

 /// all the values before emitting the sum to the output file.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Reduce(IReduceInputEnumerator<long> input)

 {

long numInside = 0;

 while(reduceInput.MoveNext())

 {

 numInside += reduceInput.Current;

}

 this.Emit(numInside);

 }

 }

}

Listing 5 - PiMapper and PiReducer public interfaces.

using System;

using System.Collections.Generic;

using System.Trheading;

using System.IO;

using Aneka.MapReduce;

using Aneka.Entity;

using Aneka.MapReduce.DiskIO;

namespace Aneka.Examples.MapReduce.PiCalculator

{

/// <summary>

/// Class Program. Main application driver of the PiCalculator application.

/// </summary>

 class Program

 {

 /// <summary>

 /// Reference to the configuration object.

 /// </summary>

 static Configuration configuration = null;

 /// <summary>

 /// Location of the configuration file.

 /// </summary>

 static string configurationFileLocation = "conf.xml";

 /// <summary>

 /// Number of mapper to use.

 /// </summary>

 static long numberOfMaps = 1;

 /// <summary>

 /// Number of samples to take.

 /// </summary>

 static long numberOfSamples = 1;

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void Main(string[] args)

 {

 if (args.Length != 6)

 {

 Usage();

 }

 else

 {

 try

 {

 ProcessArgs(args);

 if (numberOfSamples <= 0)

 {

 Console.WriteLine("Please specify Map task number!");

 Usage();

 }

 else if (numberOfMaps <= 0)

 {

 Console.WriteLine("Please specify sample number!");

 Usage();

 }

 else

 {

 // create an aneka configuration

 Configuration configuration =

Configuration.GetConfiguration(args[1]);

 string rootedPath =

 Path.IsPathRooted(configuration.Workspace) ?

 configuration.Workspace :

 Path.GetFullPath(configuration.Workspace);

 for(int idx = 0; idx < numberOfMaps; idx++)

 {

 string input = Path.Combine(rootedPath, "input-" + idx);

 SeqWriter writer = new SeqWriter(input);

 writer.Append(numberOfSamples, (long)0);

 writer.Close();

 }

 // start PiCalculator MapReduce

 MapReduceApplication<PiMapper, PiReducer> application =

 new MapReduceApplication<PiMapper,

 PiReducer>(configuration);

 Console.WriteLine("Application is running");

 application.InvokeAndWait(

 new EventHandler<ApplicationEventArgs>

(OnApplicationFinished));

 }

 }

 catch(Exception ex)

 {

 Usage();

 }

 }

 }

 /// <summary>

 /// Hooks the ApplicationFinished events and process the results

 /// if the application has been successful.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="e">event information</param>

 static void OnApplicationFinished(object sender, ApplicationEventArgs e)

 {

 if (e.Exception != null)

 {

 Console.WriteLine(e.Exception.Message);

 }

 else

 {

 IList<string> results = (IList<string>)e.Data;

 foreach(string result in results)

 {

 SeqReader reader = new SeqReader(result);

 reader.SetType(typeof(long), typeof(long));

 long numInside = -1;

 if (reader.HaxNext())

 {

 numInside = (long) reader.NextValue();

 }

 reader.Close();

 if (numInside > 0)

 {

 double estimate = (double)(numInside * 4.0) /

 (numberOfMaps * numberOfSamples);

 Console.WriteLine("Pi: {0}", estimate);

 }

 }

 }

 Console.WriteLine("Press enter to finish!");

 Console.ReadLine();

 }

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void ProcessArgs(string[] args)

 {

 for(int i = 0; i < args.Length; i++)

 {

 switch(args[i])

 {

 case "-c":

 i++;

 configurationFileLocation = args[i];

 break;

 case "-n":

 i++;

 numberOfMaps = int.Parse(args[i]);

 break;

 case "-s":
 i++;

 numberOfSamples = long.Parse(args[i]);

 break;

 default:

 break;

 }

 }

 }

 /// <summary>

 /// Displays a simple informative message explaining the usage of the

 /// application.

 /// </summary>

 static void Usage()

 {

 Console.WriteLine("PiEstimator.exe -c configuration_file " +

 "-n map# -s sample#");

 }

}

}

Listing 6 - PiCalculator driver application.

The PiCalculator application is configured with the file conf.xml that can be
found in the directory application. The PiCalculator requires two more
parameters that are passed via the command line. A possible improvement of
the application is moving these two parameters in a PropertyGroup named
PiCalculator inside the configuration file and changing the code of the Main
method in order to read the values from the configuration. This task is left to
the reader.

7. Conclusions
In this tutorial we have introduced the MapReduce Model implemented in
Aneka for running a set of MapReduce applications. Within the MapReduce
Model a distributed application is expressed in terms of a two operations: Map
and Reduce. The first operation transform a list of key/value pairs into another
list of key/value pairs; the second operation reduces a pair composed by a
key and a list of values into another lsit of values. The combination of Map
and Reduce operations allows to process and elaborate large amount of data
with a very strightforward approach. The MapReduce.NET is an
implementaion of MapReduce for Aneka and the .NET framework and mades
this abstraction available as a programming model for Aneka.

In order to create a MapReduce application it is necessary to create an
instance of the MapReduceApplication properly configured with the mapper
and reducer classes that define the operation of the application. This class
constitute the client view of the MapReduce application and interacts with
Aneka for executing the sequence of map and reduce operations by handling
automatically scalability and fault tolerance.

This tutorial has covered the following arguments:

• General notions about the MapReduce Model.

• How to define a class that specialize the Mapper<K,V> class for
defining the Map operation.

• How to define a class that specialize the Reducer<K,V> class for
defining the Map operation.

• How to create a MapReduceApplication instance and configure it with
the specific implementation of MapperBase and ReducerBase.

• How to tune the execution of MapReduce applications and starts their
execution.

• How to customize the Configuration class with the custom values and
how to manage the group of custom properties.

• How to collect the results from a MapReduce application.

• How to design and implement simple application such as WordCounter
and PiCalculator by following the MapReduce model.

This tutorial does not fully cover what can be done with the MapReduce
Model. For a more detailed information about this and other aspects the user
can have a look at the APIs documentation.

	1. Prerequisites
	2. Introduction
	3. MapReduce Model
	3.1 MapReduce Overview
	3.2 Map and Reduce
	3.3 MapReduce Execution

	4. MapReduce.NET
	4.1 Architecture
	4.2 MapReduce.NET API
	 4.2.1 Map API
	 4.2.2 Reduce API
	 4.2.3 MapReduceApplication API
	 4.2.4 File API

	5. MapReduce Application Deployment
	5.1 Overview
	5.2 Configuring the MapReduce.NET Infrastructure

	6. Examples
	6.1 WordCounter
	6.2 PiCalculator

	7. Conclusions

