
Introduction to AUTOSAR

Massimo Violante
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

2

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

3

What is AUTOSAR?
n ww.autosar.org:

n “AUTOSAR (AUTomotive Open System ARchitecture) is
an open and standardized automotive software
architecture, jointly developed by automobile
manufacturers, suppliers and tool developers.“

n Consortium founded in 2003:
n BMW, DaimlerChrysler, Bosch, Continental, Volkswagen

and Siemens VDO
n Later Ford, General Motors, Toyota and PSA (Peugeot

Citroen) joined the consortium as core members
n The AUTOSAR standard will serve as a platform for

future vehicle applications
4

What is AUTOSAR?

5

Introduction to AUTOSAR 5

!"# $% &'()*&+,

Why do we need AUTOSAR?
n Increasing complexity of software in automotive

systems
n There is no standardized software architecture

6

Introduction to AUTOSAR 6

!"# $%&'()(($ *+,-.*/0

 Increasing complexity of software in automotive
systems

 There is no standardized software architecture

(* without Infotainment)
Source: ElektronikNet.de http://www.elektroniknet.de/home/automotive/autosar/multiple-applikationen-in-steuergeraeten/

340 m.21 m.Transistors

19 MB+1,25 MB1,1 MB+160 kBMCU-Storage (Program + Data)

200085MHz

115045MIPS

6040Control Units

20081994In a single car*

Main drivers for AUTOSAR
n Management of E/E complexity associated with

growth in functional scope
n Flexibility for product modification, upgrade and

update
n Scalability of solutions within and across product

lines
n Improved quality and reliability of E/E systems

7

Main goals of AUTOSAR
n Fulfillment of future vehicle requirements:

n Availability and safety, SW upgrades/updates and
maintainability

n Increased scalability and flexibility to integrate and
transfer functions

n Higher penetration of "Commercial off the Shelf"
SW and HW components across product lines

n Improved containment of product and process
complexity and risk

n Cost optimization of scalable systems

8

AUTOSAR Software Components
n AUTOSAR is based on the concept of separation

between infrastructure and application
n Infrastructure: services providing an execution

environment to abstract hw details
n Application: vehicle functions of interest

n Application consists of interconnected software
components

n Atomic software component: a software component
can not be distributed over several ECUs

n AUTOSAR software component implementation is
independent from the infrastructure

9

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

10

Layered Software Architecture

11

AUTOSAR Software Architecture 14

!"#$%$&'()*+,"%$'-%./0+$.+1%$

Layered Software Architecture

n Microcontroller Abstraction Layer:
n Lowest software layer of the Basic Software
n Makes higher software independent of Microcontroller

12

AUTOSAR Software Architecture 15

!"#$%$&'()*+,"%$'-%./0+$.+1%$

 Microcontroller Abstraction Layer:
 lowest software layer of the Basic Software
 Makes higher software independent of Microcontroller

Layered Software Architecture

n ECU Abstraction Layer:
n Interfaces the drivers of Microcontroller Abstraction Layer
n Makes higher software layers independent of ECU

hardware layout
n Offers access to I/O Signals

13

AUTOSAR Software Architecture 16

!"#$%$&'()*+,"%$'-%./0+$.+1%$

 ECU Abstraction Layer:
 Interfaces the drivers of Microcontroller Abstraction

Layer
 Makes higher software layers independent of ECU

hardware layout
 Offers access to I/O Signals

Layered Software Architecture

n Service Layer:
n Highest layer of the Basic Software
n Offers Memory Services, Diagnostic Services, ECU state

management
n Provides basic services for application and basic software

modules

14

AUTOSAR Software Architecture 17

!"#$%$&'()*+,"%$'-%./0+$.+1%$

 Service Layer:
 Highest layer of the Basic Software
 Offers Memory Services, Diagnostic Services, ECU state

management
 Provides basic services for application and basic

software modules

Layered Software Architecture

n Runtime Environment:
n Middleware Layer
n Provides communication services for the application

software
n Makes AUTOSAR Software Components independent from

the mapping to a specific ECU

15

AUTOSAR Software Architecture 18

!"#$%$&'()*+,"%$'-%./0+$.+1%$

 Runtime Environment:
 Middleware Layer
 Provides communication services for the application

software
 Makes AUTOSAR Software Components independent

from the mapping to a specific ECU

Layered Software Architecture

n Application Layer:
n “component style”
n Software components communicate with other

components and/or services via the RTE

16

AUTOSAR Software Architecture 19

!"#$%$&'()*+,"%$'-%./0+$.+1%$

 Application Layer:
 “component style”
 Software components communicate with other

components and/or services via the RTE

Detailed view

17

Page 14 - AUTOSAR Confidential -

Layered Software Architecture
V2.2.1

R3.0 Rev 0001

Document ID 053

Part 2 – Overview of Software Layers
ID: 02-03 Layered View: Detailed

Complex
Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware
Abstraction

Memory ServicesSystem Services

Onboard Device
Abstraction

Communication Drivers

Communication
Hardware Abstraction

Communication Services

Application Layer

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

18

Standardization
n The software implementing the automotive

functionality is encapsulated in software
components

n Standardization of the interfaces is central to
support scalability and transferability of functions

n Any standard-conformant implementation of a
software component can be integrated with
substantially reduced effort in a system

