
1

Modelica Tutorial for Beginners

Hubertus Tummescheit† and Bernhard Bachmann‡

†United Technologies Research Center
‡ University of Applied Sciences Bielefeld

Multi-domain Modeling and Simulation

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 2

Outl ine

� Introduction
– Industrial Application Examples
– Composition Diagram versus Block Diagram
– The Modelica Association

� Modeling with Modelica
– Flat and Hierarchical Models
– Special Model Classes
– Matrices, Arrays and Arrays of Components
– Physical Fields
– Hybrid Modeling

Based on Material from Martin Otter and Hilding Elmqvist

2

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 3

Space-Robotic

D2 Mission 1995 (Robot in Space
Shuttle is controlled from Earth, 7s
for signal transmission)

Industrial Robots
New drive trains,
Service-Robots,
cooperation with KUKA

Control Design for fly-by-wire,
automatic landing, etc.; based on
optimizing of parameter

Automobile
Modeling, simulation of
mechatronical
components

DLR - Institute of Robotics and Mechatronics

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 4

Test of Protection Devices in Power
Systems

3

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 5

Power Flow Analysis in Power Systems

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 6

Modeling und simulation of multi-domain physical systems

• to beat the modeling complexity

� Mechanics (3D-Mechanics, Drive Trains)

� Aerodynamics

� Thermo-fluid dynamics (Turbine engine)

� Hydraulics

� Electrics

� Control systems

� Discrete Control

Example: Dynamics of an air plane

Modelica Design Effort

4

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 8

Example: Vehicle Dynamics using MBS-library

The property to “figure out” how to use a component optimally in different environments is a
condition for re-usable, object-oriented model libraries, like the VehicleDynamics library

• Symbolic capabilities condition for scalability to complex models

• Based on a few, very general component models to build complex sub-sytems, e.g.
McPherson suspension.

BMW 3-series chassis
driving over icy patch on the
road. Off-center additional
weight on the roof.

154 States
5245 non-trivial variables
Largest linear system 478,
reduced to 30 by tearing

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 9

Block diagram
in Simulink

Component diagrams generalize Block diagrams
=> The next generation of simulation tools

Component
diagram

in Dymola

5

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 10

Where to find?

• Books
• Experts

Modeling Knowledge

Main Idea:

Computer based storage of
modeling knowledge

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 11

Component Diagrams

• Each icon represents a physical component .
i.e.: electrical Resistance, mechanical Gearbox, Pump

• Composition lines are the actual physical connections .
i.e.: electrical line, mechanical connection, heat flow between two components

• Variables at the interfaces describe interaction with other components

• Physical behavior of a component is described by equations

• Hierarchical decomposition of components

Component
Connection

6

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 12

model Resistor
extends OnePort;
parameter Real R;

equation
v = R*i;

end Resistor;

Example: Industrial
Robot

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 13

Graphical Editor

model test1
Modelica.Mechanics.Rotational.Inertia J1(J=0.002)

...

Modelica model (Text file:
test1.mo)

File:
..\Modelica\Mechanics\Rotational.mo

Component-
Library

void dsblock(double *x,

...

C-function

Simulator

compile + link

Modeling and Simulation with Modelica
tools

7

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 14

Modelica Language Design Goals

� Unify object-oriented modeling languages
– Dymola, gPROMS, NMF, ObjectMath, Omola, Smile, U.L.M., …

� Allow reuse of physical models
– Electrical motor, robot arm, …

� Combine components of different engineering disciplines
Electrics, mechanics, thermo-dynamics, hydraulics, ...

� Description using differential- und algebraic equations
– Declarative instead of procedural

� Achieve efficient simulation code
– Event handling, ideal devices, etc.

� Develop component libraries
– http://www.Modelica.org/library/library.html

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 15

•Chairman Martin Otter DLR, Munich, Germany
•Vice-Chairman Peter Fritzson Linköping University, Sweden
•Secretary Hilding Elmqvist Dynasim AB, Lund, Sweden (former Chairman)
•Treasurer Michael Tiller Ford Motor Company, Dearborn, U.S.A.

• Peter Aronsson MathCore, Linköping, Sweden
• Bernhard Bachmann University of Applied Sciences, Germany
• Peter Beater Universität Paderborn, Germany
• Dag Brück Dynasim AB, Lund, Sweden
• Peter Bunus Linköping University, Sweden
• Vadim Engelson Linköping University, Sweden
• Thilo Ernst GMD-FIRST, Berlin, Germany
• Jorge Ferreira Universidade de Aveiro, Portugal
• Rüdiger Franke ABB Corporate Research Ltd, Heidelberg,Germany
• Pavel Grozman BrisData AB, Stockholm, Sweden
• Johan Gunnarsson MathCore, Linköping, Sweden
• Mats Jirstrand MathCore, Linköping, Sweden
• Kaj Juslin VTT, Finland
• Clemens Klein-Robbenhaar GMD Köln, Germany
• Sven Erik Mattsson Dynasim AB, Lund, Sweden
• Henrik Nilsson Linköping University, Sweden
• Hans Olsson Dynasim AB, Lund, Sweden
• Tommy Persson Linköping University, Sweden
• Per Sahlin BrisData AB, Stockholm, Sweden
• Levon Saldamli Linköping University, Sweden
• Andre Schneider Fraunhofer Institute for Integrated Circuits, Dresden, Germany
• Peter Schwarz Fraunhofer Institute for Integrated Circuits, Dresden, Germany
• Hubertus Tummescheit Lund University, Sweden
• Hansjürg Wiesmann ABB Corporate Research Ltd, Baden, Switzerland

