
1

Modelica Tutorial for Beginners

Hubertus Tummescheit† and Bernhard Bachmann‡

†United Technologies Research Center
‡ University of Applied Sciences Bielefeld

Multi-domain Modeling and Simulation

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 2

Outl ine

� Introduction
– Industrial Application Examples
– Composition Diagram versus Block Diagram
– The Modelica Association

� Modeling with Modelica
– Flat and Hierarchical Models
– Special Model Classes
– Matrices, Arrays and Arrays of Components
– Physical Fields
– Hybrid Modeling

Based on Material from Martin Otter and Hilding Elmqvist



2

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 3

Space-Robotic

D2 Mission 1995 ( Robot in Space 
Shuttle is controlled from Earth, 7s 
for signal transmission )

Industrial Robots
New drive trains, 
Service-Robots, 
cooperation with KUKA

Control Design for fly-by-wire, 
automatic landing, etc.; based on 
optimizing of parameter

Automobile
Modeling, simulation of
mechatronical 
components

DLR - Institute of Robotics and Mechatronics
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Test of Protection Devices in Power 
Systems
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Power Flow Analysis in Power Systems
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Modeling und simulation of multi-domain physical systems

• to beat the modeling complexity

� Mechanics (3D-Mechanics, Drive Trains)

� Aerodynamics

� Thermo-fluid dynamics (Turbine engine)

� Hydraulics

� Electrics

� Control systems

� Discrete Control

Example:  Dynamics of an air plane

Modelica Design Effort
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Example: Vehicle Dynamics using MBS-library

The property to “figure out” how to use a component optimally in different environments is a 
condition for re-usable, object-oriented model libraries, like the VehicleDynamics library 

• Symbolic capabilities condition for scalability to complex models

• Based on a few, very general component models to build complex sub-sytems, e.g.
McPherson suspension.

BMW 3-series chassis 
driving over icy patch on the 
road. Off-center additional 
weight on the roof. 

154 States
5245 non-trivial variables
Largest linear system 478, 
reduced to 30 by tearing
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Block diagram
in Simulink

Component diagrams generalize Block diagrams
=> The next generation of simulation tools

Component 
diagram

in Dymola
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Where to find?

• Books
• Experts

Modeling Knowledge

Main Idea:

Computer based storage of 
modeling knowledge
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Component Diagrams

• Each icon represents a physical component . 
i.e.: electrical Resistance, mechanical Gearbox, Pump

• Composition lines are the actual physical connections . 
i.e.: electrical line, mechanical connection, heat flow between two components 

• Variables at the interfaces describe interaction with other components

• Physical behavior of a component is described by equations

• Hierarchical decomposition of components

Component
Connection
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model Resistor
extends OnePort;
parameter Real R;

equation
v = R*i;

end Resistor;

Example: Industrial 
Robot
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Graphical Editor

model test1
Modelica.Mechanics.Rotational.Inertia J1(J=0.002)

...

Modelica model (Text file: 
test1.mo)

File: 
..\Modelica\Mechanics\Rotational.mo

Component-
Library

void dsblock(double *x,

...

C-function

Simulator

compile + link

Modeling and Simulation with Modelica 
tools
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Modelica Language Design Goals

� Unify object-oriented modeling languages
– Dymola, gPROMS, NMF, ObjectMath, Omola, Smile, U.L.M., …

� Allow reuse of physical models
– Electrical motor, robot arm, …

� Combine components of different engineering disciplines
Electrics, mechanics, thermo-dynamics, hydraulics, ...

� Description  using differential- und algebraic equations
– Declarative instead of procedural

� Achieve efficient simulation code
– Event handling, ideal devices, etc.

� Develop component libraries
– http://www.Modelica.org/library/library.html
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•Chairman Martin Otter DLR, Munich, Germany
•Vice-Chairman Peter Fritzson Linköping University, Sweden 
•Secretary Hilding Elmqvist Dynasim AB, Lund, Sweden (former Chairman)
•Treasurer Michael Tiller Ford Motor Company, Dearborn, U.S.A.

• Peter Aronsson MathCore, Linköping, Sweden
• Bernhard Bachmann University of Applied Sciences, Germany
• Peter Beater Universität Paderborn, Germany
• Dag Brück Dynasim AB, Lund, Sweden
• Peter Bunus Linköping University, Sweden 
• Vadim Engelson Linköping University, Sweden
• Thilo Ernst GMD-FIRST, Berlin, Germany
• Jorge Ferreira Universidade de Aveiro, Portugal
• Rüdiger Franke ABB Corporate Research Ltd, Heidelberg,Germany
• Pavel Grozman BrisData AB, Stockholm, Sweden
• Johan Gunnarsson MathCore, Linköping, Sweden
• Mats Jirstrand MathCore, Linköping, Sweden
• Kaj Juslin VTT, Finland
• Clemens Klein-Robbenhaar GMD Köln, Germany
• Sven Erik Mattsson Dynasim AB, Lund, Sweden
• Henrik Nilsson Linköping University, Sweden
• Hans Olsson Dynasim AB, Lund, Sweden
• Tommy Persson Linköping University, Sweden 
• Per Sahlin BrisData AB, Stockholm, Sweden
• Levon Saldamli Linköping University, Sweden 
• Andre Schneider Fraunhofer Institute for Integrated Circuits, Dresden, Germany
• Peter Schwarz Fraunhofer Institute for Integrated Circuits, Dresden, Germany
• Hubertus Tummescheit Lund University, Sweden
• Hansjürg Wiesmann ABB Corporate Research Ltd, Baden, Switzerland