19

AUTOSAR architecture

20

AUTOSAR Architecture

A
U

T
O

S
A

R

S
W

-C
 1

SW-C
Description

Virtual Functional Bus

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 1

ECU1

A
U

T
O

S
A

R

S
W

-C
 2

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 3

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 n

SW-C
Description

ECU
Descriptions

System
Constraint
Description

Deployment tools

Gateway

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 2

ECU1

A
U

T
O

S
A

R

S
W

-C
 3

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 n

ECU1

AUTOSAR architecture
n Software component (SW-C)

n Encapsulate an application that runs in the AUTOSAR
infrastructure

n It has well-defined standard interfaces
n Interfaces and other aspects needed for integration of

SW-C a standard description format is provided (SW-C
description)

21

AUTOSAR Architecture

! !"#$%!&'%(!"#$%!&'%(!"#$%!&'%(!"#$%!&'%())))****

"#$% &'"()&*%)+,-./0$% 1+23+4$4-5 $46/3578/-$ /4
/33896/-9+4 .#96# 0745 +4% -#$% &'"()&*% 94,0/5-076-70$:% "#$%
&'"()&*%);<1% #/=$.$88<>$,94$> 94-$0,/6$5?% .#96# /0$%
>$5609@$> /4>%5-/4>/0>9A$>:%
! !"!"!"!"####$%$%$%$%&'()*+,-+./&'()*+,-+./&'()*+,-+./&'()*+,-+./

"#$ %&'()*%'$+,-'. ,. /'00 ,. #%&'$,.1'-%. *''2'2 +#$ %&'()*%'3$,%)#* #+
%&'(4567849(8#+%/,$'(:#;1#*'*%.<(4567849(1$#=)2'. ,(.%,*2,$2(
2'.-$)1%)#* +#$;,%(>8?@:(A'.-$)1%)#*BC

A
U

T
O

S
A

R

S
W

-C
 1

SW-C Description

AUTOSAR architecture
n Virtual Function Bus (VFB)

n Sum of all communication mechanisms and interfaces to
the basic software provided by AUTOSAR on a technology
independent level

22

AUTOSAR Architecture

! !"#$%&'!"#$%&'!"#$%&'!"#$%&' (%)*$"+)&'(%)*$"+)&'(%)*$"+)&'(%)*$"+)&' ,%-./!(,0,%-./!(,0,%-./!(,0,%-./!(,0

"#$% &'(%)* +#$% *,-% ./ 011 2.--,3)20+).3 -$2#03)*-* 4035%
)3+$6/02$* +. +#$%70*)2 *./+806$9%:6.;)5$5 7< =>"?@=A%.3%03
07*+602+ 4+$2#3.1.B<)35$:$35$3+9%1$;$1C%D#$3 +#$%2.33$2+).3*
/.6 0% 2.326$+$% *<*+$-% 06$% 5$/)3$5E% +#$% &'(% 011.8* 0% ;)6+,01
)3+$B60+).3)3%03 $061< 5$;$1.:-$3+ :#0*$C

A
U

T
O

S
A

R

S
W

-C
 1

SW-C
Description

Virtual Functional Bus

A
U

T
O

S
A

R

S
W

-C
 2

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 3

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 n

SW-C
Description

AUTOSAR architecture
n System constraints and ECU description

n Description format for: system, ECU resources and
configuration

n Needed for deploying SW-C on a network of ECUs

23

AUTOSAR Architecture

! !"#$%&'!"#$%&'!"#$%&'!"#$%&'()*#$+,-*$()*#$+,-*$()*#$+,-*$()*#$+,-*$,*.'/(0',*.'/(0',*.'/(0',*.'/(0'1%#2+-3$-)*#1%#2+-3$-)*#1%#2+-3$-)*#1%#2+-3$-)*#

"#$ %&'(&)% *#)(+&,)($ -./01-2$ 1345%67%#(#)8 *#)% ,$
#()9%&:$%; <5.8=$-./01-2$7&%>*'(8 '(8?&*7)*%# ;%&6,)8 ;%&
)@($8A8)(6$,8 9(BB ,8 ;%&)@($&(8%C&?(8 ,#'$)@($?%#;*+C&,)*%# %;
)@($<5.8D$

ECU
Descriptions

System
Constraint
Description

Deployment tools

AUTOSAR architecture
n Mapping on ECU

n Methodology and tool support for implementing SW-Cs
on ECUs, performing for each ECU configuration and
generation of:

n Runtime Environment (RTE) à it implements the VFB on each
ECU

n Basic Software (RTOS services)

