Introduction to AUTOSAR

Massimo Violante
Politecnico di Torino
Dip. Automatica e Informatica
Torino, Italy

SR sounae:)

Outline

= Introduction

= ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

Outline

= Introduction

= ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

What is AUTOSAR?

= Ww.autosar.org:

= "AUTOSAR (AUTomotive Open System ARchitecture) is
an open and standardized automotive software

architecture, jointly d
manufacturers, supp

s Consortium founded

eveloped by automobile
iers and tool developers."

In 2003:

= BMW, DaimlerChrysler, Bosch, Continental, Volkswagen

and Siemens VDO

= Later Ford, General Motors, Toyota and PSA (Peugeot
Citroen) joined the consortium as core members

= The AUTOSAR standard will serve as a platform for r

future vehicle applications

Peebsc]
A @

What is AUTOSAR?

24 Associate

10 Core Partners Members
@ DAIMLERCHRYSLER @ BOSCH
VOLKSWAGEN AG @ @ntinenfal®
OPEL
PSAPEUGEOTClmoﬂ [Jr—
SIEMENS VDO
A v t o m o t i v e
TOYOTA &2
46 Premium Members
A7/WPINE. :
HONDA fal DELPI 3SOFT EEEEME‘C;%JJ 2= ARM
DENSO ﬂ ;;) =~ freescale
ARELL.d e '~ -
uvunnmmmm @ M % !"ls"c.ef ‘”'“” s ETAS T fincon FUﬁT‘SU
e e s = _micron L] grae—
NEC ‘7_1/

mazna . LEAR ¥
tﬂ o:ozpnnar onN ‘.... m —_\
' - - N SSFTWARE
= Youae W--

PORsSsCHE

SR e)

Why do we need AUTOSAR?

= Increasing complexity of software in automotive
systems

= Thereis no standardized software architecture

Control Units 40 60

MIPS 45 1150

MHz 85 2000
MCU-Storage (Program + Data) 1,1 MB+160 kB 19 MB+1,25 MB
Transistors 21 m. 340 m.

(* without Infotainment)
Source: ElektronikNet.de http://www.elektroniknet.de/home/automotive/autosar/multiple-applikationen-in-steuergeraeten/

&R soumae: B

Main drivers for AUTOSAR

= Management of E/E complexity associated with
growth in functional scope

= Flexibility for product modification, upgrade and
update

= Scalability of solutions within and across product
lines

= Improved quality and reliability of E/E systems

SR sounae:)

Main goals of AUTOSAR

= Fulfillment of future vehicle requirements:

= Availability and safety, SW upgrades/updates and
maintainability

= Increased scalability and flexibility to integrate and
transfer functions

= Higher penetration of "Commercial off the Shelf"
SW and HW components across product lines

= Improved containment of product and process
complexity and risk

= Cost optimization of scalable systems

38 s (B)

AUTOSAR Software Components

= AUTOSAR is based on the concept of separation
between infrastructure and application

= Infrastructure: services providing an execution
environment to abstract hw details

= Application: vehic

e functions of interest

T

= Application consis
components

s of interconnected software

= Atomic software component: a software component
can not be distributed over several ECUs

= AUTOSAR software component implementation is

independent from

SR sounae:)

the infrastructure

Outline

= Introduction

s ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

Layered Software Architecture

Application Layer

AUTOSAR Runtime Environment (RTE)

SR e)

Layered Software Architecture

Microcontroller Abstraction Layer

= Microcontroller Abstraction Layer:

= Lowest software layer of the Basic Software
= Makes higher software independent of Microcontroller

SR sounae:)

Layered Software Architecture

el

Microcontroller Abstraction Layer

= ECU Abstraction Layer:

= Interfaces the drivers of Microcontroller Abstraction Layer

= Makes higher software layers independent of ECU
hardware layout

= Offers access to I/O Signals

SR sounae:)

Layered Software Architecture

Services Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

= Service Layer:

= Highest layer of the Basic Software

= Offers Memory Services, Diagnostic Services, ECU state
management

= Provides basic services for application and basic software
modules

SR sounae:)

