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Deep
Learning

With massive
amounts of
computational power,
machines can now
recognize objects
and translate speech
inreal time. Artificial
intelligence is finally
getting smart.

http://www.technologyreview.com/featuredstory/513696/deep-learning/
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Why go deep?

Data are often high-dimensional

There is a huge amount of structure in the
data, but the structure is too complicated to
be represented by a simple model

Insufficient depth can require more
computational elements than architectures
whose depth matches the task

Deep nets provide simpler but more
descriptive model of many problems.



Representation ability

* In a deep model, the no. of
paths from an input node to | |
an output node increases -'
exponentially

— On each path there are a

number of nonlinear
operations

 The representation ability
(nonlinear mapping from
input to output) increases
dramatically

e |tis more powerful than a
shallow model with the same
number of nodes and LA AR, R, R LA
nonlinear operations 182013,9(7)
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Multi-layer Perceptron (MLP)

Forl =1, ...,L calculate the
T T input to neuron j in the [-th

OULPULS s layer
w® = 3w Dyl 4 ptY
o  andits output
Yj (l) 0
Hldden/ D) = f ("),
layers wg It where f( ) is activation function

e Notey® =x

* There are desired outputs t;, for
each input sample in the form

INpUT X; (0,0,..,1,0,0)7



Activation functions

Activation Functions

* Logistic function -~
]. 3ar — — ~sigmoid
f(Z) — 1 I exp(—z) sHo rectified linear

* Hyperbolic tangent, or
tanh, function

f(z) = tanh(z) =

 Rectified linear
activation function

f(z) = max(0, x)

fiz)

e* —e ~

62! _I_ e—Z




Error functions for BP

e Error function E— Z E®

where E(M is the error function for each input sample n

— Least square error sigmoid
K ¢ 1
1 (L)
En) — — E ty — (L)y2 - —
2k 1( o )% ¥ 1 4 exp(—w ( DT?J(L V) — bggL 1))

— Cross- entropy error  softmax
b exp(
E®W = -3 t,nylM, 4 = -
Z ZjKleXp( (L=1)T y (L 1)_|_b(L 1))
* Weight adjustment Learning rate
W@ — 0, OF B = pD /3117

—w. —o—

Wi Ji (1) J an()
Oow ws, (%j

w(L—l)T (L—l)_|_b(L—1))
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Historically...

* Including more layers was not proved to be
useful, sometimes even harmful

* A two-layer MLP was often used in practice

A two-layer MLLP can approximate any
function with arbitrary precision

12
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Probabilistic graphic model

* Useagraph G(V,E) to
represent the joint
distribution of a set of

variables
* Directed graph (right)
— Bayesian networks

* Undirected graph
— Markov random fields

plxy)plae)p(xs)p(ra|zy, 2, 23)p(2s|21, 23)p(X6|Ts)p(L7|24. T5)
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Stochastic binary units

 Each unit hasastateofOor 1l i
* The probability of turning on is
determined by g
S. = L 1
s =1) = 1+exp(-b, — Zsj i) T

p(si =1)

0 |

bi+ZSjoi —



Generative models

* Directed acyclic graph
with stochastic binary
units is termed Sigmoid
Belief Net

— Radford Neal 1992

* Undirected graph with
stochastic binary units is
termed Boltzmann
Machine

— Hinton & Sejnowski, 1983




Generative models

* Learning: Adjust the hidden
interactions between
variables to make the
network more likely to
generate the observed data visible

* |nference: Infer the states of
the unobserved variables

e Generate: Generate the
observed data




Learning deep belief nets

* Easy to generate an
unbiased example at the
leaf nodes

* Hard to infer the
posterior distribution
over all possible
configurations of hidden
causes

— Hard to even get a sample
from the posterior

Hidden
causes

visible
effect

18



Learning Boltzmann machine

 Hard to generate an
unbiased example for the
visible units

* Hard to infer the
posterior distribution
over all possible
configurations of hidden
causes

— Hard to even get a sample
from the posterior

Hidden
causes

visible
effect

19



Restricted Boltzmann machines

Restrict the connectivity to make learning easier.
— Only one layer of hidden units.

— No connections between hidden units.