24

AUTOSAR Architecture: Mapping on ECUs

!"#$%!&'()*+,)- ./)'0)./1(12134 5,('.112 -67718. .1 96+2(5'
:1,:8).)' -4-.)0'1* ;<"-=' #/+- +,:26()- ./)' :1,*+3685.+1, 5,('
3),)85.+1,' 1* ./)' &6,.+0) ;,>+81,0),. ?&#;@' ' 5,(' ./)' A5-+:
%1*.B58)'?&#$%@'1,')5:/ ;<"=

C !"#$%&'!"#$%&'!"#$%&'!"#$%&' (#)%*+#&'#$(#)%*+#&'#$(#)%*+#&'#$(#)%*+#&'#$,!-(.,!-(.,!-(.,!-(.

D810 ./)'>+)B71+,. 1* ./)'!"#$%!&'%1*.B58)'<1071,),.E'./)'
&#;'+072)0),.- ./)'FDA'*6,:.+1,52+.4 1,'5'-7):+*+: ;<"=

Deployment tools

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 2

ECU1

A
U

T
O

S
A

R

S
W

-C
 3

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

25

Software component
n It encapsulate part of the functionality of the

application
n AUTOSAR does not specify the granularity of SW-C

n It is an atomic software component à it is statically
assigned to one ECU

n AUTOSAR does not specify how the SW-C should be
implemented
n Handwritten/automatically generated from a model

26

SW-C description
n It contains:

n The operations and data elements that the software
component provides and requires à PortInterface
concept

n The resources needed by the software component
(memory, CPU-time, etc.),

n Information regarding the specific implementation of the
software component

27

SW-C implementation
n It is independent from:

n The type of microcontroller of the ECU and the type of
ECU on which the component is mapped

n The AUTOSAR infrastructure takes care of providing the software
component with a standardized view on the ECU hardware

n The location of the other components with which it
interacts. The component description defines the data or
services that it provides or requires. The component
doesn’t know if they are provided from components on
the same ECU or from components on a different ECU

n The number of times a software component is
instantiated in a system or within one ECU

28

SW-C description levels
n Virtual functional bus level
n RTE level
n Implementation level

29

SW-C description levels
n Virtual functional bus level

n Components are described with the means of
n Datatypes and interfaces
n Ports and connections between them
n Hierarchical components

n At this level, the fundamental communication properties
of components and their communication relationships
among each other are expressed

n AUTOSAR terms
n Port Interfaces and Ports
n Compositions

30

Example
n SeatHeatingControl
n Input:

n Passenger is sitting
n Setting of the seat temperature
n Information from a central power management system

n Output:
n DialLED associated to the seat temperature dial
n Heating element
n It can be calibrated, needs the status of the ECU on

which the component runs and requires access to local
non-volatile memory

31

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
“component”. A component has well-defined “ports”, through which the component
can interact with other components. A port always belongs to exactly one component
and represents a point of interaction between a component and other components.

Figure 3.1 shows an example of the definition of a component-type called
“SeatHeatingControl”, which controls the heating element in a seat based on several
information sources.
In this example, the component-type requires the following information as input:

x whether a passenger is sitting on the seat (through the port “SeatSwitch”)
x the setting of the seat temperature dial (through the port “Setting”)
x and some information from a central power management system (through the

port “PowerManagement”), which could decide to disable seat heating in
certain conditions.

It controls
x the DialLED that is associated with the seat temperature dial (port “DialLED”)
x and the heating element (through the port “HeatingElement”).

Finally, the component can be calibrated (port “Calibration”), needs the status of the
ECU on which the component runs (port “ecuMode”) and requires access to local
non-volatile memory (port “nv”).

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

Figure 3.1: Example of the definition of the component-type
“SeatHeatingControl” with eight ports

11 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port Interface
n It defines the contract that must be fulfilled by the

port providing or requiring that interface
n Client-server: the server is provider of operations and

several clients can invoke those operations
n Sender-receiver: a sender distributes information to one

or several receivers, or one receiver gets information
(events) from several senders. A mode manager can
notify mode switches to one or several receivers

n Parameter Interface: it allows SW-C access to either
constant data, fixed data or calibration data

32

Port Interface
n Non volatile Data Interface: provide element level access

(read only or read/write) to non volatile data
n Trigger Interface: it allows software components to

trigger the execution of other software components
n Mode Switch Interface: the mode switch interface is used

to notify a software component of a mode. The mode
manager provides modes that can be used by mode
users to adjust the behavior according to modes or
synchronize activities to mode switches.

33

Client-server
n A client-server interface defines a set of operations

that can be invoked by a client and implemented by
a server

n Example
n The interface “HeatingElementControl” defines a single

operation called “SetPower” with a single ingoing
argument called “Power”. The operation can return an
application error called “HardwareProblem”

34

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

Mode Switch

Interface

The mode switch interface is used to

notify a software component of a mode.