Layered Software Architecture

AUTOSAR Runtime Environment (RTE)

Services Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

= Runtime Environment:

= Middleware Layer

= Provides communication services for the application
software

= Makes AUTOSAR Software Components independent from
the mapping to a specific ECU

SR sounae:)

Layered Software Architecture

AUTOSAR Runtime Environment (RTE)

= Application Layer:
= ‘component style”

= Software components communicate with other
components and/or services via the RTE

sonmetr (B

Detailed view

Application Layer

AUTOSAR Runtime Environment (RTE)

==

Microcontroller

Outline

= Introduction

= ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

Standardization

= [he software implementing the automotive

functionality is encapsulated in software
components

s Standardization of the interfaces is central to
support scalability and transferability of functions

= Any standard-conformant implementation of a
software component can be integrated with
substantially reduced effortin a system

SR sounae:)

AUTOSAR architecture

SW-C

Description

L D'MS
dvsoLnyvy

SW-C

Description
/

S

ZOM
dvsoLlnvy

SW-C

Description
/

S

€ DM
dvsoLnvy

SW-C

Description
/

S

ud-m
dvsolLnvy

Virtual Functional Bus

4L

Deployment tools

(=

m
n:::|
c

Z D-MS
dvsoLnvy
€ O-MS
dvsoLnvy

RTE

ECUI1
-
=4
i
-2
~

| RTE

| Basic Software

Basic Software

bystem
Constraint
Description
ECU1
2 &
a3
s >
-~
| RTE |

o

o

g
R @

Basic Software

Gateway

o

AUTOSAR architecture

= Software component (SW-C)

= Encapsulate an application that runs in the AUTOSAR
infrastructure

= It has well-defined standard interfaces

= Interfaces and other aspects needed for integration of
SW-C a standard description format is provided (SW-C
descrl pt|0n) SW-C Description

_

L O-MS
dvsoLnv

&

SR sounae:)

AUTOSAR architecture

= Virtual Function Bus (VFB)

= Sum of all communication mechanisms and interfaces to
the basic software provided by AUTOSAR on a technology

independent level

SW-C SW-C SW-C SW-C

Description Description Description Description
\/g E \/g E \/‘é’ E _/—g E
A9 A9 A9)
- > N > w > =
~ ~ ~ ~

__

Virtual Functional Bus

SR sounae:)

AUTOSAR architecture

= System constraints and ECU description

= Description format for: system, ECU resources and
configuration

= Needed for deploying SW-C on a network of ECUs

pystem
EC |::> Deployment tools <:| Constraint
Descrip Description

SR sounae:)

AUTOSAR architecture

= Mapping on ECU

= Methodology and tool support for implementing SW-Cs
on ECUs, performing for each ECU configuration and
generation of:

= Runtime Environment (RTE) - it implements the VFB on each
ECU

= Basic Software (RTOS services)

|:> Deployment tools <:|

m
:
c <

Z D-MS
yvsolnvy
€ D-MS
yvsolnvy

=
-]
m

Basic Software |

o—

SR sounae:)

Outline

= Introduction

= ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

Software component

= It encapsulate part of the functionality of the
application
= AUTOSAR does not specify the granularity of SW-C

= It is an atomic software component - it is statically
assigned to one ECU

= AUTOSAR does not specify how the SW-C should be
implemented

= Handwritten/automatically generated from a model

SR sounae:)

SW-C description

s It contains:

= The operations and data elements that the software
component provides and requires - PortInterface
concept

= The resources needed by the software component
(memory, CPU-time, etc.),

= Information regarding the specific implementation of the
software component

SR sounae:)

SW-C implementation

= It is independent from:

= The type of microcontroller of the ECU and the type of
ECU on which the component is mapped

= The AUTOSAR infrastructure takes care of providing the software
component with a standardized view on the ECU hardware

= The location of the other components with which it
interacts. The component description defines the data or
services that it provides or requires. The component

doesn’t know if they are provided from components on
the same ECU or from components on a different ECU

= The number of times a software component is
instantiated in a system or within one ECU

38 s (B)

SW-C description levels

= Virtual functional bus level
s RTE level
= Implementation level

SR sounae:)

