
MLDS

Caffe Tutorial

22900
图章

Outline

- BVLC: Berkeley Vision and Learning Center

- Caffe: Convolutional Architecture for Fast

Feature Embedding

- What can Caffe do?

- Installation

- Tutorial

- Conclusion

Caffe

●Convolutional Architecture for Fast Feature

Embedding

●http://caffe.berkeleyvision.org/

http://caffe.berkeleyvision.org/

Notes

●CNN/DNN

●Different training objective function

●Different optimization algorithm

●Program control

●Model Zoo

●C++ Framework

●NO LSTM/RNN

CNN/DNN modules

●Vision Layer
○ Convolution/ Pooling/ Local Response Normalization

●Common Layer
○ InnerProduct(= DNN fully-connected weights)

○ batch normalization

○ element-wise summation/product/BNLL

○ dropout layer

●Activation Layer(Non-linearity)
○ Sigmoid/Tanh/ReLU/PReLU

●Utility Layer
○ Dimension slicing/concatenation/flattening/reshaping

Training Loss Layer

●CrossEntropyLoss

●L1, L2 Loss, pair-wise contrasive loss

●Multitask Learning with loss weights

●Accuracy Layer: for evaluation only.

Optimization Algorithms

●SGD, RMSProp, ADAM, ADADELTA,

ADGRAD…

●Momentum

●Learning Rate Adjustment Policies
○ decay, step-decay, exp-decay

●Regularization
○ weight-decay, L1 decay

Program Control

●Snapshot (solverstate)

●Phase:
○ Convention: Train/Validation/Test

○ Caffe: Train/Test/Deploy

○ You could assign different action w.r.t different

phase.

●Caffe Program Interface
○ You can provide meta data without actually

implement the deep learning algorithms.

○ You can extend the module and implement your own

ideas.

What can Caffe do?

●Multitask learning
○ Multi-target, Multi-loss

●Parameters share training
○ Siamese Neural Network

●Easy to integrated into online system.
○ With known distributed database, protocol…

○ C++, Python and Matlab binding.

Multitask Learning

Siamese Neural Network

Introduction

●The goal of Caffe is to find the effective

representations(feature embedding) for

various inputs, such as images and sounds,

with help of deep learning and GPU

acceleration.
○ There does exist cross-domain feature

embedding among different tasks.

○ Utilize CUDA(cuDNN) to achieve acceptable

training time.

Introduction

● Caffe is designed for images and based on

state-of-the-art CNN. However, the concept

of feature embedding shares among other

works(e.g. speech recognition).

○ Yes, Caffe supports non-image tasks with a bit

more efforts.

Introduction

● Caffe provided well-known and well-

trained models, offering state-of-the-art

researching and off-the-shelf deployment.

○ ImageNet: classify images into 22000 categories.

○ GoogleNet: classify images into 1000 categories.

○ R-CNN: object detection (20 or 200 types)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.4842v1.pdf
http://arxiv.org/pdf/1311.2524v5.pdf

ImageNet

GoogleNet

R-CNN

Highlights

●Complete toolkit for training, testing, fine-

tuning and deploying.

●Modularity
○ Extensible

○ Forward, backward, CPU/GPU version.

●Good coding style and huge community
○ Only well-test idea would be merged into Caffe

○ Distributed developed with many coders.

○ Clearly logging, documentation, robust, bullet proof,

easy-understanding message...

Highlights

●Python/Matlab binding
○ Online deploying interface

○ Online training is not intuitively integrated but able

to.

●Pre-trained models

Architecture

●C++ implementation
○ Well-known efficiency.

●Saving models in GPBL.
○ Google Protocol Buffer Language

○ Human-readable, efficient serialization and

implemented in multiple interface.

●Online training
○ Memory data.