Modelica Association

8

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 16

• Design started September 1996

• Modelica Version 1.0 - September 1997

• Modelica Version 1.1 - December 1998

• Modelica Version 1.2 - June 1999

• Modelica Version 1.3 - December 1999

• Modelica Version 1.4 - December 2000

• Modelica Version 2.0 - March 2002

• Modelica Version 2.1 - October 2003

• 3rd International Modelica Conference 3./4. November 2003, Linköping

•> 35 Modelica-Design-Group Meetings (each 3 days)

• > 25 members of the “Modelica Association ”

• > 200 members of the “Modelica Interest group”

• Libraries and tools are available

Status of Modelica

http://www.Modelica.org

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 17

Modeling with Modelica
� Flat und hierarchical models

– data types, attributes, components, interface-variables, package-
concept, inheritance

� Special model classes
– constraints on variables and parameters

• input, output, final, protected

– equations versus Algorithms
– class types in Modelica

• type, connector, model, block, function, package
� Matrices, arrays and arrays of components

– definition, index sets, for-in-loop, array-functions
� Physical fields

– global variables, inner, outer
� Hybrid modeling

– events, if-then-else, when-statement

9

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 18

model MovingMass1 "Moving Mass";
parameter Real m=2 "Mass of block";
parameter Real f=6 "Force";
Real s "Position of block";
Real v "Velocity of block";
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass1;

s f = 6 N
m = 2 kg

fsm =⋅
��Version 1:

parameters (changeable before start
of simulation)

floating point number

mathematical equation, (non–causal)
differentiation with regards to time

graphical information
comment

(display in dialogue)

new model

name + default-value

Simple Modelica-Model (Flat)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 19

Real floating point variable, i.e. 1.0, -2.3e-5

Integer integer variable, i.e. 1, 4, -333

Boolean boolean variable, i.e. false, true

String string, i.e. "from file:"

Pre-Defined Basic-Data Types in Modelica

10

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 20

Mars Climate Orbiter Failure Board Release Report, Nov. 10, 1999:
... "The 'root cause' of the loss of the spacecraft was the failed
translation of English units into metric units in a segment of ground-
based, navigation-related mission software, as NASA has previously
announced," said Arthur Stephenson, chairman of the Mars Climate
Orbiter Mission Failure Investigation Board.

Picture from
NASA/JPL/Caltech.

Cause of Failure of the Mars Climate Orbiter on September 23,
1999

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 21

s f = 6 N
m = 2 kg

fsm =⋅
��

Version 2:

model MovingMass2
parameter Real m(min=0, unit="kg") = 2;
parameter Real f(unit="N") = 6;
Real s;
Real v;
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass2;

attribute of real data type

unit of variables can be checked in
equations

Simple Modelica-Model (Flat)

11

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 22

Each physical unit can be calculated based on the 7
SI-base units:

kg, m, s, A, K, mol, cd

Comparison in equations:
Two physical variables are comparable , if the units with
regards to the 7 SI-base units are identical .

Type Unit in SI-base units
Moment Nm kgm2/s2
Energy J kgm2/s2

Example:

SI-Base Units

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 23

quantity type of physical quantity
unit unit of variable, used within equations
displayUnit unit, used for visualization

quantity = unit = displayUnit =
"Torque" "N.m"
"Energy" "J"
"Angle" "rad" "deg"

Example:

attributes of Real variables:

Syntax of unit-expressions, Examples:

kg.m2/s2, kg.m.m/(s.s), rad/s, 1/s, s-1

Realization of Units in Modelica

12

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 24

min minimal value of quantity
max maximal value of quantity
start start value of state variables. i.e.:

3)(, 0 ==⋅ tvfvm
�

nominal nominal value can be used for scaling

purposes in numerical routines

Example:

parameter Real m(min=0, quantity="mass", unit="kg") = 2;
Real v(quantity="velocity", unit="m/s", start=3);

Pre-defined variable types :
e.g. variables with a given set of attributes

More Attributes of Real Variables:

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 25

type Angle = Real(quantity = "Angle", unit = "rad",
displayUnit = "deg");

type Torque = Real(quantity = "Torque", unit = "N.m");
type Mass = Real(quantity = "Mass", unit = "kg", min=0);
type Velocity = Real(quantity = "Velocity", unit = "m/s");

Examples of different variable types:

parameter Mass m = 2;
Velocity v(start=3);

Use of variable types:

Pre-Defined Variable Types

13

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 26

includes all 450 ISO-standard units in form of pre-defined variable types!

The Modelica Library Modelica.SIunits

(File:

...\Modelica\SIunits.mo)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 27

parameter Modelica.SIunits.Mass m = 2;
Modelica.SIunits.Velocity v(start=3);

Variant 1 (full name):

package SI = Modelica.SIunits; // Alias-Name

parameter SI.Mass m = 2;
SI.Velocity v(start=3);

Variant 2 (short name):

comment

Use of the Modelica.SIunits Library

14

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 28

model MovingMass3
package SIunits = Modelica.SIunits;
parameter SIunits.Mass m = 2 "mass of block";
parameter SIunits.Force f = 6 "force to pull block";
SIunits.Position s "position of block";
SIunits.Velocity v "velocity of block";
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass3;

This is the prefered style of modeling!

component library

s f = 6 N
m = 2 kg

fsm =⋅
��

Version 3:

Simple Modelica-Model (Flat)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 29

