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Objective of Machine Learning 

Inference problem: 

Infer the states of the unobserved variables.  

Learning problem: 

Adjust the interactions between variables to make the 

network more likely to generate the observed data. 

Chinese Academy of Sciences 

Geoffrey Hinton: UCL tutorial on Deep Belief Nets 
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What is deep learning? 

Can Machine 

do as a 

human do? 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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What is deep learning? 

Raw input vector representation 
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Man Sitting 

Slightly higher level represetation 
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What is deep learning? 
Man Sitting 

Very high level representation 

Slightly higher level represetation 

…etc… 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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What is deep learning? 

Deep learning is about learning multiple levels 

of representation and abstraction that help to 

make sense of data such as images, sound, and 

text. 

Machine 

Learning 

Artificial 

Intelligence 

http://deeplearning.net/tutorial/  
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Depth of an architecture 

Depth of  a flow graph 

The longest path from an input node to an 

output node 

SVM: depth = 2 = kernels + linear combination 

The number of layers in a neural network 

MFNN: depth = number of hidden layers + 1 

http://deeplearning.net/tutorial/  
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Motivation for deep architecture 

The brain has a deep architecture. 

Representations are dense distributed and purely local. 

Cognitive process seem deep. 

Theoretical limitations of shallow architectures. 

polynominal-size (k)      vs        exponential-size (k-1) 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Motivation for deep architecture 

 Learning algorithms for many shallow 

architecures are local estimators. 

a) Made of a set of templates 

b) Combine the matching degree 

Eg. Kernel machine 

 

Combine  

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Motivation for deep architecture 

 Learning algorithms for many shallow 

architecures are local estimators. 

a) Made of a set of templates 

b) Combine the matching degree 

Eg. Kernel machine 

 

Match Combine  

Smoothness prior! 
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Motivation for deep architecture 

Distributed Representation 

The input pattern is represented by a set of features 

that are not mutually exclusive, and might even be 

statistically independent. 

Eg. Clustering algorithms do not build a distributed 

representation, whereas Independent Component 

Analysis builds a distributed representation.  

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Learning deep architecture 

…
…

 

Lower layer 

Higher layer 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Learning deep architecture 
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Learning deep architecture 

Convolutional neural networks 

Lecun, 1989&1998; Simard & Platt, 2003; Ranzato, 

2007  

Associate each hidden layer with an 

autoassociator 

Sigmoid belief networks 

Hinton et al, 1995 - 2007 

Deep belief networks 

Hinton et al, 2006; Bengio et al, 2007 

http://deeplearning.net/tutorial/  
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Convolutional neural networks 

Figure 1. A CNN for image processing, e.g. handwriting recognition. 

Yann LeCun, Yoshua Bengio: Convolutional Networks for Images, Speech, and Time-Series, In Arbib, M.A. The 

hand book of Brain Theory and Neural Networks, MIT Press, 1995, 255-258 
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Convolutional neural networks 

layer m-1 

layer m 

layer m+1 

a plane 

http://deeplearning.net/tutorial/  
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Convolutional neural networks 

layer m-1 

layer m 

layer m+1 

a plane 

Time-Delayed Neural Network-----TDNN 
http://deeplearning.net/tutorial/  
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Convolutional neural networks 

layer m-1 

layer m 

layer m+1 

a plane 

Share 

weights 

Shared Weight Neural Network-----SWNN 

http://deeplearning.net/tutorial/  
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Convolution  

Mathematical function 

 

 

 

CNN 
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Subsampling  

A feature map ---- a subsampling layer 

Receptive field: continuous and nonoverlapping. 

Yann LeCun, Yoshua Bengio: Convolutional Networks for Images, Speech, and Time-Series, In Arbib, M.A. The 

hand book of Brain Theory and Neural Networks, MIT Press, 1995, 255-258 
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Subsampling  

A feature map ---- a subsampling layer 

Receptive field: continuous and nonoverlapping. 

Yann LeCun, Yoshua Bengio: Convolutional Networks for Images, Speech, and Time-Series, In Arbib, M.A. The 

hand book of Brain Theory and Neural Networks, MIT Press, 1995, 255-258 
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Subsampling in vision 

Reduce the computational complexity 

Provide a form of translation inviarance 

 

http://deeplearning.net/tutorial/  
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Note 

Parallel computation 

Local connectivity structure 

Computation cost 

 

    Feature map size decreases with depth. 