— Every unit can take only 1 or O stochastically

In an RBM, the visible units are conditionally
independent given the hidden states

— We can quickly get an unbiased sample from
the distribution P(v|h) when given a hidden
vector h

In an RBM, the hidden units are conditionally
independent given the visible states

— We can quickly get an unbiased sample from
the posterior distribution P(h|v) when given
a data v

visible



Energy model

C

W
b .-, = .
» Joint distribution pa}““o” function
Plv, h] = exp(—g(v,h)) where Z = Zexp(—E(v,h)).

v,h
 The energy function

E(v,h)=—v-W-h—b-v—c-h
* The probability distribution of data
Plv; G| = ZP’U h; G| = Zexp(—E(v,h)).

h
where G = (W,b, c)



Maximum data log likelihood

* The primary goal /P[’U;Q] = %ZeXp(—E(v,h))-
h
G* = argmax(In P[v; G])

° Thegrad|ent E(’U h):—U-W-h—b-v—c-h

0ln Plv; G| 0 \
oW = o (ln Z exp(—F(v,h)) —In Z exp(— )

Z Zexé)xp vih; — Z Zexp )v il

v hGXp

—ZP h|v; ghmi—ZPv,h;g hjv;.
h

alan Q] ZP an _Zf[v,h;g]w

Approximate
avg with one

5’111P”Ug] ZPh|th—Zthg sample

8(3J 22




Learning rule

e Stochastic gradient ascent (n is the sample index)

Wi = Wi + ew (h;j(v"™)v — h;(t — o0o)v;(t — 00))
bi = b; + ep(v]' — v;(t = o0))
c; =cj+e(hj(v") —hj(t = o0))

« Wake phase: Gibbs sampling is used to calculate h(v")

e Sleep phase: Gibbs sampling is used to calculate h(t — )
and v(t — o)



Gibbs sampling

Draw a sample from
p(z) =pl(z1,- -, 2m)

. Initialize {z; :i=1,..., M}

 Sample 20 s p(oy o0 20 L)
— Sample ~( +1) -p(::g\::rﬂ) :gr) ..... ”EE))

(T+1) 1L (TH1) (T+1) _(7) (7)
- Sample z; ~p(zilzy T HINROTHICPRR- V)
- Sample ”( + ) ~ p(fﬂf‘z](_q_—i_l), :gTH). e ”(,.I,tll))
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Gibbs sampling

It can be proved that this procedure draw a
sample from the joint distribution p(z)

Gibbs sampling is a special case of the Markov
Chain Monte Carlo (MCMC) algorithm

t applies to both directed and undirected

nrobabi

t also a
models

istic graphical models

oplies to models other than graphical



Tasks

 Draw a sample from the — Draw a sample from the
conditional distribution joint distribution P(h, v)
P(h|v)

hidden hidden

visible visible

Both by (block) Gibbs sampling!
What we only need are P(h; = 1|v) and P(v; = 1|h)

26



Conditional distributions

* With the energy function defined before, it
can be shown that (details are skipped here)

hidden

P(v; = 1|h) = sigmoid ijh + b;)

"" P(h; = 1]v) = sigmoid( Zw v + ;)

visible



lllustration of learning

Wi = Wij + ew ((hjvi)? — (hjvi)™)
bi = b; + ep({vi) — (v:))
cj = c; + e((hy) — (hy)™)

O DO

<”‘/ \ / \ / e <”‘/

t=0 f t=1 t=2 t-mﬁmty\
reality fantasy

Alternate between updating all the hidden units in parallel
and updating all the visible units in parallel.




Contrastive divergence learning

* CD-1

— Start with a training vector Q @ Q Q@ Q
on the visible units. <Vihj>0 <Vihj>1
— Update all the hidden units
DO| [T

in parallel Q

— Update the all the visible

units in parallel to get a t=0 t=1
“reconstruction” data reconstruction
— Update the hidden units 0 1
again AWIJ = €(<Vihj> —<Vihj>)
* CD-n

AW; = & (<v;h>" —<vh>")

— Keep running for n steps
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What’s wrong with BP network?
-Hinton’s opinion in 2006

* It requires labeled training data
— Almost all data is unlabeled
* The learning time does not scale well

— It is very slow in networks with multiple hidden
layers

* |t can get stuck in poor local optima

— These are often quite good, but for deep nets they
are far from optimal



Overcoming the limitations of BP

* Different purpose: modeling the structure of
the sensory input

— Adjust the weights to maximize the probability
that a generative model would have produced the
sensory input

— Learn p(image) not p(label | image)

 What kind of generative model shall we learn?



Belief networks

* Easy to generate an
unbiased example at the

Hidden
leaf nodes

causes

* Hard to infer the posterior
distribution over all
possible configurations of
hidden causes

 So how can we learn deep
belief nets that have
millions of parameters?

visible
effect

1

P& =) = l+exp(—bi—Zstji)
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Some methods for learning
deep belief nets

 Monte Carlo methods can be used to sample
from the posterior.