The mode manager provides modes that

can be used by mode users to adjust the

behavior according to modes or

synchronize activities to mode switches.

Section 8

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client

and implemented by a server. Figure 3.4 shows an example of the definition of a

simple client-server interface. The interface “HeatingElementControl” defines a

single operation called “SetPower” with a single ingoing argument called “Power”.

The operation can return an application error called “HardwareProblem”.

<<ClientServerInterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(

IN ARGUMENTint32 Power,

POSSIBLEERROR=HardwareProblem)

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

A sender-receiver interface defines a set of data-elements that are sent and received

over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface

called “SeatSwitch” containing a single data-element called “PassengerDetected”.

<<SenderReceiverInterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

VFB004: At configuration time it is known whether the port-interface is a client-server

interface or a sender-receiver interface

VFB005: At configuration time, it is known which operations a client-server interface

contains

VFB006: At configuration time, it is known which data-elements a sender-receiver

interface contains

15 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Sender-receiver
n A sender-receiver interface defines a set of data-

elements that are sent and received over the VFB
n Example

n Simple sender-receiver interface called “SeatSwitch”
containing a single data-element called
“PassengerDetected”

35

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

Mode Switch

Interface

The mode switch interface is used to

notify a software component of a mode.

The mode manager provides modes that

can be used by mode users to adjust the

behavior according to modes or

synchronize activities to mode switches.

Section 8

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client

and implemented by a server. Figure 3.4 shows an example of the definition of a

simple client-server interface. The interface “HeatingElementControl” defines a

single operation called “SetPower” with a single ingoing argument called “Power”.

The operation can return an application error called “HardwareProblem”.

<<ClientServerInterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(

IN ARGUMENTint32 Power,

POSSIBLEERROR=HardwareProblem)

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

A sender-receiver interface defines a set of data-elements that are sent and received

over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface

called “SeatSwitch” containing a single data-element called “PassengerDetected”.

<<SenderReceiverInterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

VFB004: At configuration time it is known whether the port-interface is a client-server

interface or a sender-receiver interface

VFB005: At configuration time, it is known which operations a client-server interface

contains

VFB006: At configuration time, it is known which data-elements a sender-receiver

interface contains

15 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Ports
n The ports of a component are the interaction points

between components
n A port of a component is either a PPort or an Rport

n PPort provides the elements defined in a port-interface
n RPort requires the elements defined in a port-interface

n A port is thus typed by exactly one port-interface

36

Port types

37

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

3.3 Ports

As defined before, the ports of a component are the interaction points between
components.
A port of a component is either a “PPort” or an “RPort”. A “PPort” provides the
elements defined in a port-interface. An “RPort” requires the elements defined in a
port-interface. A port is thus typed by exactly one port-interface5.

3.3.1 Port Types

A single port-interface can type several different ports.

VFB007: At configuration time, it is known whether a component’s port is a PPort or
an RPort

Table 3.2 shows the port-icons for the various combinations and summarizes the
semantics of those ports.

Kind of Port Kind of Interface Service

Port
Port-Icon and description

PPort sender-receiver No

The component provides values for
the data-elements

RPort sender-receiver No

The component reads or consumes
values for the data-elements

PPort client-server No

The component provides
(=implements) the operations

defined in the interface
RPort client-server No

The component requires (=uses or

16 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

5 This implies that a port only provides one elementary communication pattern (either sender-receiver
or client-server). This is necessary because otherwise a reasonable connection of ports is not
possible. Additionally only in this way a reasonable modeling e.g. of data flow is possible.

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

invokes) the operations defined in
the interfaces

PPort parameter (this
includes
providing
calibration data)

No

The component provides parameter
data (either fixed, const or variable)

RPort parameter (this
includes requiring
calibration data)

No

The component requires parameter
data (either fixed, const or variable)

PPort sender-receiver Yes

The component provides data-
elements and mode-groups to an

AUTOSAR Service
RPort sender-receiver Yes

The component reads/consumes
data-elements and mode-groups

from an AUTOSAR Service
PPort client-server Yes

The component provides
(=implements) operations for an

AUTOSAR Service
RPort client-server Yes

The component invokes operations
from an AUTOSAR Service

RPort sender-receiver Yes

A component requires access to non
volatile data provided by an NV

17 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port types

38

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

invokes) the operations defined in
the interfaces

PPort parameter (this
includes
providing
calibration data)

No

The component provides parameter
data (either fixed, const or variable)

RPort parameter (this
includes requiring
calibration data)

No

The component requires parameter
data (either fixed, const or variable)

PPort sender-receiver Yes

The component provides data-
elements and mode-groups to an

AUTOSAR Service
RPort sender-receiver Yes

The component reads/consumes
data-elements and mode-groups

from an AUTOSAR Service
PPort client-server Yes

The component provides
(=implements) operations for an

AUTOSAR Service
RPort client-server Yes

The component invokes operations
from an AUTOSAR Service

RPort sender-receiver Yes

A component requires access to non
volatile data provided by an NV

17 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port types

39

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

invokes) the operations defined in
the interfaces

PPort parameter (this
includes
providing
calibration data)