Modelica Association



8

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 16

• Design started September 1996

• Modelica Version 1.0 - September 1997

• Modelica Version 1.1 - December 1998

• Modelica Version 1.2 - June 1999

• Modelica Version 1.3 - December 1999

• Modelica Version 1.4 - December 2000

• Modelica Version 2.0 - March 2002

• Modelica Version 2.1 - October 2003

• 3rd International Modelica Conference 3./4. November 2003, Linköping

•> 35 Modelica-Design-Group Meetings (each 3 days)

• > 25 members of the “Modelica Association ”

• > 200 members of the “Modelica Interest group”

• Libraries and tools are available

Status of Modelica

http://www.Modelica.org
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Modeling with Modelica
� Flat und hierarchical models

– data types, attributes, components, interface-variables, package-
concept, inheritance

� Special model classes
– constraints on variables and parameters

• input, output, final, protected

– equations versus Algorithms
– class types in Modelica

• type, connector, model, block, function, package
� Matrices, arrays and arrays of components

– definition, index sets, for-in-loop, array-functions
� Physical fields

– global variables, inner, outer
� Hybrid modeling

– events, if-then-else, when-statement 
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model MovingMass1 "Moving Mass";
parameter Real m=2   "Mass of block";
parameter Real f=6 "Force";
Real s               "Position of block";
Real v "Velocity of block";
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass1;

s f = 6 N
m = 2 kg

fsm =⋅
��Version 1:

parameters (changeable before start 
of simulation)

floating point number

mathematical equation, ( non–causal)
differentiation with regards to time

graphical information
comment

(display in dialogue)

new model

name + default-value

Simple Modelica-Model (Flat)
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Real floating point variable, i.e. 1.0, -2.3e-5 

Integer integer variable, i.e. 1, 4, -333 

Boolean boolean variable, i.e. false, true 

String string, i.e.  "from file:" 
 

 

Pre-Defined Basic-Data Types in Modelica
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Mars Climate Orbiter Failure Board Release Report, Nov. 10, 1999:
... "The 'root cause' of the loss of the spacecraft was the failed 
translation of English units into metric units in a segment of ground-
based, navigation-related mission software, as NASA has previously 
announced," said Arthur Stephenson, chairman of the Mars Climate
Orbiter Mission Failure Investigation Board.

Picture from 
NASA/JPL/Caltech.

Cause of Failure of the Mars Climate Orbiter on September 23, 
1999 
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s f = 6 N
m = 2 kg

fsm =⋅
��

Version 2:

model MovingMass2 
parameter Real m( min=0, unit="kg") = 2;   
parameter Real f( unit="N")        = 6;   
Real s; 
Real v;               
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass2;

attribute of real data type

unit of variables can be checked in 
equations

Simple Modelica-Model (Flat)
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Each physical unit can be calculated based on the 7 
SI-base units:

kg, m, s, A, K, mol, cd

Comparison in equations:
Two physical variables are comparable , if the units with 
regards to the 7 SI-base units are identical .

Type Unit in SI-base units 
Moment Nm kgm2/s2 
Energy J kgm2/s2 

 

 

Example:

SI-Base Units
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quantity type of physical quantity 
unit unit of variable, used within equations 
displayUnit unit, used for visualization 

 

 

quantity =  unit =  displayUnit = 
"Torque" "N.m"  
"Energy" "J"  
"Angle" "rad" "deg" 

 

 

Example:

attributes of Real variables:

Syntax of unit-expressions, Examples:

kg.m2/s2, kg.m.m/(s.s), rad/s, 1/s, s-1

Realization of Units in Modelica
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min minimal value of quantity 
max maximal value of quantity 
start start value of state variables. i.e.: 

3)(   , 0 ==⋅ tvfvm
�

 
nominal nominal value can be used for scaling 

purposes in numerical routines  
 

 

Example:

parameter Real m( min=0, quantity="mass", unit="kg") = 2;
Real v( quantity="velocity", unit="m/s", start=3);

Pre-defined variable types :
e.g. variables with a given set of attributes

More Attributes of Real Variables:
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type Angle    = Real(quantity    = "Angle", unit = "rad",
displayUnit = "deg");

type Torque   = Real(quantity = "Torque", unit = "N.m");
type Mass     = Real(quantity = "Mass", unit = "kg", min=0);
type Velocity = Real(quantity = "Velocity", unit = "m/s");

Examples of different variable types:

parameter Mass m = 2;
Velocity v(start=3);

Use of variable types:

Pre-Defined Variable Types
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includes all 450 ISO-standard units in form of pre-defined variable types!

The Modelica Library Modelica.SIunits

(File: 

...\Modelica\SIunits.mo)
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parameter Modelica.SIunits.Mass m = 2;
Modelica.SIunits.Velocity v( start=3);

Variant 1 (full name ):

package SI = Modelica.SIunits;  // Alias-Name

parameter SI.Mass m = 2;
SI.Velocity v( start=3);

Variant 2 (short name ):

comment

Use of the Modelica.SIunits Library
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model MovingMass3
package SIunits = Modelica.SIunits; 
parameter SIunits.Mass  m = 2 "mass of block";   
parameter SIunits.Force f = 6 "force to pull block";
SIunits.Position s            "position of block";
SIunits.Velocity v            "velocity of block";               
annotation(Diagram(Rectangle(extent=..)..)..);

equation
v = der(s);
m*der(v) = f;

end MovingMass3;

This is the prefered style of modeling!

component library

s f = 6 N
m = 2 kg

fsm =⋅
��

Version 3:

Simple Modelica-Model (Flat)
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DC-motor

motor-inertia +  ideal gear box + load-inertia

flange

electric wire

Graphical Editor

Hierarchical Modelica Model
(Model of a simple drive train)
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model SimpleDrive
Modelica.Mechanics.Rotational.Inertia Inertia1(J=0.002);
Modelica.Mechanics.Rotational.IdealGear IdealGear1(ratio=100)