— But its painfully slow for large, deep models.

* |[n the 1990’s people developed variational
methods for learning deep belief nets

— These only get approximate samples from the
posterior.

— Nevertheless, the learning is still guaranteed to
improve a variational bound on the log
probability of generating the observed data.



The breakthrough

* To learn deep nets efficiently, we need to learn one layer of
features at a time.

 We need a way of learning one layer at a time that takes into

account the fact that we will be learning more hidden layers
later.

— We solve this problem by using RBM.
hidden

visible

35



Training a deep network

e Stacking RBMs to form deep architecture

— First train an RBM that receives input directly from
the pixels

— Then treat the activations of the hidden layer as if
they were pixels and train a second hidden layer

— Repeat the process

* Each time we add another layer of features we
improve a variational lower bound on the log
probability of the training data

— Proof is a little bit complicated

36



The generative model after learning a
3-layer model

 To generate data:

h3
1. Get an equilibrium sample from
the top-level RBM by performing I W
alternating Gibbs sampling for a 3

long time.

2. Perform a top-down pass to get

h2
states for all the other layers. I l, W,
hl

So the bottom-up connections are not
part of the generative model. They are

just used for inference. I 1 Wy
data




How to use the pre-trained DBN?



Method 1: Add a layer on top

* Add a softmax layer on top,
then perform BP training
with the pretrained
weights as initial weights

— Dahl, Yu, Deng, Acero, IEEE
TASLP, 2012
* Add an SVM on top
— Lee, et al, ICML 2009

output

h3

h2

hl

data

39



Speech Recognition

Transition Probabilities

/ o Compared with CD-GMM-HMMs, CD-

HVIM DNN-HMMs improved 5.8% and 9.2%
accuracy using the minimum phone error
rate (MPE) and maximume-likelihood (ML)

. e ' criteria
h( M) Observation
I \\ Y Probabilities
M
(Af1)
h 705%
ese DNN Q o Q 70.3%
70.0% ,
= 3
I W g 69.5% 4 e AL
1 @
v § 69.0% '
» 685%

2 3 4 5
Number of Hidden Layers

o - 8 f o T ;
E . l ; ? 8 g?}: ' “g‘)bsewation G840 ?’68‘1/"

i B PG Mapa B,

Dahl, Yu, Deng, Acero, IEEE TASLP, 2012 40



Speech Translation by Microsoft
Research

* See youku:
http://v.youku.com/v show/id XNDcOMDY40ODI0.html

41
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Method 2: Unroll the architecture and
fine-tune with BP

* The target is the data data’
itself T Wy
hl
* If the number of units in wr
layer h3 is small, then it h2 )
performs data 3 Ws
compression T w.
— Hinton, Salakhutdinov, h2
Science, 2006 1 w,
hl
£ Wl




Data compression

------------------------------------------ T WI-H:S
e , 2000 |
! 500 i Wiie,
| ¥ |
|  w, a om0 ]
b 1000 | REM. Wlie,
““““““““““““““““““““““ [ 500 |
E
_________________________________________ WI+°=5
. [_1000 ] | 0]
' 1. W, ' Waea
1 2000 | pEM! E@
““““““““““““““““““““““ Wate,
| 1000 |
WQ'H?z
2000 |
Wi+eq
RBM
Pretraining Unrolling Fine-tuning

Hinton, Salakhutdinov, Science, 2006 43



Reconstruction Results

real data
30-D deep auto

30-D logistic
PCA

30-D PCA

Bl real data

_ N q " 30-D deep auto
‘-‘:';"W‘ a- hunr 30-D PCA

44
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Retrieving Documents

tput
* Convert each document 2000 reconstructed counts Sgcﬁ)gr
into a “bag of words”. |
. 500 neurons
— This a 2000D vector i
e Compress them to 10D —— ”et“rons
vectors
e Compare documents 1
250
based on these 10D ”et“r"’”s
vectors 200 neurons
|

Input
vector

2000 word counts




Results on 804,414 Newswire Stories

Autoencoder-10D

1 3 7 15 31 63 127 255 511 1023
Number of retrieved documents

European Community
Interbank markets monetary/economic

Disasters and
accidents

.