No

The component provides parameter
data (either fixed, const or variable)

RPort parameter (this
includes requiring
calibration data)

No

The component requires parameter
data (either fixed, const or variable)

PPort sender-receiver Yes

The component provides data-
elements and mode-groups to an

AUTOSAR Service
RPort sender-receiver Yes

The component reads/consumes
data-elements and mode-groups

from an AUTOSAR Service
PPort client-server Yes

The component provides
(=implements) operations for an

AUTOSAR Service
RPort client-server Yes

The component invokes operations
from an AUTOSAR Service

RPort sender-receiver Yes

A component requires access to non
volatile data provided by an NV

17 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port types

40

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

Block Component
PPort Sender-receiver Yes

The NV Block Component provides
access to non volatile data

PPort Trigger No

Application component with trigger
source

RPort Trigger No

Application component with trigger
sink

RPort Trigger Yes

Service with trigger sink
PPort Trigger Yes

Service with trigger source
RPort mode switch No

Mode Switch user
PPort mode switch No

Mode Switch manager
RPort mode switch Yes

Mode Switch user

18 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port types

41

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

Block Component
PPort Sender-receiver Yes

The NV Block Component provides
access to non volatile data

PPort Trigger No

Application component with trigger
source

RPort Trigger No

Application component with trigger
sink

RPort Trigger Yes

Service with trigger sink
PPort Trigger Yes

Service with trigger source
RPort mode switch No

Mode Switch user
PPort mode switch No

Mode Switch manager
RPort mode switch Yes

Mode Switch user

18 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Port types

42

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

Block Component
PPort Sender-receiver Yes

The NV Block Component provides
access to non volatile data

PPort Trigger No

Application component with trigger
source

RPort Trigger No

Application component with trigger
sink

RPort Trigger Yes

Service with trigger sink
PPort Trigger Yes

Service with trigger source
RPort mode switch No

Mode Switch user
PPort mode switch No

Mode Switch manager
RPort mode switch Yes

Mode Switch user

18 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

PPort mode switch Yes

Mode Switch manager

Table 3.2: Semantics of the port-icons

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.
In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”.
The component “SeatHeatingControl” uses the operation “SetPower” and expects
such an operation to be available through the port “HeatingElement”.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatHeating

Setting
IO

<<Interface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,
POSSIBLEERROR=HardwareProblem)

Calibration

ecuModenv

Figure 3.6: Example showing the use of the Client-Server Interface
“HeatingElementControl” to type the Port ”HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.
In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

19 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Client-server
n When a PPort of a component provides a client-

server interface, the component provides an
implementation of the operations defined in the
interface

n Example:
n “SeatHeating” implements the operation “SetPower” and

makes it available to other components through the port
“Setting”

n The component “SeatHeatingControl” uses the operation
“SetPower” and expects such an operation to be available
through the port “HeatingElement”

43

Example

44

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

PPort mode switch Yes

Mode Switch manager

Table 3.2: Semantics of the port-icons

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.
In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”.
The component “SeatHeatingControl” uses the operation “SetPower” and expects
such an operation to be available through the port “HeatingElement”.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatHeating

Setting
IO

<<Interface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,
POSSIBLEERROR=HardwareProblem)

Calibration

ecuModenv

Figure 3.6: Example showing the use of the Client-Server Interface
“HeatingElementControl” to type the Port ”HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.
In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

19 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Sender-receiver
n A component providing a sender-receiver interface

generates values for the data elements defined in
the interface

n Example:
n The component “SeatSwitch” generates values for the

Boolean value “PassengerDetected” through its port
“Switch”

n Similarly, the component “SeatHeatingControl” can read
the data-element “PassengerDetected” through its port
“SeatSwitch”

45

Example

46

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatSwitch

nv

IO

Calibration

<<Interface>>
SeatSwitch

DataElements:
boolean PassengerDetected

ecuMode

Switch

Figure 3.7: Example showing the use of the Sender-Receiver Interface
“SeatSwitch” to type the Port “SeatSwitch” of the components

“SeatHeatingControl” and the port “Switch” of the component “SeatSwitch”

3.3.2 Port Compatibility

A receiver port can only be connected to a compatible provider port. Table 3.3 gives
an overview over the compatibility of ports. The following comments describe some
basic compatibility rules. Please note that this overview only contains some basic
rules. A more comprehensive and detailed description is given in the “Software
Component Template” [6].

(1) For each element in the interface of the require port there must be a
compatible element in the interface of the provide port. The mapping is
realized implicitly via the shortname of the element or explicitly via explicit
mappings (see section 3.9.1).

