
Model-Based Engineering
with AADL: An Overview

© 2009 Carnegie Mellon University

Peter Feiler

Outline

AADL: The Language

What’s New in AADL V2

Modeling with AADL

2
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

AADL: Components and Connections

Component type

• component category

• extends

• features (is)

• subcomponents (requires)

Component type
identifier

• component category

• extends {component_type}

• features

• flow specification

• properties

Package

features
• port

• port group

• parameter

• access

• subprogram

implements
type

is one of

Properties

application

platform

composite

Component Category
• data

• subprogram

• thread

• thread group

• process

• memory

• device

• processor/virt. processor

• bus/virt. bus

• system

•abstract

3
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 3

Package
public

component classifier

private

component classifier

more details

Component implementation
identifier

• extends {component implementation}

• refines type

• subcomponents
• connections

• call sequences

• modes

• flow implementation & end-to-end flows

• properties

Connections
• data

• event

• event data

• port group

• access

Properties
• standard

• user defined

Property set
property types

property definitions

property values

modes

mode transitions

mode configurations

reference

Application Components

System: hierarchical organization of components

Process: protected address space

Thread group: organization of threads in processes

Thread: a schedulable unit of concurrent execution

process

Thread group

System

4
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University4

Thread: a schedulable unit of concurrent execution

Data: potentially sharable data & datqa typing

Subprogram: callable unit of sequential code

Thread

data

Subprogram

Execution Platform Components

Processor – provides thread scheduling and execution services

Virtual processor – hierarchical schedulers & partitions

Memory – provides storage for data and source code

Processor

Memory

Virtual Processor

5
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 5

Bus – provides physical connectivity between hardware components

Virtual bus – virtual channels & protocols

Device – interface to external environment, physical components

Device

Bus

Memory

Virt Bus

System Type

system GPS

features

speed_data: in data port metric_speed

{SEI::BaseType => UInt16;};

geo_db: requires data access real_time_geoDB;

s_control_data: out data port state_control;

flows

System

6
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

flows

speed_control: flow path

speed_data -> s_control_data;

properties SEI::redundancy => Dual;

end GPS;

GPS
speed_data

geo_db

s_control_data

{type}
extends
features
flows
properties

System Implementation

system implementation GPS.secure

subcomponents

decoder: system PGP_decoder.basic;

encoder: system PGP_encoder.basic;

receiver: system GPS_receiver.basic;

connections

c1: data port speed_data -> decoder.in;

c2: data port decoder.out -> receiver.in;

c3: data port receiver.out -> encoder.in;

{implementation}
extends
refines type
subcomponents
calls
connections
flows
modes
properties

7
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

c3: data port receiver.out -> encoder.in;

c4: data port encoder.out -> s_control_data;

flows

speed_control: flow path speed_data -> c1 -> decoder.fs1

-> c2 -> receiver.fs1 -> c3 -> decoder.fs1

-> c4 -> s_control_data;

modes none;

properties arch::redundancy_scheme => Primary_Backup;

end GPS;

Some Standard Properties

Dispatch_Protocol => Periodic;

Period => 100 ms;

Compute_Deadline => value (Period);

Compute_Execution_Time => 10 ms .. 20 ms;

Compute_Entrypoint => “speed_control”;

Source_Text => “waypoint.java”;

Source_Code_Size => 12 KB; File containing the
application code

Code to be executed
on dispatch

Thread

8
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Bus

ProcessorThread_Swap_Execution_Time => 5 us.. 10 us;

Clock_Jitter => 5 ps;

Allowed_Message_Size => 1 KB;

Propagation_Delay => 1ps .. 2ps;

Bus_Properties::Protocols => CSMA;

Protocols is a user
defined property

Latency Impact of Partitions

Display
Manager

Sensor Request for new page

New page content

Latency contribution:

9
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Flight
Manager

Flight
Director

Page Content
Manager

Latency contribution:

Partition period per
partition hop

Flow Sources, Paths, Sinks

device brake_pedal

features

brake_status: out data port bool_type;

flows

Flow1: flow source brake_status;

end brake_pedal;

system cruise_control

Brake
Pedal

Cruise Control Throttle
Actuator

10
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 10

system cruise_control

features

brake_status: in data port;

throttle_setting: out data port;

flows

brake_flow_1: flow path brake_status -> throttle_setting;

end cruise_control;

device throttle_actuator

Features

throttle_setting: in data port float_type;

flows

Flow1: flow sink throttle_setting;

end throttle_actuator;