-

Leading economic”

indicators . ‘?‘ . 3
' ..- . *
; ., Ve
2 ol
Sy e Government
" A'E ;
Accounts/ . TiiaE borrowings
eamings ¥
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Auto-encoder

* Encode the input v into some representation c(v)
so that the input can be reconstructed from that
representation

— Encoding function c(v)
— Decoding function f(c(v))



* Nonlinear function
c(v) = sigmoid(Wiv + 0)
f(e) = sigmoid(Wac + 1)

It can be constrained W: =Wy or not

* The functions can be used as probabilities for
binary variables



Learning Goal

e Minimize the reconstruction error or the
negative data log-likelihood

RE = —(In P(v|c(v)))
— Gaussian probability (v is real)
P(v]e(v)) ox exp (ZL=f I
then RE = (|jv— f(c(v))|?)
— Binomial probability (v is binary)
P(vle(v)) oc IL fi(e(v)) s (1 = fi(e(v))) '™
then RE=-(Z, (viln fi(c(v)) + (1 = vi) In(1 — f;(c(v)))))

50



Deep Auto-encoder

e Stack auto-encoders on top
of each other

* Train layers one by one

e Sparsity or other
regularizations can be used




A interesting application

Combined with
— Local receptive field
— L2 pooling

— Local contrast
normalization

The overall network

replicate this
architecture 3 times

Over 1 billion
parameters

Three days on a cluster
with 1,000 machines
(16,000 cores).

One laver

t

Input to another layer above
(image with 8 channels)

Number of output

Image Size = 200

Le, et al., ICML 2012

Number of input

_ channels =8
XD Size =5
H
Number
\ of maps =8
W
channels =3

52



S5 lugar

| Lussw soviens

Trained on Youtube images

Tested on a mixture of Labeled
Faces in The Wild and ImageNet

53



“face neuron”

Images with strongest responses

Optimal stimulus

54



“cat neuron”

Images with strongest responses

Optimal stimulus

55



* “body neuron”

Optimal stimulus



News in the Media
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http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html?_r=0
http://www.bbc.co.uk/news/technology-18595351
http://www.nbcnews.com/technology/futureoftech/google-built-machine-learns-find-cats-internet-846690
http://newsfeed.time.com/2012/06/27/google-builds-a-brain-that-can-search-for-cat-videos/

Summary so far

Principle: learn a representation first, then do task-relevant job

e RBM A
|« DBN
Unfeuaﬁi:xged » Auto-encoder )
~N
e A classifier on top (w/o fine tuning)
Siicek . o MLP (fine tuning with BP)
learning )

Is unsupervised learning really necessary?



Recall Hinton’s opinion about BP

network

It requires labeled training
data

e Almost all data is unlabeled

The learning time does not
scale well

e |tis very slow in networks with
multiple hidden layers

It can get stuck in poor local
optima

What if in some
applications there are
enough labeled data?

What if we have faster
computing hardware and
better model?

Things have changed since the end of 2012

59
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otivation

Receptive
eld Cell dischar

Nobel Prize in
Physiology or
Medicine,
1981

David Hubel Torsten Wiesel
A (1926-2013) (1924-)

TR,
:

Hierarchical organization of the visual system
— Inspired deep learning

Local receptive field

Simple cell and complex cell
— Template matching and pooling

It inspired Neocognitron (1980), then CNN (late 1980s-1990s)

61
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Convolutional neural network

C3: f. maps 16@10x10

INPUT géggitzuare maps 54: f. maps 16@5x5
32x32 S2: f. maps C5: layer
£ : : OUTPUT
6@14x14 120 o laver Ho

‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

5x5 2x2 5x5 2x2
* Local connections and weight sharing

* Clayers: convolution

— Output ¥ = fF(Q_qwjz; +b) where Q is the patch size,f (")
is the sigmoid function, w and b are parameters

* Slayers: subsampling (avg pooling)
— QOutputy; = f(wd_ o z; +b) where Q is the pooling size

62



Convolutional neural network

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
o5 6@28x28

S2: f. maps

Ch: layer .
6@14x14 750 YT F6:layer OUTPUT

84 10

‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

5x5 2x2 5x5 2X2
* Full connection layers: same as MLP

* The last layer can be either the sigmoid or
softmax function

63



BP algorithm

N
e Error function E— Z E®
n=1

where E(M is the error function for each input sample n

— Least square error
K 1

1 (L)

— Cross-entropy error

K (L—-1)T _ (L—1)
EM = —3 tyIn gDy = exp(wy, _ y(—ll_/ D+ by, L)
) K —1 —1
1 ijl exp(wj(. ) y(L—1) 4 bg- ))
* Weight adjustment Learning rate
w® — O _ aa_’f) SONEMONS &/8_13
Jt J [ J J (l)