(2) For mode switch ports all elements of the interface of the provide port must
have a corresponding element in the interface of the require port.

(3) Require and provide port are both service ports or are both not service ports.
(4) For connecting ports with Sender Receiver Interface, Parameter Interface or

Non Volatile Data Interface, corresponding elements must have compatible
implementation policies (see “Software Component Template” [6]).

For example, a Require Port that expects a fixed parameter can only be
connected to a Port that provides a fixed Parameter. This is because this fixed
data may be used in a compilation directive like #if and only macro #define (fixed
data) can be compiled in this case.

20 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Compositions
n Ports between components that need to

communicate with each other are hooked up using
assembly-connectors

n Such an assembly-connector connects one RPort
with one PPort

47

Example

48

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDialFrontLeft:
HeatingDial

Position

LED

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElementDialLED

Setting

SHDialFrontRight:
HeatingDial

Position

LED

SHFrontLeft:
SeatHeating

PM:
PowerManagement

SeatHeating

WindowDefrost

SHFrontRight:
SeatHeating

PowerStatus

nv

IO

IO

IO
Calibration

Calibration

IO

nv

ecuMode

ecuMode

22 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort “DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).
For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.
Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.
Furthermore, in sender-receiver communication one or more PPorts can be
connected to one RPort (e.g. for information collected from different senders in a
single receiver).
The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the
connector connects.

DialLED is sent to LED

Example

49

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDialFrontLeft:
HeatingDial

Position

LED

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElementDialLED

Setting

SHDialFrontRight:
HeatingDial

Position

LED

SHFrontLeft:
SeatHeating

PM:
PowerManagement

SeatHeating

WindowDefrost

SHFrontRight:
SeatHeating

PowerStatus

nv

IO

IO

IO
Calibration

Calibration

IO

nv

ecuMode

ecuMode

22 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort “DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).
For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.
Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.
Furthermore, in sender-receiver communication one or more PPorts can be
connected to one RPort (e.g. for information collected from different senders in a
single receiver).
The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the
connector connects.

The operation invoked over Position is
requested to the server over the Setting port

SW-C description levels
n RTE level

n Component behavior is described in terms of:
n RTE events
n Schedulable units

n For instance, for an operation defined in an interface on
the VFB, the behavior specifies which of those units is
activated as a consequence of the invocation of that
operation

50

Runnables
n SW-C actual implementation consists of a set of

runnable entities (aka runnables”)
n A runnable entity is a sequence of instructions

(provided by the component) that can be started by
the Run-Time Environment

51

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

3.8.2 The “runnable” concept

The “atomicity” of an atomic software-component refers to the fact that the
component cannot be divided in smaller components and must therefore be mapped
onto a single ECU.
For example, Figure 3.14 shows a logical component view of the mapped
application-software component “SHCFrontLeft” on a specific ECU. Through its ports,
the component expresses which information it requires from and provides to other
components.

RTE

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
lib

ra
ti
o

n

P
o

w
e

r
M

a
n

a
g

e
m

e
n

t

S
e
a
tS

w
it
c
h

S
e
tt

in
g

Figure 3.14: Component-view on the interaction between an atomic software
component and the RTE on an ECU

However, the actual implementation of a component consists of a set of “runnable
entities”8 (also more simply called “runnables”). A “runnable entity” is a sequence of
instructions (provided by the component) that can be started by the Run-Time
Environment9.

8

The usage of the word “runnable” is for example consistent with the “Runnable” Interface in Java:
“the Runnable Interface should be implemented by any class whose instances are intended to be
executed by a thread”.

32 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

9
 In certain cases, optimization of the RTE could cause a runnable entity to be started directly from

another software-component without real intervention of the RTE. For example a synchronous call to
a component that runs on the same ECU and can execute within the context (task) of the caller could
be implemented as a direct function-call into the calling component.

Example

52

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

SHCFrontLeft: SeatHeatingControl

Implementation

M
a
in

C
y
c
li
c

S
e
tt

in
g

n
v

e
c

C
a

P
o

M
au

M
o

d
e

li
b

ra
ti
o

n

w
e
r

n
a
g

e
m

e
n
t

S
e

RTE

a
tS

w
it
c
h

S
e
tt

in
g

Rte_Read_SeatSwitch_PassengerDetected()

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type

“SeatHeatingControl” has defined six ports, through which it wants to interact with

other components or services. The implementation of the component on the other

hand contains two runnables: “MainCyclic” and “Setting”. The component requires

the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.

The component requires that the second runnable “Setting” is invoked whenever

another component invokes an operation on the PPort “Setting”. The implementation

of the runnables will use the operations provided by the RTE to actually for

communication via the ports of the component. E.g. to access the information

“PassengerDetected” provided to the component through the RPort “SeatSwitch” the

runnable “Setting” will invoke the operation

“Rte_Read_SeatSwitch_PassengerDetected()”.