...
Modelica.Electrical.Analog.Basic.Resistor Resistor1(R=0.2)

...
equation

connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

connector "flange_a" of IdealGear1

connector "n" of Resistor1connection

new model-class
modifiermodel-class model-instance (component)

Part of drive train model
(without graphics-information)
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i1

i3

i2

v1
v3

v2

f1 f2

f3

s1

s3

s2

electrical 1D-mechanical

0321

321

=++
==
iii

vvv

0321

321

=++
==

fff

sss

connect(R1.p, R2.p); connect(m1.flange_a, m2.flange_a);

Variables within interfaces
(connector variables)
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Two kind of variables in connectors

Potential-Variable Connected variables are identical 
 

Flow-Variable Connected variables fulfil the zero-
sum equation 

 

 

connector Pin                connector Flange
SIunits.Voltage      v; SIunits.Angle       phi;
flow SIunits.Current i;       flow SIunits.Torque tau;

end Pin;                     end Flange;

connector-class
new connector-class

flow-variable
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Type Potential variable Flow variable

electric V potential i current

translatorial s distance f force

rotatorial ϕ angle τ torque

hydraulic p pressure V flow rate

thermal T temperature Q heat flow

chemical µ chem. potential N Current of particles

connector XXX
Real PotentialVariable

flow Real FlowVariable
end XXX;

Interface variables within the
Modelica standard library
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Model of Resistor
p.i n.i

p.v n.v

model Resistor
package SIunits = Modelica.SIunits;
package Interfaces = Modelica.Electrical.Analog.Interfaces; 
parameter SIunits.Resistance R = 1 "Resistance";
SIunits.Voltage        v "Spannungsabfall über Element";
Interfaces.PositivePin p;
Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;
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Summary
model SimpleDrive

..Rotational.Inertia   Inertia1  (J=0.002);

..Rotational.IdealGear IdealGear1(ratio=100)

..Basic.Resistor       Resistor1 (R=0.2)
...

equation
connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

model Resistor
package SIunits = Modelica.SIunits; 
parameter SIunits.Resistance R = 1;
SIunits.Voltage v;
..Interfaces.PositivePin p;
..Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

connector PositivePin
package SIunits = Modelica.SIunits;
SIunits.Voltage      v;
flow SIunits.Current i;

end PositivePin;

type Voltage = 
Real(quantity="Voltage",

unit    ="V");
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package Modelica
package Mechanics

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;
end Mechanics;

...
end Modelica;

Modelica models are structured in hierarchical libraries (packages )

Modelica.Mechanics.Rotational.Inertia

The package concept in Modelica
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encapsulated package Modelica
package Mechanics

package Rotational
package Interfaces

connector Flange_a
...

end Flange_a;
end Interfaces

model Inertia
Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_a a;

end Inertia;
...

end Rotational;
end Mechanics;

...
end Modelica;

Name-lookup within a package

equivalent definitions

The package concept in Modelica 

Name lookup stops at 
“encapsulated”
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Storage of a hierarchical package within one file

package Modelica
package Mechanics

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;
end Mechanics;

...
end Modelica;

File: Modelica.mo

The package concept in Modelica 
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Storage of a hierarchical package distributed within different files and directories

...\Modelica
\Blocks
\Electrical
\Mechanics

package.mo
Rotational.mo
Translational.mo

package Rotational
model Inertia

...
end Inertia;

model Torque
...

end Torque;
...

end Rotational;

File: ...\Modelica\Mechanics\Rotational.mo

Each package-directory must include a 
file package.mo that contains 
additional information to the package 
(i.e. annotations to \Mechanics)

package Mechanics
end Mechanics;

File:
...\Modelica\Mechanics\package.mo

Modelica is case-sensitive !

The package concept in Modelica
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package Electrical
package SIunits = Modelica.SIunits; 

connector Pin
SIunits.Voltage      v;
flow SIunits.Current i;

end PositivePin;

end Electrical;

partial model TwoPin
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

equation
0 = p.i + n.i;
u = p.v - n.v;
i = p.i;

end TwoPin;

model Capacitor
extends TwoPin;
parameter SIunits.Capacitance C;

equation
C*der(u) = i;

end Capacitor;

= abbreviation
(see: type Force = Real (unit="N")

incomplete model (cannot be instantiated)

inheritance

Partial Models and Inheritance
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package Electrical
package SIunits = Modelica.SIunits; 

connector Pin
SIunits.Voltage      v;
flow SIunits.Current i;

end PositivePin;

model Capacitor
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

parameter SIunits.Capacitance C;
equation

0 = p.i + n.i;
u = p.v - n.v;
i = p.i;
C*der(u) = i;

end Capacitor;
end Electrical;

Advantage of extends :

Common properties are 
defined only once!

partial model TwoPin
Pin p,n;
SIunits.Current i;
SIunits.Voltage u;

equation
0 = p.i + n.i;
u = p.v - n.v;
i = p.i;

end TwoPin;

model Capacitor
extends TwoPin;
parameter SIunits.Capacitance C;

equation
C*der(u) = i;

end Capacitor;

Previous Model is identical to:
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connector OutPort
parameter Integer n=1;
output Real signal[n]; 

end OutPort;

model TorqueSensor
SIunits.Torque tau;
Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;
Blocks.Interfaces.OutPort outPort(final n=1);

equation
flange_a.phi = flange_b.phi;
tau =  flange_a.tau;
tau = -flange_b.tau;
tau = outPort.signal[1];

end TorqueSensor;

Restriction of outputs
i.e. no connections to other outputs.
(Same yields for input)