DC-motor

motor-inertia + ideal gear box + load-inertia

flange

electric wire

Graphical Editor

Hierarchical Modelica Model
(Model of a simple drive train)

15

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 30

model SimpleDrive
Modelica.Mechanics.Rotational.Inertia Inertia1(J=0.002);
Modelica.Mechanics.Rotational.IdealGear IdealGear1(ratio=100)

...
Modelica.Electrical.Analog.Basic.Resistor Resistor1(R=0.2)

...
equation

connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

connector "flange_a" of IdealGear1

connector "n" of Resistor1connection

new model-class
modifiermodel-class model-instance (component)

Part of drive train model
(without graphics-information)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 31

i1

i3

i2

v1
v3

v2

f1 f2

f3

s1

s3

s2

electrical 1D-mechanical

0321

321

=++
==
iii

vvv

0321

321

=++
==

fff

sss

connect(R1.p, R2.p); connect(m1.flange_a, m2.flange_a);

Variables within interfaces
(connector variables)

16

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 32

Two kind of variables in connectors

Potential-Variable Connected variables are identical

Flow-Variable Connected variables fulfil the zero-
sum equation

connector Pin connector Flange
SIunits.Voltage v; SIunits.Angle phi;
flow SIunits.Current i; flow SIunits.Torque tau;

end Pin; end Flange;

connector-class
new connector-class

flow-variable

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 33

Type Potential variable Flow variable

electric V potential i current

translatorial s distance f force

rotatorial ϕ angle τ torque

hydraulic p pressure V flow rate

thermal T temperature Q heat flow

chemical µ chem. potential N Current of particles

connector XXX
Real PotentialVariable

flow Real FlowVariable
end XXX;

Interface variables within the
Modelica standard library

17

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 34

Model of Resistor
p.i n.i

p.v n.v

model Resistor
package SIunits = Modelica.SIunits;
package Interfaces = Modelica.Electrical.Analog.Interfaces;
parameter SIunits.Resistance R = 1 "Resistance";
SIunits.Voltage v "Spannungsabfall über Element";
Interfaces.PositivePin p;
Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 35

Summary
model SimpleDrive

..Rotational.Inertia Inertia1 (J=0.002);

..Rotational.IdealGear IdealGear1(ratio=100)

..Basic.Resistor Resistor1 (R=0.2)
...

equation
connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

model Resistor
package SIunits = Modelica.SIunits;
parameter SIunits.Resistance R = 1;
SIunits.Voltage v;
..Interfaces.PositivePin p;
..Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

connector PositivePin
package SIunits = Modelica.SIunits;
SIunits.Voltage v;
flow SIunits.Current i;

end PositivePin;

type Voltage =
Real(quantity="Voltage",

unit ="V");

18

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 36

package Modelica
package Mechanics

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;
end Mechanics;

...
end Modelica;

Modelica models are structured in hierarchical libraries (packages)

Modelica.Mechanics.Rotational.Inertia

The package concept in Modelica

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 37

encapsulated package Modelica
package Mechanics

package Rotational
package Interfaces

connector Flange_a
...

end Flange_a;
end Interfaces

model Inertia
Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_a a;

end Inertia;
...

end Rotational;
end Mechanics;

...
end Modelica;

Name-lookup within a package

equivalent definitions

The package concept in Modelica

Name lookup stops at
“encapsulated”

19

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 38

Storage of a hierarchical package within one file

package Modelica
package Mechanics

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;
end Mechanics;

...
end Modelica;

File: Modelica.mo

The package concept in Modelica

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 39

Storage of a hierarchical package distributed within different files and directories

...\Modelica
\Blocks
\Electrical
\Mechanics

package.mo
Rotational.mo
Translational.mo

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;

File: ...\Modelica\Mechanics\Rotational.mo

Each package-directory must include a
file package.mo that contains
additional information to the package
(i.e. annotations to \Mechanics)

package Mechanics
end Mechanics;

File:
...\Modelica\Mechanics\package.mo

Modelica is case-sensitive !

The package concept in Modelica

20

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 40

package Electrical
package SIunits = Modelica.SIunits;

connector Pin
SIunits.Voltage v;
flow SIunits.Current i;

end PositivePin;

end Electrical;

partial model TwoPin
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

equation
0 = p.i + n.i;
u = p.v - n.v;
i = p.i;

end TwoPin;

model Capacitor
extends TwoPin;
parameter SIunits.Capacitance C;

equation
C*der(u) = i;

end Capacitor;

= abbreviation
(see: type Force = Real (unit="N")

incomplete model (cannot be instantiated)

inheritance

Partial Models and Inheritance

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 41

package Electrical
package SIunits = Modelica.SIunits;

connector Pin
SIunits.Voltage v;
flow SIunits.Current i;

end PositivePin;

model Capacitor
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

parameter SIunits.Capacitance C;
equation

0 = p.i + n.i;
u = p.v - n.v;
i = p.i;
C*der(u) = i;

end Capacitor;
end Electrical;

Advantage of extends :

Common properties are
defined only once!

partial model TwoPin
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

equation
0 = p.i + n.i;
u = p.v - n.v;
i = p.i;

end TwoPin;

model Capacitor
extends TwoPin;
parameter SIunits.Capacitance C;

equation
C*der(u) = i;

end Capacitor;

Previous Model is identical to:

21

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 42

connector OutPort
parameter Integer n=1;
output Real signal[n];

end OutPort;

model TorqueSensor
SIunits.Torque tau;
Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;
Blocks.Interfaces.OutPort outPort(final n=1);

equation
flange_a.phi = flange_b.phi;
tau = flange_a.tau;
tau = -flange_b.tau;
tau = outPort.signal[1];

end TorqueSensor;