Architecture Execution Semantics Defined –
Components to SoS

Nominal & recovery

Fault handling

Resource locking

Mode switching

Initialization

11
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Initialization

Finalization

9

Thread Example
Diagram

Component Interactions & Modes

Completely defined interfaces & interactions

• Port-based flows

— State data, events, messages

— Flow specifications & connections

— End-to-end flows

• Synchronous call/return

12
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 12

• Synchronous call/return

• Shared access

Modal & dynamically configurable systems

• Modeling of operational modes

• Modeling of fault tolerant configurations

• Modeling of different levels of service

A Partitioned Run-Time Architecture

Application
Software
Component

AADL Runtime System

Application
Software
Component

Application
Software
Component

Application
Software
Component

13
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 13

Strong Partitioning
• Timing Protection
• OS Call Restrictions
• Memory Protection

Interoperability/Portability
• Tailored Runtime Executive
• Standard RTOS API
• Application Components

Real-Time Operating System

Embedded Hardware Target

Domain Data Modeling

Domain types & base types

Data value range and units of measurement

Data transfer assumptions

• Guaranteed delivery

• Ordered delivery

14
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Ordered delivery

Data stream characteristics

• Computational error

• Miss rates

• Freshness

AADL and Safety-Criticality

Fault management

• Architecture patterns in AADL

— Redundancy, health monitoring, …

• Fault tolerant configurations & modes

Dependability

• Error Model Annex to AADL

• Specification of fault occurrence and fault propagation information

15
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

15

• Use for hazard and fault effect modeling

• Reliability & fault tree analysis

Behavior validation

• Behavior Annex to AADL

• Model checking

• Source code validation

Consistency checking of
safety-criticality levels

Architecture Redundancy Pattern

External and internal mode control

Pattern variants with different latency & fault propagation characteristics

Primary Backup

Init/restart

Mode

16
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

primary

backup

Primary Backup

Reinit

Primaryfail

Primaryok

observer

insignal

outsignal

Leverage Connectivity in AADL Models

Fault propagation at the application logic level, at the hardware level,
and between the two levels.

• Provides compositional model specification approach

• Architecture defines propagation paths for software and hardware

Component A Component B

17
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Processor 1 Processor 2Bus

Error_Free Failed

Error_Free Failed Error_Free Failed Error_Free Failed

Error_Free FailedError_Free Failed

Generation of
stochastic process
models & fault trees

Large-Scale Development

Component evolution

• Component templates & refinement

• System families

• Component variants

• Components as extensions of other components

• Model configuration by property values

18
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 18

• Model configuration by property values

Large models & team development

• Components organized into AADL packages

• Public & private package sections

• Independently developed packages

• Version management of AADL packages

• Model integration

AADL Language Extensions

Model annotation through properties and sublanguages

New properties defined through property sets

Standard compliant sublanguage syntax in annex subclauses

Project-specific language extensions

Language extensions as approved SAE AADL standard annexes

19
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 19

Language extensions as approved SAE AADL standard annexes

Examples

• Error Model

• Interaction behavior

• System partitions (e.g., ARINC 653)

COTRE Annex Extension

THREAD t

FEATURES

sem1 : DATA ACCESS semaphore;

sem2 : DATA ACCESS semaphore;

END t;

THREAD IMPLEMENTATION t.t1

PROPERTIES

ANNEX cotre.behavior {**

STATES

s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;

s0 : INITIAL STATE;

TRANSITIONS

s0 -[]-> s1 { PERIODIC_WAIT };

s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };

s2 -[sem1.wait ! (-1.0ms)]-> s3;

s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };

s4 -[sem2.wait ! (-1.0ms)]-> s5;

s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };

20
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course 20

Period => 13.96ms;

cotre::Priority => 1;

cotre::Phase => 0.0ms;

Dispatch_Protocol => Periodic;

s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };

s6 -[sem2.release !]-> s7;

s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };

s8 -[sem1.release !]-> s0;

**};

END t.t1;

COTRE thread
properties

COTRE behavioral annex

Courtesy of

Outline

AADL: The Language

What’s New in AADL V2

Modeling with AADL

21
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

What’s New in AADL2

Packages and classifier visibility

New classifiers

Classifier matching and substitution

Explicit parameterization of classifiers (prototypes)

Abstract features

Connection improvements

22
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Connection improvements

Feature groups

Arrays of components

Property improvements

Threads and communication timing

Subprograms and subprogram groups

Mode improvements

Flow improvements

Packages and Classifier Visibility

Component implementation in public and private section

of packages

• Public: represents component variant: only properties

• Private: represents realization

23
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

With statement

• Specifies the set of packages whose classifiers can be
referenced

Renames statement

• Represents a local alias for long qualified classifier
references to component types

• Renames provides short names for fully qualified package
names

Abstract Components

Example: A conceptual architecture

abstract car

end car;

abstract implementation car.generic

subcomponents

power_train: abstract PowerTrain;

exhaust_sys: abstract ExhaustSys;

end car.generic;

24
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

end car.generic;

abstract PowerTrain

end PowerTrain;

system carRT extends car

end car;

system implementation carRT.impl extends car.generic

subcomponents

power_train: refined to process PowerTrain;

exhaust_sys: refined to process ExhaustSys;

end carRT.impl;