May not be changed any more

Constraints on variables and parameters 
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block FirstOrder
parameter Real k=1    "gain";
parameter Real T=0.01 "time constant";
Blocks.Interfaces.InPort  inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real y = outPort.signal[1];

equation
T*der(y) + y = k*u;

end FirstOrder;

= model, for which all public variables are 
input, output, parameter or constant.

variable, which cannot be 
accessed from outside

ukyyT ⋅=+⋅
�

u
sT

k
y ⋅

+⋅
=

1

equation in declaration part

Efficient and reliable modeling
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block Limiter
parameter Real uMax= 1  "maximum value";
parameter Real uMin=-1  "minimum value";
Blocks.Interfaces.InPort  inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real u = inPort.signal[1];
Real y = outPort.signal[1];

equation
y = if u > uMax then uMax else

if u < uMin then uMin else u;
end Limiter;

if - expression

Variant 1:
Comparison of equations

and algorithms
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block Limiter
parameter Real uMax= 1  "maximum value";
parameter Real uMin=-1  "minimum value";
Blocks.Interfaces.InPort  inPort (final n=1);
Blocks.Interfaces.OutPort outPort(final n=1);

protected
Real u = inPort.signal[1];
Real y = outPort.signal[1];

algorithm
if u > uMax then

y := uMax;
elseif u < uMin then

y := uMin;
else

y :=   u; 
end if;

end Limiter;

Variant 2:

assignment operator

procedural part
(no equations)

if-block 
(as in C, Fortran, etc.)

all assignments in an 
algorithm -section will be 
executed in the given order

Comparison of equations and algorithms
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function Limiter
input Real uMax=2, uMin=-2;
input Real u;
output Real y;

algorithm
if u > uMax then

y := uMax;
elseif u < uMin then

y := uMin;
else

y := u; 
end if;

end Limiter;

Variant 3:

Function, as in C or 
Fortran

Function calls

default-
value

(means: uMax=1, uMin=-1, u=x0)

model test
Real x0, x1, x2;

equation
x1 = Limiter(1, -1, x0);
x2 = Limiter(u=x0);

end test;
(means: uMax=2, uMin=-2, u=x0)

Functions in Modelica
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type class to define variable types 

connector class to define interfaces 

model class to define model components 

block model, for which all public variables are  
input, output, parameter or constant. 
 

function block with algorithm-section and function-call 
syntax 
 

package class to define libraries. 
 

 

Different class-types in Modelica
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Declaration of multidimensional arrays:

parameter Real v[3] = {1, 2, 3};

{} is array constructor and generates the dimensions. Allows for
initialization of arrays with arbitrary dimension. In example:

parameter Real m2[2,3] = [11, 12, 13; 21, 22, 23];

[...] generates matrices Matlab compatible.
In general:  [...] generates a Matrix, therefore, [v] is a 3 x 1 Matrix.

��
����

232221

131211

parameter Real m3[3,3] = [m1; transpose([v])];

��
�	
�

232221

131211
parameter Real m1[2,3] = {{11,12,13}, {21,22,23}};

Arrays and Matrices
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“:” in the declaration section is used, when the sizes of the array is 
undefined

parameter Real v[:];  // Size not defined yet
parameter Real A[:,:];     

Extraction  mechanism of sub-matrices like in Matlab:

M2[2:4,3]   // generates {M2[2,3], M2[3,3], M2[4,3]}

Access to matrix elements:

M2[2,3]  // element [2,3] of Matrix M2

Vector constructor normally used to generate an indices-vector:

1:4     // generates {1,2,3,4}

1:2:7   // generates {1,3,5,7}

Array access operator



25

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 50

Addition/Subtraction: element-wise

Real A1[3,2,4], A2[3,2,4], A3[3,2,4];
equation

A1 = A2 + A3;

Scalar Multiplication: element-wise

Real A1[3,2,4], A2[3,2,4], A3[3,2,4];
Real p1, p2;

equation
A1 = p1*A2 + p2*A3;

Matrix operations
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Matrix Multiplication:

Real A[3,4], B[4,5], C[3,5]
Real v1[3], v2[4], s1, s2[1,1];

equation
// Vector*Vector = Scalar

s1 = v1*v1;

// Matrix * Matrix = Matrix
A  = B*C;
s2 = transpose([v1])*[v1];    
s1 = scalar(s2);

// Matrix*Vector = Vector
v1 = A*v2;

for i in 1:size(A,1) loop
v1[i] := 0;
for j in 1:size(A,2) loop

v1[i] := v1[i] + A[i,j]*v2[j];
end for;

end for;

s := 0;
for i in 1:size(v1,1) loop

s := s + v1[i]*v1[i];
end for;

Matrix operations
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Transformation in controller canonical form (for n=m=5):

Example: Transfer function
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partial block SISO "Single Input/Single Output block"
Modelica.Blocks.Interfaces.InPort  inPort (final n=1) "input";
Modelica.Blocks.Interfaces.OutPort outPort(final n=1) "output";
Real u = inPort.signal [1];
Real y = outPort.signal[1];

end SISO;

block TransferFunction
extends SISO;
parameter Real b[:] ={1}
parameter Real a[:] ={1, 1}

protected
constant Integer na = size(a, 1);           
constant Integer nb(max=na) = size(b, 1);   
constant Integer n          = na-1 
Real x [n] "State vector";
Real b0[na] = vector( [zeros(na-nb);b] );

equation
der(x[2:n]) = x[1:n-1];
a[1]* der(x[1]) + a[2:na]*x = u;
y = (b0[2:na] - b0[1]/a[1]*a[2:na])*x + b0[1]/a[1]*u;

end TransferFunction;
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Example: Transfer function