●Offline training
○ LevelDB database for image data

○ HDF5 database for general purpose.

https://developers.google.com/protocol-buffers/docs/proto
https://github.com/google/leveldb
http://www.hdfgroup.org/HDF5/

Application

●Object Classification/Detection
○ ImageNet

○ Demo

http://demo.caffe.berkeleyvision.org

Application

●Learning Feature Embedding
○ ImageNet

○ Using pre-trained models as feature extractor

Tutorial

●Installation
○ Prerequisite/Core/Wrappers

●Data Preprocessing
○ LevelDB/HDF5

●Models
○ description, model weights, protobuf

●Solver
○ description, solver state

●Training/Testing/Fine-tuning/Deploying

Warning

●Caffe is not officially supporting

Windows OS. Ubuntu/CentOS is

recommended.

●Caffe is not officially supporting

Windows OS. Ubuntu/CentOS is

recommended.

●Caffe is not officially supporting

Windows OS. Ubuntu/CentOS is

recommended.

●不要問我windows怎麼灌。

Installation

● Install Prerequisite
○ CUDA and cuDNN

○ BLAS via OpenBLAS, MKL, or ATLAS

○ sudo apt-get install

Boost/OpenCV/protobuf/glog/gflags/hdf5/leveldb/snappy/lmdb

●Install Caffe
○ prepare Makefile.config from Makefile.config.example

○ make all && make test && make runtest

●Install Python wrapper(optional but

recommended)
○ for req in $(cat requirements.txt); do pip install $req; done

○ export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH

Data Preprocessing

●Input data must be 4D array:
○ Image: (number, channel, height, width)

○ Non-image: (number, dimension , 1 , 1)

●Training target is usually 2D array:
○ Label: (number, dimension)

●Online Memory
○ (C++) MemoryDataLayer::Reset()

○ (python) Net.set_input_arrays()

●Offline database
○ prepare a directory contain all the images

○ prepare lmdb(python) or leveldb(c++) for images

○ prepare hdf5(python) for general purposes

○ prepare train.list/test.list comprising the path

https://lmdb.readthedocs.org/en/release/
https://github.com/google/leveldb
http://www.h5py.org/

Models

●Description
○ DAG layered structure written in json format.

○ Data Layers: read from data, only out-degree

○ Activation/Neuron Layers: perform forward/backward

pass.

○ Loss Layers: nn output, only in-degree

○ Common Layers: for utility

○ Each type of layers contain its own parameters

○ Different layer parameter could share!

Models

Models

Models

Models

Models

●Model Weights
○ x.caffemodel

○ store in GPBL format

○ prototype

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto

Solver

Training and Testing

●Preparation:
○ data

○ model description(nnet.prototxt)

○ solver description(solver.prototxt)

●You can specify two phase
○ training -> calculate loss, gradients, backward pass

and update

○ testing -> calculate accuracy/loss

●run:
○ caffe train --solver=solver.prototxt

Fine-tuning

●Preparation:
○ data

○ model description(nnet.prototxt)

○ solver description(solver.prototxt)

○ pre-trained models(pretrain.caffemodel)

●run:
○ caffe train --solver=solver.prototxt --

weights=pretrain.caffe

Deploying

●Preparation:
○ data

○ model description(deploy.prototxt)

○ well-train model(well_train.caffemodel)

○ pycaffe if you use python

○ your own code(python, c++ or matlab)

●deploy.prototxt is slightly different

Deploying(python example)

●Add data description in deploy.prototxt
○ remove any DATA_LAYER

●In python, import caffe
○ net = caffe.Classifier(MODEL_FILE, PRETRAINED)

○ use numpy array to prepare your input data

○ net.blobs['data'].reshape(input_shape)

○ out = net.forward(data=input)

○ use out['label'] to get any output you want.

Final Recommendation

●Caffe is easy and flexible to use, but not that

efficient. 甚至可以不用寫程式XD

●For complicated structure with multi-loss

layer, weight sharing and advanced

optimization, caffe is good.

●However, you should prepare data in the

specified format
○ HDF5, LMDB, LEVELDB…

○ offline training/testing is easy and preferred

●For online procedure, you must write your

own code to deploy.