In general, an atomic software-component can provide just one runnable or it can

contain a large number of runnables. A runnable can be a very simple piece of code

that executes a simple algorithm or a complex program.

VFB043: At configuration time, the runnables of a component must be known

33 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Example

53

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

SHCFrontLeft: SeatHeatingControl

Implementation

M
a
in

C
y
c
li
c

S
e
tt

in
g

n
v

e
c

C
a

P
o

M
au

M
o

d
e

li
b

ra
ti
o

n

w
e
r

n
a
g

e
m

e
n
t

S
e

RTE

a
tS

w
it
c
h

S
e
tt

in
g

Rte_Read_SeatSwitch_PassengerDetected()

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type

“SeatHeatingControl” has defined six ports, through which it wants to interact with

other components or services. The implementation of the component on the other

hand contains two runnables: “MainCyclic” and “Setting”. The component requires

the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.

The component requires that the second runnable “Setting” is invoked whenever

another component invokes an operation on the PPort “Setting”. The implementation

of the runnables will use the operations provided by the RTE to actually for

communication via the ports of the component. E.g. to access the information

“PassengerDetected” provided to the component through the RPort “SeatSwitch” the

runnable “Setting” will invoke the operation

“Rte_Read_SeatSwitch_PassengerDetected()”.

In general, an atomic software-component can provide just one runnable or it can

contain a large number of runnables. A runnable can be a very simple piece of code

that executes a simple algorithm or a complex program.

VFB043: At configuration time, the runnables of a component must be known

33 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Runnable invoked cyclically
by the RTE

Example

54

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

SHCFrontLeft: SeatHeatingControl

Implementation

M
a
in

C
y
c
li
c

S
e
tt

in
g

n
v

e
c

C
a

P
o

M
au

M
o

d
e

li
b

ra
ti
o

n

w
e
r

n
a
g

e
m

e
n
t

S
e

RTE

a
tS

w
it
c
h

S
e
tt

in
g

Rte_Read_SeatSwitch_PassengerDetected()

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type

“SeatHeatingControl” has defined six ports, through which it wants to interact with

other components or services. The implementation of the component on the other

hand contains two runnables: “MainCyclic” and “Setting”. The component requires

the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.

The component requires that the second runnable “Setting” is invoked whenever

another component invokes an operation on the PPort “Setting”. The implementation

of the runnables will use the operations provided by the RTE to actually for

communication via the ports of the component. E.g. to access the information

“PassengerDetected” provided to the component through the RPort “SeatSwitch” the

runnable “Setting” will invoke the operation

“Rte_Read_SeatSwitch_PassengerDetected()”.

In general, an atomic software-component can provide just one runnable or it can

contain a large number of runnables. A runnable can be a very simple piece of code

that executes a simple algorithm or a complex program.

VFB043: At configuration time, the runnables of a component must be known

33 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Invoked when other SW-C
requires “Setting” P-Port. It

will requires the RTE to
provide the data over Rport

“SeatSwitch”

Runnables
n A runnable entity runs as a task on the ECU

microprocessor
n The task provides the common resources to the

runnable entities such as a context and stack-space
n Typically the operating-system scheduler has the

responsibility to decide during run-time when which
task can run on the CPU (or multiple CPUs) of the
ECU
n There are many standard strategies that schedulers can

use (e.g. priority-based preemptive, round- robin, time-
triggered...).

55

RTEEvents
n Mechanisms through which the component’s

implementation (for example “C” functions) is
invoked:
n Fixed-time schedules (for example: many components

need to run “cyclically”)
n Events related to the communication mechanisms (for

example some components might want to be notified
upon the reception of data from other components)

n Events related to physical occurrences (i.e. a triggered
event)

56

SW-C description levels
n Implementation level

n For each runnable the corresponding behavior is defined
(as handwritten or automatically generated code)

n The requirements for the RTE are defined in terms of:
n Which runnables need to be called cyclically
n Which runnables need to be called in response to events related

to communication or other sources
n How the component would like to access the information in its

ports or invoke the operations that it requires from other
components

n Any other resources the component requires, such as AUTOSAR
services or local memory

57

VFB view

58

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

VFB

PM:
PowerManag

ement

RTE1

BSW1

RTE3

BSW3

ECU1 ECU3

SHDialFrontL
eft:

HeatingDial

SHCFrontLeft:
SeatHeatingControl

SHDialFront
Right:

HeatingDial

SHCFrontRight:
SeatHeatingControl

HFront
Left:

SeatHe
ating

HFront
Right:
SeatHe
ating

PM:
PowerManag

ement

SHDialFrontL
eft:

HeatingDial

ECU2

…
…

…
IO IO IOIO

IO

…

…

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
l
i
b

r
a
t
i
o

n

…

P
o

w
e

r

M
a
n

a
g

e
m

e
n

t

…

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software

architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR

Interface” of a component refers to the full set of ports of a component (as defined

before, a port-interface characterizes a single port of a component). A “Standardized

AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.