Even with random weights in the first layer, a 

CNN performs well, better than a trained 

MFNN but worse than a fully optimized CNN. 

    ll KKnmnNmM  1

http://deeplearning.net/tutorial/  
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LeNet-5 

LeCun et al designed the LeNet-5 for 

handwritten and machine-printed character 

recognition. 

http://deeplearning.net/tutorial/  
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LeNet-5 

LeCun et al designed the LeNet-5 for 

handwritten and machine-printed character 

recognition. 

http://yann.lecun.com/exdb/lenet/ 

http://deeplearning.net/tutorial/  



Competition on MNIST 

MNIST-----a database of handwritten digits 

a training set of 60,000 examples, and a test set 

of 10,000 examples. 

A subset of a larger set available from NIST.  

The digits have been size-normalized and 

centered in a fixed-size image.  

Chinese Academy of Sciences 

http://yann.lecun.com/exdb/mnist/   
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Convolutional net LeNet-1 
subsampling to 16x16 

pixels 
1.7 LeCun et al. 1998 

Convolutional net LeNet-4 none 1.1 LeCun et al. 1998 
Convolutional net LeNet-4 with K-NN instead 

of last layer 
none 1.1 LeCun et al. 1998 

Convolutional net LeNet-4 with local learning 

instead of last layer 
none 1.1 LeCun et al. 1998 

Convolutional net LeNet-5, [no distortions] none 0.95 LeCun et al. 1998 

Convolutional net LeNet-5, [huge distortions] none 0.85 LeCun et al. 1998 

Convolutional net LeNet-5, [distortions] none 0.8 LeCun et al. 1998 
Convolutional net Boosted LeNet-4, 

[distortions] 
none 0.7 LeCun et al. 1998 

unsupervised sparse features + SVM, [no 

distortions] 
none 0.59 Labusch et al., IEEE TNN 2008 

Convolutional net, cross-entropy [affine 

distortions] 
none 0.6 Simard et al., ICDAR 2003 

Convolutional net, cross-entropy [elastic 

distortions] 
none 0.4 Simard et al., ICDAR 2003 

large conv. net, random features [no distortions] none 0.89 Ranzato et al., CVPR 2007 

large conv. net, unsup features [no distortions] none 0.62 Ranzato et al., CVPR 2007 

large conv. net, unsup pretraining [no 

distortions] 
none 0.60 Ranzato et al., NIPS 2006 

large conv. net, unsup pretraining [elastic 

distortions] 
none 0.39 Ranzato et al., NIPS 2006 

large conv. net, unsup pretraining [no 

distortions] 
none 0.53 Jarrett et al., ICCV 2009 

http://yann.lecun.com/exdb/mnist/   



Autoassociator  

An autoassociator is trained to encode the input in 

some representation so that the input can be 

reconstructed from that representation. 

autoencoder, Diabolo network 

supervised learning 

only work well for examples similar to those in the training 

set 

Chinese Academy of Sciences 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 



Autoassociator  

Linear hidden layer: k hidden units to k captures 

features -----  PCA 

Nonlinear hidden layer: capture multi-modal aspects of 

input distribution. 

Important when stacking multiple encoders (with corresponding 

decoders) are considered to build a deep auto-encoder. 

Non-linear auto-encoders with more hidden units than 

inputs yield useful representations. 

Chinese Academy of Sciences 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Restricted Boltzmann Machines 

EBM BM RBM 
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Energy Based Model---EBM 

EBM associates a scalar energe to each 

configuration of the variables of interest. 

e.g. energy-based probabilistic models define a 

probability distribution through an energy function. 

 

 

Loss function: 
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EBMs with hidden units 

Non-observed variables 

 

Boltzmann Machine 
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Restricted Boltzmann Machine 

Energy function 

  WxhhcxbhxE ''', 

visible layer 

hidden layer 

Note: a RBM adds randomness in the transformation 

from input to reconstruction by the view of auto-

associator. 

http://deeplearning.net/tutorial/  
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Train a RBM 

Objective : 

 

 

 

 

Gradient based 
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Sampling from a RBM 

Benifts: 

To obtain an estimator for the log-likelihood gradient in 

the learning algorithm. 

To get an idea of what the model has captured or not 

captured about the data distribution. 

Gibbs sampling 

   
i

i xhpxhp

   
i

i hxphxp

http://deeplearning.net/tutorial/  
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Sampling from a RBM 

Benifts: 

To obtain an estimator for the log-likelihood gradient in 

the learning algorithm. 

To get an idea of what the model has captured or not 

captured about the data distribution. 

Gibbs sampling 

   
i

i xhpxhp

   
i

i hxphxp

As t—>∞, samples (x(t),h(t)) are guaranteed to be 

accurate samples of p(x,h). 

http://deeplearning.net/tutorial/  
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Sampling from a RBM 

Benifts: 

To obtain an estimator for the log-likelihood gradient in 

the learning algorithm. 

To get an idea of what the model has captured or not 

captured about the data distribution. 