SW-C description levels

= Virtual functional bus level

= Components are described with the means of
= Datatypes and interfaces
= Ports and connections between them
= Hierarchical components

= At this level, the fundamental communication properties
of components and their communication relationships
among each other are expressed

= AUTOSAR terms

= Port Interfaces and Ports
= Compositions

SR sounae:)

Example
P> [SeatSwitch
= SeatHeatingControl eatnasemen(
QO [Setting
| In pUt: PowerManagement | «§
= Passenger is sitting QPR ion [
= Setting of the seat temperature o coubode
= Information from a central power management sysFém
= Output:

= DialLED associated to the seat temperature dial

= Heating element

= It can be calibrated, needs the status of the ECU on
which the component runs and requires access to local
non-volatile memory

SR v @)

Port Interface

= It defines the contract that must be fulfilled by the
port providing or requiring that interface

= Client-server: the server is provider of operations and
several clients can invoke those operations

= Sender-receiver: a sender distributes information to one
or several receivers, or one receiver gets information
(events) from several senders. A mode manager can
notify mode switches to one or several receivers

= Parameter Interface: it allows SW-C access to either
constant data, fixed data or calibration data

SR sounae:)

Port Interface

= Non volatile Data Interface: provide element level access
(read only or read/write) to non volatile data

= Trigger Interface: it allows software components to
trigger the execution of other software components

= Mode Switch Interface: the mode switch interface is used
to notify a software component of a mode. The mode
manager provides modes that can be used by mode
users to adjust the behavior according to modes or
synchronize activities to mode switches.

SR sounae:)

Client-server

= A client-server interface defines a set of operations

that can be invoked by a client and implemented by
a server

= Example

= The interface "HeatingElementControl” defines a single
operation called “SetPower” with a single ingoing
argument called “Power”. The operation can return an
application error called “HardwareProblem”

<<ClientServerinterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:

SetPower(

IN ARGUMENTInt32 Power,
POSSIBLEERROR=HardwareProblem)

SR v @)

Sender-receijver

= A sender-receiver interface defines a set of data-
elements that are sent and received over the VFB

= Example

= Simple sender-receiver interface called “SeatSwitch”
containing a single data-element called
“PassengerDetected”

<<SenderReceiverinterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

SR sounae:)

Ports

= The ports of a component are the interaction points

between components

= A port of a component s eit
= PPort provides the elements d

ner a PPort or an Rport
efined in a port-interface

= RPort requires the elements ¢

efined in a port-interface

= A port is thus typed by exactly one port-interface

SR v @)

he'se

et s
SR

(&)

Por

PPort

sender-receiver

N

t types

>

The component provides values for
the data-elements

RPort

sender-receiver

No

<

The component reads or consumes
values for the data-elements

PPort

client-server

No

O

The component provides
(=implements) the operations
defined in the interface

RPort

client-server

No

(

The component requires (=uses or

invokes) the operations defined in 37
the interfaces

he'se

g
R

(&)

Port types

PPort parameter (this | No
includes
providing >
calibration data)
The component provides parameter
data (either fixed, const or variable)
RPort parameter (this | No
includes requiring
calibration data) <
The component requires parameter
data (either fixed, const or variable)
PPort sender-receiver Yes
The component provides data-
elements and mode-groups to an
AUTOSAR Service
RPort sender-receiver Yes

B

The component reads/consumes
data-elements and mode-groups
from an AUTOSAR Service

he'se

e
SR

(&)

Port types

PPort

client-server

Yes

o

The component provides
(=implements) operations for an
AUTOSAR Service

RPort

client-server

Yes

The component invokes operations
from an AUTOSAR Service

RPort

sender-receiver

Yes

A component requires access to non
volatile data provided by an NV

he'se

e
SR

(&)

Port types

PPort Sender-receiver | Yes
The NV Block Component provides
access to non volatile data
PPort Trigger No
Application component with trigger
source
RPort Trigger No

Application component with trigger
sink

he'se

e
SR

(&)

Port types

RPort Trigger Yes
Service with trigger sink
PPort Trigger Yes
Service with trigger source
RPort mode switch No