Typically, an AUTOSAR service will have such a “Standardized AUTOSAR

Interface”. For a formal definition of the term AUTOSAR Interface and Standardized

AUTOSAR Interface see specification “Layered Software Architecture” [5].

26 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

RTE view

59

 Virtual Functional Bus

 V2.1.0

R4.0 Rev 2

VFB

PM:
PowerManag

ement

RTE1

BSW1

RTE3

BSW3

ECU1 ECU3

SHDialFrontL
eft:

HeatingDial

SHCFrontLeft:
SeatHeatingControl

SHDialFront
Right:

HeatingDial

SHCFrontRight:
SeatHeatingControl

HFront
Left:

SeatHe
ating

HFront
Right:
SeatHe
ating

PM:
PowerManag

ement

SHDialFrontL
eft:

HeatingDial

ECU2

…
…

…
IO IO IOIO

IO

…

…

SHCFrontLeft: SeatHeatingControl

n
v

e
c
u
M

o
d

e

C
a
l
i
b

r
a
t
i
o

n

…

P
o

w
e

r

M
a
n

a
g

e
m

e
n

t

…

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software

architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR

Interface” of a component refers to the full set of ports of a component (as defined

before, a port-interface characterizes a single port of a component). A “Standardized

AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.

Typically, an AUTOSAR service will have such a “Standardized AUTOSAR

Interface”. For a formal definition of the term AUTOSAR Interface and Standardized

AUTOSAR Interface see specification “Layered Software Architecture” [5].

26 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Implementation view

60

 Virtual Functional Bus
 V2.1.0

R4.0 Rev 2

ECU-Hardware

RTE

AUTOSAR
Software

Basic Software

Standardized
Interface

Microcontroller
Abstraction

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

Standardized
Interface

SHDialFrontLeft:
HeatingDial

SHCFrontLeft: SeatHeatingControl

nvec
uM

od
e

C
al

ib
ra

tio
n

IOPo
w

er
M

an
ag

em
en

t

Nv
Ra

m
Se

rv
ic

e

EC
U

St
at

e
M

an
ag

er

ECU Abstraction
Component

IO

Figure 3.13: Example showing the relationship between the components mapped
on an ECU and the ECU Software Architecture

3.7 Kinds of software components

This section gives a final overview of the various kinds of components that are
relevant to AUTOSAR.

Kind Description Illustration
Application
software
component

The Application Software
Component is an Atomic Software
Component that implements (part
of) an application. It can use all
AUTOSAR communication
mechanisms and services. The
Application Software Component
interacts with sensors or actuators
through a Sensor-Actuator Software
Component.

<<ApplicationSw
ComponentType>>

28 of 78 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Outline
n Introduction
n ECU software architecture
n The AUTOSAR approach
n Software components
n AUTOSAR methodology

61

AUTOSAR methodology
n Design steps go from the system-level configuration

to the generation of an ECU executable

62

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

Methodology
n The System Configuration Input must to be defined

n The software components and the hardware are defined
and selected

n The overall system constraints are identified
n XML templates:

n Software Components: each SW-C requires a description
of the software API e.g. data types, ports, interfaces

n ECU Resources: specifications regarding the CPU,
memory, peripherals, sensors and actuators

n System Constraints: bus signals, topology and mapping
of SW-C

63

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

Methodology
n System Configuration Descriptions contains

n The mapping of SW-C to ECU
n Bus topology

n Further steps have to be performed on each ECU
n Extract ECU-Specific Information extracts the

information from the system configuration
description for a specific ECU

64

Methodology
n Configure ECU configures:

n RTE
n Basic Software

n It generates:
n Task scheduling
n Required basic software modules
n Configuration of the basic software
n Assigment of runnables to tasks

n The ECU software can be built from this information

65

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

AUTOSAR Methodology

Design steps go from the system-level configuration to the
generation of an ECU executable.

methodology
n The executable code for the ECU si generated:

n Code generation
n Code compilation
n Code linking

66

Flow for each SW-C

67

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality.

Flow for each SW-C

68

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality.

• List of runnables
• Definition of input-data/runnable

association

Flow for each SW-C

69

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality.

The AUTOSAR Component API Generator reads the
Component Internal Behavior Description of the
appropriate software component and generates
the Component API accordingly. The Component
API contains all header declarations for the RTE
communication.

Flow for each SW-C

70

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality. Actual implementation of the SW-C

resulting in:
• Component implementation (C code)
• Component Internal Behavioral

description (documentation)
• Component Implementation

Description (e.g. compiler settings,
optimizations, etc.).

Flow for each SW-C

71

AUTOSAR Software Process

Parallel to these steps are several steps performed for every
application software component (to be integrated later into the
system), e.g. generating the components API, and implementing
the components functionality.

Compilation of SW-C in object code
• Compiled Component
• Component Implementation Description

(e.g. linker settings, entry point).