Restriction of outputs
i.e. no connections to other outputs.
(Same yields for input)

May not be changed any more

Constraints on variables and parameters

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 43

block FirstOrder
parameter Real k=1 "gain";
parameter Real T=0.01 "time constant";
Blocks.Interfaces.InPort inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real y = outPort.signal[1];

equation
T*der(y) + y = k*u;

end FirstOrder;

= model, for which all public variables are
input, output, parameter or constant.

variable, which cannot be
accessed from outside

ukyyT ⋅=+⋅
�

u
sT

k
y ⋅

+⋅
=

1

equation in declaration part

Efficient and reliable modeling

22

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 44

block Limiter
parameter Real uMax= 1 "maximum value";
parameter Real uMin=-1 "minimum value";
Blocks.Interfaces.InPort inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real u = inPort.signal[1];
Real y = outPort.signal[1];

equation
y = if u > uMax then uMax else

if u < uMin then uMin else u;
end Limiter;

if - expression

Variant 1:
Comparison of equations

and algorithms

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 45

block Limiter
parameter Real uMax= 1 "maximum value";
parameter Real uMin=-1 "minimum value";
Blocks.Interfaces.InPort inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real u = inPort.signal[1];
Real y = outPort.signal[1];

algorithm
if u > uMax then

y := uMax;
elseif u < uMin then

y := uMin;
else

y := u;
end if;

end Limiter;

Variant 2:

assignment operator

procedural part
(no equations)

if-block
(as in C, Fortran, etc.)

all assignments in an
algorithm -section will be
executed in the given order

Comparison of equations and algorithms

23

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 46

function Limiter
input Real uMax=2, uMin=-2;
input Real u;
output Real y;

algorithm
if u > uMax then

y := uMax;
elseif u < uMin then

y := uMin;
else

y := u;
end if;

end Limiter;

Variant 3:

Function, as in C or
Fortran

Function calls

default-
value

(means: uMax=1, uMin=-1, u=x0)

model test
Real x0, x1, x2;

equation
x1 = Limiter(1, -1, x0);
x2 = Limiter(u=x0);

end test;
(means: uMax=2, uMin=-2, u=x0)

Functions in Modelica

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 47

type class to define variable types

connector class to define interfaces

model class to define model components

block model, for which all public variables are
input, output, parameter or constant.

function block with algorithm-section and function-call
syntax

package class to define libraries.

Different class-types in Modelica

24

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 48

Declaration of multidimensional arrays:

parameter Real v[3] = {1, 2, 3};

{} is array constructor and generates the dimensions. Allows for
initialization of arrays with arbitrary dimension. In example:

parameter Real m2[2,3] = [11, 12, 13; 21, 22, 23];

[...] generates matrices Matlab compatible.
In general: [...] generates a Matrix, therefore, [v] is a 3 x 1 Matrix.

��
����

232221

131211

parameter Real m3[3,3] = [m1; transpose([v])];

��
�	
�

232221

131211
parameter Real m1[2,3] = {{11,12,13}, {21,22,23}};

Arrays and Matrices

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 49

“:” in the declaration section is used, when the sizes of the array is
undefined

parameter Real v[:]; // Size not defined yet
parameter Real A[:,:];

Extraction mechanism of sub-matrices like in Matlab:

M2[2:4,3] // generates {M2[2,3], M2[3,3], M2[4,3]}

Access to matrix elements:

M2[2,3] // element [2,3] of Matrix M2

Vector constructor normally used to generate an indices-vector:

1:4 // generates {1,2,3,4}

1:2:7 // generates {1,3,5,7}

Array access operator

25

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 50

Addition/Subtraction: element-wise

Real A1[3,2,4], A2[3,2,4], A3[3,2,4];
equation

A1 = A2 + A3;

Scalar Multiplication: element-wise

Real A1[3,2,4], A2[3,2,4], A3[3,2,4];
Real p1, p2;

equation
A1 = p1*A2 + p2*A3;

Matrix operations

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 51

Matrix Multiplication:

Real A[3,4], B[4,5], C[3,5]
Real v1[3], v2[4], s1, s2[1,1];

equation
// Vector*Vector = Scalar

s1 = v1*v1;

// Matrix * Matrix = Matrix
A = B*C;
s2 = transpose([v1])*[v1];
s1 = scalar(s2);

// Matrix*Vector = Vector
v1 = A*v2;

for i in 1:size(A,1) loop
v1[i] := 0;
for j in 1:size(A,2) loop

v1[i] := v1[i] + A[i,j]*v2[j];
end for;

end for;

s := 0;
for i in 1:size(v1,1) loop

s := s + v1[i]*v1[i];
end for;

Matrix operations

26

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 52

u
asasasa

bsbsbsb
y

nn
nn

mm
mm

⋅
++++
++++=

+
−

+
−

1
1

21

1
1

21

...