27

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 54

block PolynomialEvaluator
parameter Real a[:];
input Real x;
output Real y;

protected
parameter n = size(a, 1)-1;
Real xpowers[n+1];

equation
xpowers[1] = 1;
for i in 1:n loop

xpowers[i+1] = xpowers[i]*x;
end for;
y = a * xpowers;

end PolynomialEvaluator;

For-loop, indexing and Arrays
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Modelica Description

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,i) Returns the size of dimension i of array expression A where i shall be > 0 and <= ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar(A) Returns the single element of array A. size(A,i) = 1 is required for 1 <= i <= ndims(A).

vector(A) Returns a 1-vector, if A is a scalar and otherwise returns a vector containing all the elements of
the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A is a scalar or vector and otherwise returns the elements of the first
two dimensions as a matrix. size(A,i) = 1 is required for 2 < i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It is an error, if array A does not have at least 2
dimensions.

outerproduct(v1,v2) Returns the outer product of vectors v1 and v2 ( = matrix(v)*transpose( matrix(v) ) ).

identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other elements
zero.

zeros(n1,n2,n3,...) Returns the n1 x n2 x n3 x ... Integer array with all elements equal to zero (ni >= 0).

ones(n1,n2,n3,...) Return the n1 x n2 x n3 x ... Integer array with all elements equal to one (ni >=0 ).

fill(s,n1,n2,n3, ...) Returns the n1 x n2 x n3 x ... array with all elements equal to scalar expression s which has to be
a subtype of Real, Integer, Boolean or String (ni >= 0). The returned array has the same type as
s.

Pre-defined Array-Functions
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Modelica Description

linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that
v=linspace(x1,x2,n),
v[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <= i <= n. It is required that n >= 2.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.

product(A) Returns the product of all the elements of array expression A.

symmetric(A) Returns a matrix where the diagonal elements and the elements above the
diagonal are identical to the corresponding elements of matrix A and
where the elements below the diagonal are set equal  to the elements
above the diagonal of A, i.e., B := symmetric(A) -> B[i,j] := A[i,j], if i <=
j, B[i,j] := A[j,i], if i > j.

cross(x,y) Returns the cross product of the 3-dim-vectors x and y, i.e.
cross(x,y) = vector( [ x[2]*y[3]-x[3]*y[2];  x[3]*y[1]-x[1]*y[3];
x[1]*y[2]-x[2]*y[1] ] );

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-dim-vector,
i.e., cross(x,y) = skew(x)*y;  skew(x) = [0, -x[3], x[2];  x[3], 0, -x[1];  -
x[2], x[1], 0];

Pre-defined Array-Functions
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Arrays cannot only consist of Real variables, but of any model class.
For example:

Example: 
electrical line
with losses

R=R

R1

C=
C

C
1

ground

R=R

R2

C=
C

C
2

R=R

R3

C=
C

C
3

R=R

R4

p n

Modelica.Electrical.Analog.Basic.Resistor R[10] // 10 Resistors

for i in 1:9 loop
connect(R[i].p, R[i+1].n);       // serial connection

end for;

This can be utilized to discretize simple partial differential equations in 
a modular way.

Arrays of components
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model ULine "Lossy RC Line" 
Modelica.Electrical.Analog.Interfaces.Pin p, n;
parameter Integer N( final min=1) = 1 "Number of lumped segments";
parameter Real r = 1 "Resistance per meter";
parameter Real c = 1 "Capacitance per meter";
parameter Real L = 1 "Length of line";

protected
..Electrical.Analog.Basic.Resistor  R[N + 1](R=r*length/(N + 1));
..Electrical.Analog.Basic.Capacitor C[N]    (C=c*length/(N + 1));
..Electrical.Analog.Basic.Ground    g;

equation
connect(p, R[1].p);
for i in 1:N loop

connect(R[i].n, R[i + 1].p);
connect(R[i].n, C[i].p);
connect(C[i].n, g);

end for;
connect(R[N + 1].n, n);

end ULine

Arrays of components

R=R

R1

C=
C

C
1

ground

R=R

R2

C=
C

C
2

R=R

R3

C=
C

C
3

R=R

R4

p n
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Modeling of physical fields, such as 

• gravitation, 

• electrical field, 

• (constant) temperature or pressure of the environment

can be done in Modelica with the 
inner/outer language element 
(= more selective than global variables)

Modeling of physical fields
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A component c with the  outer prefix in an object B refers to a 
component with the same name and having the inner prefix in an 
object A, provided B is contained in the hierarchy of A 

inner Real c;
A

outer Real c;

B1

outer Real c;B2

The inner / outer concept
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model Component
outer Real T0;
Real T;

equation
T = T0;

end Component;

T0=sin(time)

e1 e2

T0=sin(2*time)

T0

T0

c1

c2
T0

T0

c1

c2

model Environment
inner Real T0;
Component c1, c2; // c1.T0=c2.T0=T0
parameter Real a=1;

equation
T0 = Modelica.Math.sin(a*time);

end Environment;

model SeveralEnvironments
Environment e1(a=1), e2(a=2) 

end SeveralEnvironments

Example:
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connector HeatCut
SIunits.Temp_K        T;
flow SIunits.HeatFlux q;

end HeatCut;

model Component
HeatCut heat;

end Component;

model TwoComponents
Component Comp[2];
HeatCut heat;

equation
connect(Comp[1].heat, heat);
connect(Comp[2].heat, heat);

end TwoComponents;

model CircuitBoard
HeatCut environment;
Component     comp1;
TwoComponents comp2;

equation
connect(comp1.heat,environment);
connect(comp2.heat,environment);

end CircuitBoard;

Physical connection between all 
components and their environment, 
such as heat exchange implies many 
explicit connections

Example: Heat exchange 
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connector HeatCut
SIunits.Temp_K        T;
flow SIunits.HeatFlux q;

end HeatCut;

model Component
outer HeatCut environment;
HeatCut heat;

equation
connect(heat, environment);

end Component;

model TwoComponents
Component Comp[2];

end TwoComponents;

model CircuitBoard
inner HeatCut environment;
Component     comp1;
TwoComponents comp2;

end CircuitBoard;

Also a connector can have the prefix 
outer and is then a reference to the 
corresponding inner connector. A 
connection to the connector declared 
outer is therefore implicitly a 
connection to the global inner 
connector.