Mode Switch user

he'se

e
SR

(&)

Port types

PPort mode switch No
Mode Switch manager
RPort mode switch Yes
Mode Switch user
PPort mode switch Yes

Mode Switch manager

Client-server

= When a PPort of a component provides a client-
server interface, the component provides an

implementation of the operations defined in the
interface

= Example:

= "SeatHeating” implements the operation “SetPower” and
makes it available to other components through the port
“Setting”

= The component “SeatHeatingControl” uses the operation
“SetPower” and expects such an operation to be available
through the port “"HeatingElement”

SR v @)

Example

SeatHeatingControl R Y k
‘O Setting
P [SeatSwitch ! (@]
! N e
)
)
)
HeatingElement | C [}
QO [Setting N [
1 P M t N\ <<Interface>>
B e 4 N HeatingElementControl
. \
[PialLED Calibration | < N\ | ApplicationErrors:
\‘I HardwareProblem
nv ecuMode Operations:
n ! SetPower(
IN ARGUMENTInt32 Power,
POSSIBLEERROR=HardwareProblem)

SR v @)

Sender-receijver

= A component providing a sender-receiver interface

generates values for the data elements defined in
the interface

= Example:

= The component “SeatSwitch” generates values for the

Boolean value “PassengerDetected” through its port
“Switch”

= Similarly, the component “"SeatHeatingControl” can read

the data-element “PassengerDetected” through its port
“SeatSwitch”

38 s (B)

Example

SeatHeatingControl D

SeatSwitch >\

,4E’ SeatSwitch

’
’
10 Switch 7
’
L1
o’ HeatingElement | C

S i [C) Setting

N\ ’

\ ‘/
<<Interface>> PowerManagement

SeatSwitch

I:< DialLED Calibration q

DataElements:
boolean PassengerDetected

SR v @)

Compositions

= Ports between components that need to
communicate with each other are hooked up using
assembly-connectors

= Such an assembly-connector connects one RPort
with one PPort

SR sounae:)

he'se

argE
R

(&)

Example

SHCFrontLeft: D

SeatHeatingControl

P> | SeatSwitch

C

SHFrontLeft:
SeatHeating

10
n

SHDialFrontLeft:
HeatingDial .
HeatingElement
Position | C O |Setting
PowerManagement
10 LED |« <« |DialLED
~] Calibration
nv ecuMode
SHCFrontRight: D
SeatHeatingControl
P> | SeatSwitch
SHDialFrontRight: PowerManagement
HeatingDial
Position | C O |Setting
P Calibration
IO LED |« «|DialLED HeatingElement
~]

ecuMode

PM:
PowerManagement D

« | SeatHeating

<« | WindowDefrost

PowerStatus

o

DialLED is sent to LED

SHFrontRight:
SeatHeating

10
n

he'se

argE
R

Example

SHCFrontLeft: D

SeatHeatingControl

P> | SeatSwitch

SHDialFrontLeft:
HeatingDial .

HeatingElement

Position | C O |Setting
PowerManagement

10 LED |« <« |DialLED
~] Calibration
nv ecuMode

SHDialFrontRight:
Heatingﬂial

—

C

SHFrontLeft:
SeatHeating

10
n

SHCFrontRight: D

SeatHeatingControl

P> | SeatSwitch

PowerManagement

Position | C

O |Setting

Calibration

«|DialLED HeatingElement

1o LEy <
~]

ecuMode

PM:
PowerManagement D

« | SeatHeating

<« | WindowDefrost

PowerStatus

o

SHFrontRight:
SeatHeating

10
n

The operation invoked over Position is

requested to the server over the Setting port

(&)

SW-C description levels

s RTE level

= Component behavior is described in terms of:
= RTE events
= Schedulable units
= For instance, for an operation defined in an interface on
the VFB, the behavior specifies which of those units is
activated as a consequence of the invocation of that

operation

SR sounae:)

Runnables

= SW-C actual implementation consists of a set of
runnable entities (aka runnables™)