...

u
a

b

a

b
ab

a

b
ab

a

b
ab

a

b
aby

u
aa

a

a

a

a

a

a

a

⋅+⋅��
���� −−−−=

⋅

��
��
��

�

�

��
��
��

�

�
+⋅

��
��
��

�

�

��
��
��

�

� −−−−

=

1

1

1

1
55

1

1
44

1

1
33

1

1
22

11

5

1

4

1

3

1

2

0

0

0

1

0100

0010

0001

x

xx�

Transformation in controller canonical form (for n=m=5):

Example: Transfer function

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 53

partial block SISO "Single Input/Single Output block"
Modelica.Blocks.Interfaces.InPort inPort (final n=1) "input";
Modelica.Blocks.Interfaces.OutPort outPort(final n=1) "output";
Real u = inPort.signal [1];
Real y = outPort.signal[1];

end SISO;

block TransferFunction
extends SISO;
parameter Real b[:] ={1}
parameter Real a[:] ={1, 1}

protected
constant Integer na = size(a, 1);
constant Integer nb(max=na) = size(b, 1);
constant Integer n = na-1
Real x [n] "State vector";
Real b0[na] = vector([zeros(na-nb);b]);

equation
der(x[2:n]) = x[1:n-1];
a[1]* der(x[1]) + a[2:na]*x = u;
y = (b0[2:na] - b0[1]/a[1]*a[2:na])*x + b0[1]/a[1]*u;

end TransferFunction;

u
a

b

a

b
ab

a

b
ab

a

b
ab

a

b
aby

u
aa

a

a

a

a

a

a

a

⋅+⋅
��	
��

−−−−=

⋅

���
��
�

�

	

�
�

+⋅

���
��
�

�

	

�
� −−−−

=

1

1

1

1
55

1

1
44

1

1
33

1

1
22

11

5

1

4

1

3

1

2

0

0

0

1

0100

0010

0001

x

xx

Example: Transfer function

27

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 54

block PolynomialEvaluator
parameter Real a[:];
input Real x;
output Real y;

protected
parameter n = size(a, 1)-1;
Real xpowers[n+1];

equation
xpowers[1] = 1;
for i in 1:n loop

xpowers[i+1] = xpowers[i]*x;
end for;
y = a * xpowers;

end PolynomialEvaluator;

For-loop, indexing and Arrays

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 55

Modelica Description

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,i) Returns the size of dimension i of array expression A where i shall be > 0 and <= ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar(A) Returns the single element of array A. size(A,i) = 1 is required for 1 <= i <= ndims(A).

vector(A) Returns a 1-vector, if A is a scalar and otherwise returns a vector containing all the elements of
the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A is a scalar or vector and otherwise returns the elements of the first
two dimensions as a matrix. size(A,i) = 1 is required for 2 < i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It is an error, if array A does not have at least 2
dimensions.

outerproduct(v1,v2) Returns the outer product of vectors v1 and v2 (= matrix(v)*transpose(matrix(v))).

identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other elements
zero.

zeros(n1,n2,n3,...) Returns the n1 x n2 x n3 x ... Integer array with all elements equal to zero (ni >= 0).

ones(n1,n2,n3,...) Return the n1 x n2 x n3 x ... Integer array with all elements equal to one (ni >=0).

fill(s,n1,n2,n3, ...) Returns the n1 x n2 x n3 x ... array with all elements equal to scalar expression s which has to be
a subtype of Real, Integer, Boolean or String (ni >= 0). The returned array has the same type as
s.

Pre-defined Array-Functions

28

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 56

Modelica Description

linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that
v=linspace(x1,x2,n),
v[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <= i <= n. It is required that n >= 2.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.

product(A) Returns the product of all the elements of array expression A.

symmetric(A) Returns a matrix where the diagonal elements and the elements above the
diagonal are identical to the corresponding elements of matrix A and
where the elements below the diagonal are set equal to the elements
above the diagonal of A, i.e., B := symmetric(A) -> B[i,j] := A[i,j], if i <=
j, B[i,j] := A[j,i], if i > j.

cross(x,y) Returns the cross product of the 3-dim-vectors x and y, i.e.
cross(x,y) = vector([x[2]*y[3]-x[3]*y[2]; x[3]*y[1]-x[1]*y[3];
x[1]*y[2]-x[2]*y[1]]);

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-dim-vector,
i.e., cross(x,y) = skew(x)*y; skew(x) = [0, -x[3], x[2]; x[3], 0, -x[1]; -
x[2], x[1], 0];

Pre-defined Array-Functions

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 57

Arrays cannot only consist of Real variables, but of any model class.
For example:

Example:
electrical line
with losses

R=R

R1

C=
C

C
1

ground

R=R

R2

C=
C

C
2

R=R

R3

C=
C

C
3

R=R

R4

p n

Modelica.Electrical.Analog.Basic.Resistor R[10] // 10 Resistors

for i in 1:9 loop
connect(R[i].p, R[i+1].n); // serial connection

end for;

This can be utilized to discretize simple partial differential equations in
a modular way.

Arrays of components

29

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 58

model ULine "Lossy RC Line"
Modelica.Electrical.Analog.Interfaces.Pin p, n;
parameter Integer N(final min=1) = 1 "Number of lumped segments";
parameter Real r = 1 "Resistance per meter";
parameter Real c = 1 "Capacitance per meter";
parameter Real L = 1 "Length of line";

protected
..Electrical.Analog.Basic.Resistor R[N + 1](R=r*length/(N + 1));
..Electrical.Analog.Basic.Capacitor C[N] (C=c*length/(N + 1));
..Electrical.Analog.Basic.Ground g;

equation
connect(p, R[1].p);
for i in 1:N loop

connect(R[i].n, R[i + 1].p);
connect(R[i].n, C[i].p);
connect(C[i].n, g);

end for;
connect(R[N + 1].n, n);

end ULine

Arrays of components

R=R

R1

C=
C

C
1

ground

R=R

R2

C=
C

C
2

R=R

R3

C=
C

C
3

R=R

R4

p n

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 59

Modeling of physical fields, such as

• gravitation,

• electrical field,

• (constant) temperature or pressure of the environment

can be done in Modelica with the
inner/outer language element
(= more selective than global variables)