A new component in the hierarchy 
gets automatically connected

Example: Heat exchange
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All kinds of objects can be declared as inner/outer . For 
example, functions and connectors can be used.

parallel field central field

Point mass (equations independent of environment!)

Model of point mass in gravitational field
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model Particle
parameter Real m = 1;
outer function gravity = gravityInterface;
Real r[3](start = {1,1,0}) "position";
Real v[3](start = {0,1,0}) "velocity";

equation
der(r) = v;

m*der(v) = m*gravity(r);
end Particle;

r

v

g=gravity(r)

function uniformGravity
extends gravityInterface;

algorithm
g := {0, -9.81, 0};

end uniformGravity;

function pointGravity
extends gravityInterface;
parameter Real k=1;

protected
Real n[3]

algorithm
n := -r/ sqrt(r*r);
g := k/(r*r) * n;

end pointGravity;

Model of point mass in gravitational field

partial function gravityInterface
input Real r[3] "position";
output Real g[3] ”gravity acceleration";

end gravityInterface;
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model Composite1
inner function gravity =

pointGravity(k=1);
Particle p1, p2(r(start={1,0,0}));

end Composite1;

model Composite2
inner function gravity =

uniformGravity;
Particle p1, p2(v(start={0,0.9,0}));

end Composite2;

model system
Composite1 c1;
Composite2 c2;

end system;

Use of point masses in different
gravitational fields
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Goal:
Modeling and simulation of discontinuous and/or non-differentiable 
systems.

Discontinuous input functions (i.e. „step functions“)
Sample system (digital controller)
Hysteresis

Examples for „Systems with variable structure“ :

ideal Diode
ideal Thyristor
Coulomb friction
Clutch based on Coulomb friction

Hybrid Modeling

Examples for „simple Discontinuities“ :
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i.e. Sample systems : 
ModelicaAdditions.Blocks.Discrete

Each block has a continuous input 
and output signal . This signal is 
sampled within each block based on 
the corresponding sample time. 

Therefore, the components can be 
easily mixed with „continuous“ blocks.

Pre-defined discontinuous components
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Example: 
Clutch and Brake from the Modelica.Mechanics.Rotational library 

The input signal defines the pressing force 
of the clutch and the break

Clutch.mode and Brake.mode
=  2: clutch/brake is not active
=  1: forward sliding
=  0: stuck (no relative motion)
= -1: backward sliding

Pre-defined discontinuous components
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clutch

Modelica model

Automatic gear box with 6 clutches (friction elements)
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Modeling of events

y

u continuation of branch for
switching point detection

u

t

y,u
y

pre(y) = y(t-)

y = y(t+)

y = if u > 0 then 1 else -1;

event

Example: Modelica:
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Relations , such as u > 0, automatically trigger state or time events to 
handle discontinuities in a numerical sound way.

This feature can be switched off with the noEvent () Operator:

y = if noEvent(u >= 0)  then u^2 else u^3;
y = if noEvent(u > eps) then 1/u else 1/eps;

u

t

y,u
y

pre(y) = y(t-)

y = y(t+)

event

Modeling of events 

At a discontinuous point 
yields:

y is the right limit

pre(y)is the left limit
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model twoPoint
parameter Real w=5, A=1.5;
Real u, y1, y2;

equation
u = A*Modelica.Math.sin(w*time);
y1 = if u > 0          then 1 else -1;
y2 = if noEvent (u > 0) then 1 else -1;

end twoPoint;

Integrator = DASSL,
50 output points

Example: noEvent-Operator
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Additional equations can be declared at an event using the when -
statement. These equations are de-activated during the continuous 
integration.

when <condition> then
<equations>

end when;

When <condition> is true , <equations> are calculated .

Discrete variables and the when-statement
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model whendemo
parameter Real A=1.5, w=4;
Real    u;
Boolean b;

equation
u = A*Modelica.Math.sin(w*time)
when u > 0 then

b = not pre(b);
end when;

end whendemo;

Example:
when-Operator
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Modelica Description 

initial() Returns true at the simulation start  
(where time is equal to time.start). 

terminal() Returns true at the end of a succesful simulation 

noEvent(expr) Real elementary relations within expr are taken literally i.e., no 
state or time event is triggered. 

sample(start,interval) Returns true and triggers time events at time instants "start + 
i*interval" (i=0,1,...). During continuous integration the operator 
returns always false. The starting time "start" and the sample 
interval "interval" need to be parameter expressions and need to be 
a subtype of Real or Integer. 

pre(y) Returns the "left limit" y(tpre ) of variable y(t) at a time instant t. 
edge(b) Is expanded into "(b and not pre(b))" for Boolean variable b. 
change(v) Is expanded into "(v<>pre(v))". 
reinit(x, expr) Reinitializes state variable x with expr at an event instant. 

Argument x need to be (a) a subtype of Real and (b) the der-
operator need to be applied to it. expr need to be an Integer or Real 
expression. The reinit operator can only be applied once for the 
same variable x. 