= A runnable entity is a sequence of instructions
(provided by the component) that can be started by

the Run-Time Environment

SHCFrontLeft: SeatHeatingControl

nv
Power
Management

Calibration
ecuMode

¢ []
[]
D
>
O Setting

> SeatSwitch

RTE

SR sounae:)

Example

SHCFrontLeft: SeatHeatingControl

Implementation

)

Rte_Read_SeatSwitch_PassengerDetected()

O -~
2 /I \| 2
&) ! { &
C (]
S »
=]
]
|
]
! A
|
= T
5}
5 o £ = U
5 8) El] 2
S = 20 2 E=
= 3 > 3 6 1) 5
(@] [) (= oS ()]

SR sounae:)

Example

SHCFrontLeft: SeatHeatingControl

Runnable invoked cyclically

by the RTE

Rte_Read_SeatSwitch_PassengerDetected()
L -~
= I N\ 2
&) / { £
£)
= ! v
]
|
I
! A
I
= I
@
5 () IS S |
= o o) = ()]
© o o) 2| £
2 Z e %) =
8 8 g g2 8! o

SR sounae:)

Example

SHCFrontLeft: SeatHeatingControl -

Invoked when other SW-C
B requires “Setting” P-Port. It
will requires the RTE to
provide the data over Rport

)

n . ”
SeatSwitch
Rte_Read_ SeatSV :
Q
= 2
2 / 3
= ! y
]
]
|
|
|
= I
T
5 [I ::9 I
) © (0] = (®)]
© o o) 2| £
2 Z e %) =
S 3 g LS 8! o

SR sounae:)

Runnables

= A runnable entity runs as a task on the ECU
MICroprocessor

= [he task provides the common resources to the
runnable entities such as a context and stack-space

= [ypically the operating-system scheduler has the
responsibility to decide during run-time when which
task can run on the CPU (or multiple CPUs) of the
ECU

= There are many standard strategies that schedulers can
use (e.g. priority-based preemptive, round- robin, time-
triggered...).

. >
Z N %
m SCBRE @

RTEEvents

= Mechanisms through which the component'’s
implementation (for example “C” functions) is
invoked:

= Fixed-time schedules (for example: many components
need to run “cyclically”)

= Events related to the communication mechanisms (for
example some components might want to be notified
upon the reception of data from other components)

= Events related to physical occurrences (i.e. a triggered
event)

SR v @)

SW-C description levels

= Implementation level

= For each runnable the corresponding behavior is defined
(as handwritten or automatically generated code)

= The requirements for the RTE are defined in terms of:
= Which runnables need to be called cyclically

= Which runnables need to be called in response to events related
to communication or other sources

= How the component would like to access the information in its
ports or invoke the operations that it requires from other
components

= Any other resources the component requires, such as AUTOSAR
services or local memory

SR sounae:)

VFB view

A\ A\ A\ A\

SHDialFrontL SHCFrontLeft: HFront SHDialFront SHCFrontRight: HFront PM:
eft: SeatHeatingControl Left: Right: SeatHeatingControl Right: PowerManag
HeatingDial SeatHe HeatingDial SeatHe ement

58

&R soumae: B

RTE view

ECUL

ECU2

ECU3

SR e)

Implementation view

SHCFrontLeft: SeatHeatingControl >\

- g SHDialFrontLeft:
2 o) £ HeatingDial

T)

5 3 5%

= z 25

> 8 e o= 0
AR A

S-phin @ O
i i o
Standardized o Standardized ECU Abstraction
Interface 8g £ 3 Intetface Component
N & s .
D5 > 0
“ Commu;nication
0 Standérdized
— 5 Intetface
=3 :
Operating | § e @ ; I
System |8 & Pl
® E Stand4rdized
Interface
Microcénlgroller
Abstraction

ECU-Hardware

SR sounae:)

Outline

= Introduction

= ECU software architecture
= The AUTOSAR approach

= Software components

= AUTOSAR methodology

SR sounae:)

AUTOSAR methodology

= Design steps go from the system-level configuration
to the generation of an ECU executable

Vs Confi
onfiguration Syst
| D
Sys
System Extract \
Configuration
Description pecific . ;.AD
System mation
ECU g
ttttttt
yste
nfigura ECU Generate ECL
‘Syste Configuration ~ Executable Executable
Descrip tion