Modeling of physical fields

30

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 60

A component c with the outer prefix in an object B refers to a
component with the same name and having the inner prefix in an
object A, provided B is contained in the hierarchy of A

inner Real c;
A

outer Real c;

B1

outer Real c;B2

The inner / outer concept

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 61

model Component
outer Real T0;
Real T;

equation
T = T0;

end Component;

T0=sin(time)

e1 e2

T0=sin(2*time)

T0

T0

c1

c2
T0

T0

c1

c2

model Environment
inner Real T0;
Component c1, c2; // c1.T0=c2.T0=T0
parameter Real a=1;

equation
T0 = Modelica.Math.sin(a*time);

end Environment;

model SeveralEnvironments
Environment e1(a=1), e2(a=2)

end SeveralEnvironments

Example:

31

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 62

connector HeatCut
SIunits.Temp_K T;
flow SIunits.HeatFlux q;

end HeatCut;

model Component
HeatCut heat;

end Component;

model TwoComponents
Component Comp[2];
HeatCut heat;

equation
connect(Comp[1].heat, heat);
connect(Comp[2].heat, heat);

end TwoComponents;

model CircuitBoard
HeatCut environment;
Component comp1;
TwoComponents comp2;

equation
connect(comp1.heat,environment);
connect(comp2.heat,environment);

end CircuitBoard;

Physical connection between all
components and their environment,
such as heat exchange implies many
explicit connections

Example: Heat exchange

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 63

connector HeatCut
SIunits.Temp_K T;
flow SIunits.HeatFlux q;

end HeatCut;

model Component
outer HeatCut environment;
HeatCut heat;

equation
connect(heat, environment);

end Component;

model TwoComponents
Component Comp[2];

end TwoComponents;

model CircuitBoard
inner HeatCut environment;
Component comp1;
TwoComponents comp2;

end CircuitBoard;

Also a connector can have the prefix
outer and is then a reference to the
corresponding inner connector. A
connection to the connector declared
outer is therefore implicitly a
connection to the global inner
connector.

A new component in the hierarchy
gets automatically connected

Example: Heat exchange

32

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 64

All kinds of objects can be declared as inner/outer . For
example, functions and connectors can be used.

parallel field central field

Point mass (equations independent of environment!)

Model of point mass in gravitational field

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 65

model Particle
parameter Real m = 1;
outer function gravity = gravityInterface;
Real r[3](start = {1,1,0}) "position";
Real v[3](start = {0,1,0}) "velocity";

equation
der(r) = v;

m*der(v) = m*gravity(r);
end Particle;

r

v

g=gravity(r)

function uniformGravity
extends gravityInterface;

algorithm
g := {0, -9.81, 0};

end uniformGravity;

function pointGravity
extends gravityInterface;
parameter Real k=1;

protected
Real n[3]

algorithm
n := -r/ sqrt(r*r);
g := k/(r*r) * n;

end pointGravity;

Model of point mass in gravitational field

partial function gravityInterface
input Real r[3] "position";
output Real g[3] ”gravity acceleration";

end gravityInterface;

33

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 66

model Composite1
inner function gravity =

pointGravity(k=1);
Particle p1, p2(r(start={1,0,0}));

end Composite1;

model Composite2
inner function gravity =

uniformGravity;
Particle p1, p2(v(start={0,0.9,0}));

end Composite2;

model system
Composite1 c1;
Composite2 c2;

end system;

Use of point masses in different
gravitational fields

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 67

Goal:
Modeling and simulation of discontinuous and/or non-differentiable
systems.

Discontinuous input functions (i.e. „step functions“)
Sample system (digital controller)
Hysteresis

Examples for „Systems with variable structure“ :

ideal Diode
ideal Thyristor
Coulomb friction
Clutch based on Coulomb friction

Hybrid Modeling

Examples for „simple Discontinuities“ :

34

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 68

i.e. Sample systems :
ModelicaAdditions.Blocks.Discrete

Each block has a continuous input
and output signal . This signal is
sampled within each block based on
the corresponding sample time.

Therefore, the components can be
easily mixed with „continuous“ blocks.

Pre-defined discontinuous components

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 69

Example:
Clutch and Brake from the Modelica.Mechanics.Rotational library

The input signal defines the pressing force
of the clutch and the break

Clutch.mode and Brake.mode
= 2: clutch/brake is not active
= 1: forward sliding
= 0: stuck (no relative motion)
= -1: backward sliding

Pre-defined discontinuous components

35

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 70

clutch

Modelica model

Automatic gear box with 6 clutches (friction elements)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 71

Modeling of events

y

u continuation of branch for
switching point detection

u

t

y,u
y

pre(y) = y(t-)

y = y(t+)

y = if u > 0 then 1 else -1;

event

Example: Modelica:

36

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 72

Relations , such as u > 0, automatically trigger state or time events to
handle discontinuities in a numerical sound way.

This feature can be switched off with the noEvent () Operator:

y = if noEvent(u >= 0) then u^2 else u^3;
y = if noEvent(u > eps) then 1/u else 1/eps;

u

t

y,u
y

pre(y) = y(t-)

y = y(t+)

event

Modeling of events

At a discontinuous point
yields:

y is the right limit

pre(y)is the left limit

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 73

model twoPoint
parameter Real w=5, A=1.5;
Real u, y1, y2;

equation
u = A*Modelica.Math.sin(w*time);
y1 = if u > 0 then 1 else -1;
y2 = if noEvent (u > 0) then 1 else -1;

end twoPoint;

Integrator = DASSL,
50 output points

Example: noEvent-Operator

37

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 74

Additional equations can be declared at an event using the when -
statement. These equations are de-activated during the continuous
integration.

when <condition> then
<equations>

end when;

When <condition> is true , <equations> are calculated .