 

Hybrid Operators in Modelica
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h

g
model bouncingBall
parameter Real e=0.7;
parameter Real g=9.81;
Real h(start=1);
Real v;

equation
der(h) = v;
der(v) = -g;

when h <= 0 then
reinit(v, -e*pre(v));

end when;
end bouncingBall;

Re-Initialization of states
(Bouncing Ball)
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Symbolic Processing Symbolic Processing 
for Efficient Simulationfor Efficient Simulation

What are known variables depend on problem formulation
• known forces and torque, unknown positions
• known positions, velocities and accelerations, 

unknown required force and torques

Direct use of DAE solver not feasible:
• dimension of w (auxiliary variables) high
• large Jacobian gives inefficient simulation

0yu,pwx
x =),,,,,F(

dt

d
t

Model instantiation gives implicit DAE 
(Differential Algebraic Equation system)
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R
1=
10

A
C=
220

C=
0.
01

G

R
2=
1
00

L=
0.
1

Example - Simple Circuit

DAE:

R1:        R1.v = AC.Vp - R1.Vn

R1.R*R1.i = R1.v
R2:        R2.v = AC.Vp - L.Vp

R2.R*L.i = R2.v
C:         C.v = R1.Vn - G.Vp

C.C* der(C.v) = R1.i
L:         L.v = L.Vp - G.Vp

L.L* der(L.i) = L.Vp - G.Vp
AC:        AC.v = AC.Vp - G.Vp

AC.Vp - G.Vp =
AC.VA*sin(2*PI*AC.freq* time)

G:         G.Vp = 0
Circuit:   G.i = AC.i + R1.i + L.i

AC.i + R1.i + L.i = 0

0yu,pwx
x =),,,,,F(

dt

d
t
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R1.v = AC.Vp - R1.Vn
R1.R*R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C*der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L*der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.Vp = 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.Vp = 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.v = R1.Vn - G.Vp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp

R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R* R1.i = R1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.i + R1.i + L.iL.i = 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.v = AC.Vp - G.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C* der(C.v) = R1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.i = AC.i + R1.i + L.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R* L.iL.i = R2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.v = AC.Vp - L.Vp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.vL.vL.v = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
L.L* der(L.i) = L.Vp - G.Vp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp

R1.vR1.vR1.v = = = AC.AC.AC. VpVpVp --- R1.VnR1.VnR1.Vn
R1.R*R1.R*R1.R* R1.iR1.iR1.i = = = R1.vR1.vR1.v
R2.vR2.vR2.v = = = AC.AC.AC. VpVpVp --- L.L.L.VpVpVp
R2.R*R2.R*R2.R* L.iL.iL.i = = = R2.vR2.vR2.v
C.vC.vC.v = = = R1.R1.R1.VnVnVn --- G.G.G. VpVpVp
C.C*C.C*C.C* derderder(C.v)(C.v)(C.v) = = = R1.iR1.iR1.i
L.vL.vL.v = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
L.L*L.L*L.L* derderder(L.i)(L.i)(L.i) = = = L.L.L. VpVpVp --- G.G.G. VpVpVp
AC.vAC.vAC.v = = = AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp
AC.VpAC.VpAC.Vp --- G.VpG.VpG.Vp ===

AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)AC.VA*sin(2*PI*AC.freq*time)
G.G.G.VpVpVp = 0= 0= 0
G.iG.iG.i = = = AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i
AC.iAC.iAC.i + + + R1.iR1.iR1.i + + + L.iL.iL.i = 0= 0= 0

Sorting of Equations

F(t, der(x) , x, w, p, u, y) = 0; x = [C.v, L.iL.i]] ),,,f( upx
x

t
dt

d =
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Solving Equations

G.Vp = 0
AC.Vp - G.Vp =

AC.VA*sin(2*PI*AC.freq*time)
C.v = R1.Vn - G.Vp
R1.v = AC.Vp - R1.Vn
R1.R* R1.i = R1.v
AC.i + R1.i + L.iL.i = 0
AC.v = AC.Vp - G.Vp
C.C* der(C.v) = R1.i
G.i = AC.i + R1.i + L.iL.i
R2.R* L.iL.i = R2.v
R2.v = AC.Vp - L.Vp
L.v = L.Vp - G.Vp
L.L* der(L.i) = L.Vp - G.Vp

G.Vp = 0
AC.Vp = AC.VA*

sin(2*PI*AC.freq*time) + G.Vp
R1.Vn = G.Vp + C.v
R1.v = AC.Vp - R1.Vn
R1.i = R1.v / R1.R
AC.i = - (R1.i + L.i)
AC.v = AC.Vp - G.Vp
der(C.v) = R1.i /C.C
G.i = AC.i + R1.i + L.i
R2.v = R2.R * L.i
L.Vp = AC.Vp - R2.v
L.v = Vp - G.Vp
der(L.i) = (L.Vp - G.Vp) /L.L

),,,f( upx
x

t
dt

d =
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Summary - Simple Circuit - ODE

G:         G.Vp = 0
AC:        AC.Vp = AC.VA*

sin(2*PI*AC.freq* time) + G.Vp
C:         R1.Vn = G.Vp + C.v
R1:        R1.v = AC.Vp - R1.Vn

R1.i = R1.v / R1.R
Circuit:   AC.i = - (R1.i + L.i)
AC:        AC.v = AC.Vp - G.Vp
C:         der(C.v) = R1.i/C.C
Circuit:   G.i = AC.i + R1.i + L.i

R2:        R2.v = R2.R * L.i
L.Vp = AC.Vp - R2.v

L:         L.v = Vp - G.Vp
der(L.i) = (L.Vp - G.Vp)/L.L

R
1=
10

A
C=
220

C=
0.
01

G

R
2=
10
0

L=
0.
1

ODE:

I1
1

S

Res1

1/R1

sinIn Cap

1/C

Res2

R2

sum3

+1
-1

sum1

-1
+1

sum2

+1
+1

Ind

1/L

I2
1

S

Data flow:

),,,f( upx
x

t
dt

d =
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• Graph theoretical methods used
(bipartite graph)

for assigning causalities and sorting equations
(strongly connected components, Tarjan) 

• Gives sequence of assignments statements 
(solver does not handle w) 

and simultaneous systems of equations (algebraic loops)
- finding minimal loops

• Jacobian - Block Lower Triangular
• Tearing used to reduce sparse matrices 

Structural Processing

),,,(

),,,f(

upxgy

upx
x

t

t
dt

d

=

=

• Conversion to explicit ODE form

Equations Variables
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Symbolic Formula Manipulation

Formula manipulation
- abstract syntax tree for expressions 
- algebraic transformation rules recursively 
applied to tree, such as:

xdbcadxcbxa )()()( −+−→+−+

Example of manipulations
- solving linear equations and certain non-linear equations
- finding matrix coefficients for linear systems of equations 
- solving small linear systems of equations 
- finding Jacobian for nonlinear systems of equations 

Specialized computer algebra algorithms needed
- high capacity (> 100 000 equations)
- appropriate heuristics

=

* u

R i

=

/i

u R
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Higher index DAE's

• Constraints on differentiated variables 
• Dependent initial conditions 
• Reduced degree-of-freedom 

• Example: capacitors in parallel, rigidly connected masses 

• Cannot solve for all derivatives 
• Differentiate certain equations symbolically

algorithm by Pantelides 
• Automatic state variable selection

R
1=
10

A
C=
220

C=
0.
01

G

C
1=
0.
05
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DynamicsSection
Vg_u_v = A_0*sin(6.28318530717959*f_0*Time)+v0_0;
Vg_p_v = Vg_u_v;
R1_n_v = C2_v;
R1_v = Vg_p_v-R1_n_v;
Vg_n_i = R1_v/R1_R;

C1_der_v =  Vg_n_I / (C2_C+C1_C);

C1_i = C1_C*C1_der_v;
C2_i = Vg_n_i-C1_i;

R1_n_der_v = C1_der_v;
C2_der_v = C1_der_v;

AcceptedSection
G_p_i = C1_i-Vg_n_i+C2_i;
C1_v = R1_n_v;

Capacitors in Parallell

Vg

R1=10

G

C
1=
0.
001

C
2=
0.
0005

InitialSection
PI_0 = 3.14159265358979;
Vg_n_v = 0;
G_p_v = 0;
C1_n_v = 0;
C2_n_v = 0;
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Simplifications of equations

• General library models 
• Needs specialization in its environment 
• Example: 3D mechanical model constrained to move in 2D

AxisOfRotation = {0, 0, 1}

• Manipulations:
- substitute constants and fixed parameters 
- partial evaluation of expressions:

0 * expr = 0,  expr/expr = 1, etc

•Reduction in number of arithmetic operations: 
typically a factor of 10 
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Singular systems - high index DAE

), tyx,,xf(0 �=DAE:

with singular Jacobi-Matrix 0
y
f

x
f =

∂
∂

∂
∂

�

can not be algebraically transformed to state space form, 
because:

There are constrains between differentiated variables x, such 
that all x’s are not independent (can not be given independent 
initial conditions). 
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Dummy Derivative Method:

(1) Search subsets of equations, which have a singular 
Jacobian Matrix. Sufficient Condition: 
number of equations  > number of unknowns

(2) Differantiate the equation subsets and add the resulting equations 
to the DAE.

(3) From the  singular subset of equations select  Dummy-
derivatives xd  until these equations are regular. (that means:
treat them as unknown algebraic Variables (like y); 
before, xd has been assumed known). 

(4) Analyze  the complete DAE again, that means repeat from point 1 until 
the Jacobian matrix of the DAE is regular .
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remark:

A singular DAE can not be transformed into explicit state space form , 
when the DAE does not have a unique solution . Example:

)(0

)(0

),,(0

13

12

21

yf

yf

yxxf

=
=
=

�

3 equations for the 3 unknown variables                .
If the last two functions are identical , there is an infinite number
of solutions , else there is a contradiction for calculating y and there 
is no solution. 
Such a  DAE is called  structurally  inconsistent . 
(This property is recognized by Dymola during translation).

21,, yyx

Sunday, October 12, 
2003

Multi-domain Modeling and Simulation with Modelica 91

Test (singular systems)

Analyze the following systems:

• Write down the number of local states for each component

• Which constraint conditions exist (Write down equations)?

• How many states exist in the total system ?
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Number of states

J1.phi = i1*J2.phi
J2.phi = i2*J3.phi
J1.w   = i1*J2.w
J2.w   = i2*J3.w

2 2 2
2

2 2

2J1.phi = i*J2.phi
J1.w    = i*J2.w

2 2
4

2 2 2
4

J1.phi = i*J2.phi
J1.w    = i*J2.w
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Number of states
2 2

1

4

springDamper.phi_rel = J2.phi - J1.phi

2 2

2

2
s0.phi = (s1.phi + s2.phi)/2
w0.phi = (w1.phi + w2.phi)/2

6
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Number of states

1
1 1 C1.v = C2.v

2

1

1

1

C1.v = C2.v
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Number of states

01

C1.v = C2.v
C1.v = constVolt.v

1

1 1

1

tempSource.T = heatCapacitance1.T
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Summary

� Introduction
– Industrial Application Examples
– Composition Diagram versus Block Diagram

� Modeling with Modelica
– Flat and Hierarchical Models
– Special Model classes
– Matrices, Arrays and Arrays of components
– Physical Fields
– Hybrid Modeling
– Symbolic processing

Based on Material from Martin Otter and Hilding Elmqvist