64



New trends

Use GPU for acceleration
Do not use parameters in pooling layers

Activation function: rectified linear function is
preferred

Convolutional layers, pooling layers and full
connection layers can be arbitrarily placed

— E.g., not every convolutional layer requires a
subsequent pooling layer

— E.g., full connection layers may be unnecessary



ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

Image classification

Tasks

Accuracy: 0

Ground truth Accuracy: 1 Accuracy: D Accuracy: 0

Object detection

an‘) {drum Pecsan foking chalr Mcrophone S -clnr'r‘ cnn(m Mcrophore )«\Wu'hrlm

AP 1.0 1.0 1.0 1.0 AP: 0.0 05 1.0 03 AP: 1.0 0.7 0.5 0.9

The first column shows the ground truth label on an example image, and
the next three show three sample outputs with the corresponding

evaluation score.

Russakovsky, et al., 2014
66



CNN for image classification

-"-...___ FJ j:“KQ ﬁ ... — > :IIII
e\ | 3 |- . 4 4 |
Y S .= : 3| s A / Y I )
NN /L \
S 152 192 138 \ / 708 \/ Zoas \dense
N e A T o=
LR | -8 / iy
L IAVE RO 13 13 [ /o
N W SN N
— y
3 I 13 dense’| |dense
. ..'_'.""_-'.'-5-:. 3| 1000
N 192 192 128 Max ] L
| Max 128 Max poaling  “%%% 2048
Uof 4 poaling pooling . .
3 = Krizhevsky, Sutskever and Hinton, NIPS, 2012

 Network dimension: 150,528(input)-253,440-186,624—-64,896—
64,896—43,264—-4096—4096—1000(output)

* |In total: 60 million parameters

* Task: classify 1.2 million high-resolution images in the ImageNet
LSVRC-2010 contest into the 1000 different classes

* Results: Beat all previous models

67



Results

In 2013, the vast majority of teams used CNN.
In 2014, almost all teams used convolutional neural networks.

Image classification Single-object localization Object detection
03 05 05
"6 — =
s % 0.4 | :§ 0.4
S oz 503 2 o3|
5;'% 0.1 % 0.2 %'}-2
%‘E E 0.1 E 0.1
2010 2011 2012 2013 2014 o 2oz 2013 2014 ’ 2012 2014
ILSVRC year ILSVRC year ILSVRC year
Relative Confusion Al A2 ] Human classication results on
Human succeeds, GooglLeNet succeeds 1352 219 | the ILSVRC2012-2014
Human succeeds, GooglLeNet fails 72 8 . .
Human fails, GoogLeNet succeeds 46 24 classification test set, for two
Human fails, GoogLeNet fails 30 7 expert annotators Al and A2.
Total number of images 1500 258 Tob-5 classification error is
Estimated GoogLeNet classification error | 6.8% 5.8% P
Estimated human classification error 5.1% | 12.0% reported
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GoogleNet

* The network is 22 layers deep when counting
only layers with parameters (or 27 layers if we
also count pooling)

* Small filters are used (1x1, 3x3, 5x5)

* Two auxiliary classifiers connected to
intermediate layers are used to increase the
gradient signal for BP algorithm

Szegedy, et al., 2014
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Generic features for computer vision

The features trained on 1.2M images in ImageNet are
generic

— They have led to state-of-the-art accuracies on other
image classification benchmark datasets such as Caltech-
101, CIFAR-10

— They have led to state-of-the-art accuracies in object

detection tasks
R-CNN: Regions with CNN features

- warpedd region )?{ aeroplane? no. |

1. Input 2. Extract region
image  proposals (~2k)

4. Classify
regions

Girshick, et al, 2013 70




CNN for sentence classification

wait I [
n't - e
it 1 .
I | I | | | | |
n ¥ krepresentation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and poaling with dropout and
non-static channels feature maps softmax output

A convolutional layer (multiple filters with different lengths), a
global max pooling layer and softmax layer

Every word is represented by a vector (using word2vec tech)

This simple model beats other models on some benchmark
datasets

71



Concluding remarks

Deep learning has achieved exciting results on
many real-world problems

It seems to be a good model for processing big
data

Large models seems to be critical
— Parallel computing

Theoretical foundations are lacked
Relation to neuroscience

— Inspired by neuroscience
— Many neuroscience findings are not incorporated



Online resource

* Website: http://deeplearning.net/

— A reading list

— Software

— Datasets

— Tutorials and demos


http://deeplearning.net/
http://deeplearning.net/