Discrete variables and the when-statement

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 75

model whendemo
parameter Real A=1.5, w=4;
Real u;
Boolean b;

equation
u = A*Modelica.Math.sin(w*time)
when u > 0 then

b = not pre(b);
end when;

end whendemo;

Example:
when-Operator

38

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 76

Modelica Description

initial() Returns true at the simulation start
(where time is equal to time.start).

terminal() Returns true at the end of a succesful simulation

noEvent(expr) Real elementary relations within expr are taken literally i.e., no
state or time event is triggered.

sample(start,interval) Returns true and triggers time events at time instants "start +
i*interval" (i=0,1,...). During continuous integration the operator
returns always false. The starting time "start" and the sample
interval "interval" need to be parameter expressions and need to be
a subtype of Real or Integer.

pre(y) Returns the "left limit" y(tpre) of variable y(t) at a time instant t.
edge(b) Is expanded into "(b and not pre(b))" for Boolean variable b.
change(v) Is expanded into "(v<>pre(v))".
reinit(x, expr) Reinitializes state variable x with expr at an event instant.

Argument x need to be (a) a subtype of Real and (b) the der-
operator need to be applied to it. expr need to be an Integer or Real
expression. The reinit operator can only be applied once for the
same variable x.

Hybrid Operators in Modelica

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 77

h

g
model bouncingBall
parameter Real e=0.7;
parameter Real g=9.81;
Real h(start=1);
Real v;

equation
der(h) = v;
der(v) = -g;

when h <= 0 then
reinit(v, -e*pre(v));

end when;
end bouncingBall;

Re-Initialization of states
(Bouncing Ball)

39

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 78

Symbolic Processing Symbolic Processing
for Efficient Simulationfor Efficient Simulation

What are known variables depend on problem formulation
• known forces and torque, unknown positions
• known positions, velocities and accelerations,

unknown required force and torques

Direct use of DAE solver not feasible:
• dimension of w (auxiliary variables) high
• large Jacobian gives inefficient simulation

0yu,pwx
x =),,,,,F(

dt

d
t

Model instantiation gives implicit DAE
(Differential Algebraic Equation system)

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 79

R
1=
10

A
C=
220

C=
0.
01

G

R
2=
1
00

L=
0.
1

Example - Simple Circuit

DAE:

R1: R1.v = AC.Vp - R1.Vn

R1.R*R1.i = R1.v
R2: R2.v = AC.Vp - L.Vp

R2.R*L.i = R2.v
C: C.v = R1.Vn - G.Vp

C.C* der(C.v) = R1.i
L: L.v = L.Vp - G.Vp

L.L* der(L.i) = L.Vp - G.Vp
AC: AC.v = AC.Vp - G.Vp

AC.Vp - G.Vp =
AC.VA*sin(2*PI*AC.freq* time)

G: G.Vp = 0
Circuit: G.i = AC.i + R1.i + L.i

AC.i + R1.i + L.i = 0

0yu,pwx
x =),,,,,F(

dt

d
t

40

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 80

R1.v = AC.Vp - R1.Vn
R1.R*R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C*der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L*der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.Vp = 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.Vp = 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.vL.vL.v = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.vL.vL.v = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
L.L*L.L*L.L* derderder(L.i)(L.i)(L.i) = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

Sorting of Equations

F(t, der(x) , x, w, p, u, y) = 0; x = [C.v, L.iL.i]]),,,f(upx
x

t
dt

d =

Original Sorted

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 81

Solving Equations

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp

G.Vp = 0
AC.Vp = AC.VA*

sin(2*PI*AC.freq*time) + G.Vp
R1.Vn = G.Vp + C.v
R1.v = AC.Vp - R1.Vn
R1.i = R1.v / R1.R
AC.i = - (R1.i + L.i)
AC.v = AC.Vp - G.Vp
der(C.v) = R1.i /C.C
G.i = AC.i + R1.i + L.i
R2.v = R2.R * L.i
L.Vp = AC.Vp - R2.v
L.v = Vp - G.Vp
der(L.i) = (L.Vp - G.Vp) /L.L

),,,f(upx
x

t
dt

d =

41

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 82

Summary - Simple Circuit - ODE

G: G.Vp = 0
AC: AC.Vp = AC.VA*

sin(2*PI*AC.freq* time) + G.Vp
C: R1.Vn = G.Vp + C.v
R1: R1.v = AC.Vp - R1.Vn

R1.i = R1.v / R1.R
Circuit: AC.i = - (R1.i + L.i)
AC: AC.v = AC.Vp - G.Vp
C: der(C.v) = R1.i/C.C
Circuit: G.i = AC.i + R1.i + L.i

R2: R2.v = R2.R * L.i
L.Vp = AC.Vp - R2.v

L: L.v = Vp - G.Vp
der(L.i) = (L.Vp - G.Vp)/L.L

R
1=
10

A
C=
220

C=
0.
01

G

R
2=
10
0

L=
0.
1

ODE:

I1
1

S

Res1

1/R1

sinIn Cap

1/C

Res2

R2

sum3

+1
-1

sum1

-1
+1

sum2

+1
+1

Ind

1/L

I2
1

S

Data flow:

),,,f(upx
x

t
dt

d =

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 83

• Graph theoretical methods used
(bipartite graph)

for assigning causalities and sorting equations
(strongly connected components, Tarjan)

• Gives sequence of assignments statements
(solver does not handle w)

and simultaneous systems of equations (algebraic loops)
- finding minimal loops

• Jacobian - Block Lower Triangular
• Tearing used to reduce sparse matrices

Structural Processing

),,,(

),,,f(

upxgy

upx
x

t

t
dt

d

=

=

• Conversion to explicit ODE form

Equations Variables

42

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 84

Symbolic Formula Manipulation

Formula manipulation
- abstract syntax tree for expressions
- algebraic transformation rules recursively
applied to tree, such as:

xdbcadxcbxa)()()(−+−→+−+

Example of manipulations
- solving linear equations and certain non-linear equations
- finding matrix coefficients for linear systems of equations
- solving small linear systems of equations
- finding Jacobian for nonlinear systems of equations

Specialized computer algebra algorithms needed
- high capacity (> 100 000 equations)
- appropriate heuristics

=

* u

R i

=

/i

u R

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 85

Higher index DAE's

• Constraints on differentiated variables
• Dependent initial conditions
• Reduced degree-of-freedom

• Example: capacitors in parallel, rigidly connected masses

• Cannot solve for all derivatives
• Differentiate certain equations symbolically

algorithm by Pantelides
• Automatic state variable selection

R
1=
10

A
C=
220

C=
0.
01

G

C
1=
0.
05

43

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 86

DynamicsSection
Vg_u_v = A_0*sin(6.28318530717959*f_0*Time)+v0_0;
Vg_p_v = Vg_u_v;
R1_n_v = C2_v;
R1_v = Vg_p_v-R1_n_v;
Vg_n_i = R1_v/R1_R;

C1_der_v = Vg_n_I / (C2_C+C1_C);

C1_i = C1_C*C1_der_v;
C2_i = Vg_n_i-C1_i;

R1_n_der_v = C1_der_v;
C2_der_v = C1_der_v;

AcceptedSection
G_p_i = C1_i-Vg_n_i+C2_i;
C1_v = R1_n_v;

Capacitors in Parallell

Vg

R1=10

G

C
1=
0.
001

C
2=
0.
0005

InitialSection
PI_0 = 3.14159265358979;
Vg_n_v = 0;
G_p_v = 0;
C1_n_v = 0;
C2_n_v = 0;

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 87

Simplifications of equations

• General library models
• Needs specialization in its environment
• Example: 3D mechanical model constrained to move in 2D

AxisOfRotation = {0, 0, 1}

• Manipulations:
- substitute constants and fixed parameters
- partial evaluation of expressions:

0 * expr = 0, expr/expr = 1, etc

•Reduction in number of arithmetic operations:
typically a factor of 10

44

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 88

Singular systems - high index DAE

), tyx,,xf(0 �=DAE:

with singular Jacobi-Matrix 0
y
f

x
f =

∂
∂

∂
∂

�

can not be algebraically transformed to state space form,
because:

There are constrains between differentiated variables x, such
that all x’s are not independent (can not be given independent
initial conditions).

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 89

Dummy Derivative Method:

(1) Search subsets of equations, which have a singular
Jacobian Matrix. Sufficient Condition:
number of equations > number of unknowns

(2) Differantiate the equation subsets and add the resulting equations
to the DAE.

(3) From the singular subset of equations select Dummy-
derivatives xd until these equations are regular. (that means:
treat them as unknown algebraic Variables (like y);
before, xd has been assumed known).

(4) Analyze the complete DAE again, that means repeat from point 1 until
the Jacobian matrix of the DAE is regular .

45

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 90

remark:

A singular DAE can not be transformed into explicit state space form ,
when the DAE does not have a unique solution . Example:

)(0

)(0

),,(0

13

12

21

yf

yf

yxxf

=
=
=

�

3 equations for the 3 unknown variables .
If the last two functions are identical , there is an infinite number
of solutions , else there is a contradiction for calculating y and there
is no solution.
Such a DAE is called structurally inconsistent .
(This property is recognized by Dymola during translation).

21,, yyx

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 91

Test (singular systems)

Analyze the following systems:

• Write down the number of local states for each component

• Which constraint conditions exist (Write down equations)?

• How many states exist in the total system ?

46

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 92

Number of states

J1.phi = i1*J2.phi
J2.phi = i2*J3.phi
J1.w = i1*J2.w
J2.w = i2*J3.w

2 2 2
2

2 2

2J1.phi = i*J2.phi
J1.w = i*J2.w

2 2
4

2 2 2
4

J1.phi = i*J2.phi
J1.w = i*J2.w

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 93

Number of states
2 2

1

4

springDamper.phi_rel = J2.phi - J1.phi

2 2

2

2
s0.phi = (s1.phi + s2.phi)/2
w0.phi = (w1.phi + w2.phi)/2

6

47

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 94

Number of states

1
1 1 C1.v = C2.v

2

1

1

1

C1.v = C2.v

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 95

Number of states

01

C1.v = C2.v
C1.v = constVolt.v

1

1 1

1

tempSource.T = heatCapacitance1.T

48

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 96

Summary

� Introduction
– Industrial Application Examples
– Composition Diagram versus Block Diagram

� Modeling with Modelica
– Flat and Hierarchical Models
– Special Model classes
– Matrices, Arrays and Arrays of components
– Physical Fields
– Hybrid Modeling
– Symbolic processing

Based on Material from Martin Otter and Hilding Elmqvist