Gibbs sampling 

   
i

i xhpxhp

   
i

i hxphxp

As t—>∞, samples (x(t),h(t)) are guaranteed to be 

accurate samples of p(x,h). 

Prohibitively 
Expensive!!! 

http://deeplearning.net/tutorial/  
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Contrastive Divergence 

Initialize the Markov Chain with a training 

example. 

Samples are obtained after only k-steps of 

Gibbs sampling 

For each parameter update, the state of the 

chain is then preserved for subsequent updates. 

Use pseudo-likelihood as the proxy to the 

likelihood, much less expensive. 

http://deeplearning.net/tutorial/  
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Deep Belief Networks 

RBMs can be stacked and trained in a greedy 

manner to form Deep Belief Networks. 

A DBN with l layers models the joint 

distribution between observed vector x and l 

hidden layers hk as follows: 
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Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 



Deep Belief Networks 

Explaining away 

Chinese Academy of Sciences 

truck hits house earthquake 

house jumps 

20 20 

-20 

-10 -10 

  

p(1,1)=.0001 

p(1,0)=.4999 

p(0,1)=.4999 

p(0,0)=.0001 

posterior 

Geoffrey Hinton: UCL tutorial on Deep Belief Nets 



What is wrong with BP? 

It requires labeled training data. 

Almost all data is unlabeled. 

The learning time does not scale well. 

It is very slow in networks with multiple hidden layers. 

It can get stuck in poor local optimal. 

These are often quite good, but for deep nets they are 

far from optimal. 

Chinese Academy of Sciences 

Geoffrey Hinton: UCL tutorial on Deep Belief Nets 



Overcoming the limitation of BP 

Keep the efficiency and simplicity of using a 

gradient method for adjusting the weights, but 

use it for modeling the structure of the sensory 

input.  

Adjust the weights to maximize the probability that a 

generative model would have produced the sensory 

input.  

Learn p(x) not p(y|x) 

Chinese Academy of Sciences 

Geoffrey Hinton: UCL tutorial on Deep Belief Nets 



A fast learning algorithm 

 Learn W assuming all the weights are tied. 

 Freeze W and commit ourselves to using WT to infer factorial 

approximate posterior distributions over the states of the 

variables in the first hidden layer, even if subsequent changes in 

higher-level weights mean that this inference method is no 

longer correct.  

 Keeping all the higher-weights tied to each other, but untied 

from W, learn a RBM model of the higher level “data” that was 

produced by using WT to transform the original data. 

 Fine-tune all the parameters by wake-sleep algorithm. 
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Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh: A fast learning algorithm for deep belief nets. Neural 

Computation 18, 2006, 1527-1554 
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Deep Belief Networks 

Traine the 1st layer as a RBM 
Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Deep Belief Networks 

Traine the 1st layer as a RBM 

Obtain a representation of 

the input 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Deep Belief Networks 

Traine the 1st layer as a RBM 

Obtain a representation of 

the input 

Train the next layer as a 

RBM 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Deep Belief Networks 

Traine the 1st layer as a RBM 

Obtain a representation of 

the input 

Train the next layer as a 

RBM 

Fine-tune all the parameters 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Deep Belief Networks 

Traine the 1st layer as a RBM 

Obtain a representation of 

the input 

Train the next layer as a 

RBM 

Fine-tune all the parameters 



      A Model of Digit Recognition 

2000 top-level neurons 

500 neurons 

500 neurons  

28 x 28 

pixel     

image  

10 label 

neurons  

Geoffrey Hinton: UCL tutorial on Deep Belief Nets 



Movies from Hinton 
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http://www.cs.toronto.edu/~hinton/adi/index.htm 
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Open Questions  

Is the presence of local minima an important issue in 

training RBMs? 

Can we jointly train all the layers with respect to the 

unsupervised objective? 

Aren’t there other efficient trainable deep architecture 

besides DBNs? 

Can we find analogs of the computations necessary for 

Contrastive Divergence and DBN learning in the brain? 

Can decision tree ensembles be stacked to obtain a 

different type of deep architecture? 

Yoshua Bengio: Learning Deep architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 
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Multimodal DL 
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Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee and Andrew Y. Ng: Multimodal Deep 

Learning, In Proceedings of the Twenty-Eighth International Conference on Machine Learning, 2011 



Comments  

Entropy might be used to measure the lost/gain 

after learning layer by layer, which can also 

propagate forward the network. 

Whether maximizing the probability in DBNs 

can be replaced by maximizing/minimizing the 

mutual information if each layer is associated 

with mutual information?  

Can the divergence proposed in MLSP2011 be 

in the place of Contrastive Divergence in 

learning a RBM? 
Chinese Academy of Sciences 
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