&R soumae: B

Methodology ®—

System
Configuration
Input :
System

= The System Configuration Input must to be defined

= The software components and the hardware are defined
and selected

= The overall system constraints are identified

= XML templates:

=« Software Components: each SW-C requires a description
of the software API e.g. data types, ports, interfaces

= ECU Resources: specifications regarding the CPU,
memory, peripherals, sensors and actuators

= System Constraints: bus signals, topology and mapping
of SW-C

SR v @)

Methodology -

System

ﬂ _
= System Configuration Descriptions contains
= The mapping of SW-C to ECU

= Bus topology

= Further steps have to be performed on each ECU
= Extract ECU-Specific Information extracts the

information from the system configuration
description for a specific ECU S
N

Information

=t "
— P
64 @
.

SR sounae:)

Methodology

= Configure ECU configures:

= RTE
= Basic Software D

= It generates: e \E"
= Task scheduling =

= Required basic software modules
= Configuration of the basic software
= Assigment of runnables to tasks

= [he ECU software can be built from this information

SR sounae:)

methodology

= [he executable code for the ECU si generated:

= Code generation
= Code compilation D .
u Coce ||nk|ng ;eelleur;t:m ; ECU y

SR sounae:)

Flow for each SW-C

omponent "':::h

Inteynal e
Bemior T
Descliption

[post

i .
Implem:enlatlon]

e -~

-
InternalBehavior .

Component

mplementation
Component Description
mplementation [n'rr
Des{:ription Object-
1
[for Code]:
Soufce- Implemientation
Code] : [

Implemeéntation E

—_—

W W

Component Generate Com pon;:,r\ Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior AIPI
Description !
[API
Generation] E&‘
: . AUTOSAR
InternalBehav ior Component Additional
API Headers
Generator

67

e

1859 *

SR e)

Flow for each SW-C

omponent Yi—x
Integnal ~.
Ber&ior T
Descliption

[pbst
Implemle ntation]

List of runnables ~ .
Definition of input-data/runnable mplemgntation

Description

association ai tor

Clhj:ect-
’ “‘H-
P

Code]:
Implemfntation
i

Implemeéntation E
]

E——

Component Generate Com pon;:,r\ Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior AIPI
Description !
[API
Generation] [&‘
: . AUTOSAR
InternalBehav ior Component Additional
API Headers
Generator
68

SR ot &)

Flow for each SW-C

The AUTOSAR Component API Generator reads the

Component Internal Behavior Description of the
appropriate software component and generates

the Component API accordingly. The Component m.
API contains all header declarations for the RTE mpiementaton

Descﬂ:iptiun

. - [fulir
communication. ovfect
Im plem:ent;ition

e] .
Implemeéntation

il)
Component Generate Com pon;:,r\ Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior AIPI
Description !
[API
Generation] [&‘
: . AUTOSAR
InternalBehav ior Component Additional
API Headers
Generator

69

&R soumae: B

Flow for each SW-C

Actual implementation of the SW-C
resulting in: fromponen: 5.
Component implementation (C code) colver
Component Internal Behavioral s
description (documentation) tomaiBehavior .
Component Implementation , - / Companent |
Description (e.g. compiler settings, plemeniaton Pes gotion

Description Objiect-

optimizations, etc.). o Cofel:

Implemfntation
Code] : i
S

Component

Implemeéntation !
i

Component Generate Com pon;:,r\ Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior AIPI
Description !
[API
Generation] [&‘
: . AUTOSAR
InternalBehav ior Component Additional
API Headers
Generator

70

&R soumae: B

Flow for each SW-C

« Compiled Component

« Component Implementation Description =g
(e.g. linker settings, entry point). "Deschption

[for
Object-
Code]:

Implemfntation

i

Component Generate Com pon;:,r\ Implement Component Compile Compiled
Internal Comppnent API Component Implementation Component Component
Behavior AIPI
Description !
[API
Generation] [&‘
: . AUTOSAR
InternalBehav ior Component Additional
API Headers
Generator

/1

&R soumae: B