Concrete category
supplied by refinement

Concrete category
extends abstract
type/implementation

New Classifiers

Subprogram group classifier

• Represents subprogram library

• Provides subprogram features

• Provides and requires access to subprogram group

25
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Virtual processor classifier

• Represents hierarchical scheduler, virtual machine,
processor partition, rate group task

• Virtual processor as subcomponent

• Virtual processor is bound to virtual processors and
processors

New Classifiers - 2

Virtual bus classifier

• Represents logical/virtual channel, protocols and protocol
stacks

• Required_Virtual_Bus_Class and
Provided_Virtual_Bus_Class property associated with

26
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Provided_Virtual_Bus_Class property associated with

buses, processors and virtual buses

• Required/Provided_Connection_Quality_Of_Servi

ce property

— Example value: guaranteed_delivery

• Virtual bus subcomponents

• No requires virtual bus access and provide virtual bus
access

Refinement Substitution Rules

Classifier_Match

1. Goto type

2. Select an implementation

Type_Extension

A

B

A.i1 A.i2

B.i

27
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

1. Goto type

2. Select an extension

3. Select an implementation (optional)

Signature_Match

1. Goto type

2. Select a type with a superset of

features and flow specifications

3. Select an implementation (optional)

C

C.i

D

D.i

Prototypes – Consistent Refinement

Example: Type of data on a port

system system GpsGeneric

prototypes

dt: data;

features

pos_1: out data dt;

pos_2: out data dt;

system Gps

extends GpsGeneric(dt=>PosData)

end Gps;

28
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Compare to refinement

end

pos_2: out data dt;

end GpsGeneric;

system

end

system GpsBasic

features

pos_1: out data;

pos_2: out data;

end GpsBasic;

system GpsRef extends GpsBasic

features

pos_1: refined to out data PosData;

pos_2: refined to out data OtherData;

end GpsRef;

No enforcement of
consistency possible

Relaxation of Port Connection Rules

Connection syntax

• Only port keyword

Connections between data port, event data ports, event

ports

• event port -> event port

29
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• event port -> event port

• data port -> data port, event data port, event port

• event data port -> event data port, data port, event port

Connections between ports and data components

• data, data access -> data port, event data port, event port

• data port, event data port -> data, data access

Relaxation of Port Connection Rules

Connection syntax

• Only port keyword

Connections between data port, event data ports, event

ports

• event port -> event port

30
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• event port -> event port

• data port -> data port, event data port, event port

• event data port -> event data port, data port, event port

Connections between ports and data components

• data, data access -> data port, event data port, event port

• data port, event data port -> data, data access

Feature Group Improvements

For any feature

• Not just ports

Inverse of in feature declaration

• No need to define both a feature group type and an inverse feature group

type

Matching of independently declared feature group type

31
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Matching of independently declared feature group type

• Ability to define equivalence

Prototypes and refinement

• Classifier and feature prototypes

• Substitution rules

Arrays in AADL

Arrays of subcomponents

Multiple array dimensions

• Of same subcomponent

• Of subcomponent and ancestor component

32
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Of subcomponent and ancestor component

Single array dimension for features

• Example applications: routers, voters

Arrays in AADL – Example

Fan-in, fan-out at process port

Thread connectivity across processes

T1, t2, t3, t4 : thread controller [4];

Connection_Pattern => (one_to_one);

t1 -> t3 arrays ; t1 -> t4 arrays; t2 -> t3 arrays; t2 -> t4 arrays with
pairwise connected elements

P1 P2

33
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

T2[4]

T1[4]

T4[4]

T3[4]

Feature group in process
• t1 -> t3 array; t2 -> t4 array

T2[4]

T1[4]

T4[4]

T3[4]

P1 P2

Connection patterns – one dimension

S D

Identity aka.
One_To_One

S D

next Cyclic_Next

S D

previous

S D

34
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

One_To_One

Neighbor =
(next, previous)

S D

Cyclic Neighbor =
(CyclicNext, CyclicPrevious)

S D

next, one_to_one

S D

Connection patterns – two dimensions
S D

(Identity , identity)

S D

(Identity , next)

S D

35
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

(Identity , identity)
(Identity , next)

(next , next)

S[3,3]; D[3,3];

Port S.p1 -> D.p2;

Connection patterns – two dimensions
self

(identity , next) (next, identity) (next, next)

M[3,3]; port M.p1 -> M.p2;

36
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

(identity , next) (next, identity)

(next, next),

(next, previous)

(identity, identity)(identity, previous) ,

(identity, next)

Mode Improvements

Modes in component types

• Modes common to all implementations

— No additional modes in implementation

• Mode-specific property values on component type, flow spec,
and features

Named mode transitions

37
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Improved specification of mode transition activities

• Based on Rolland TLA specification

Inherited modes

• Requires modes to indicate which modes on an enclosing
component the component is sensitive to

• Mapping of mode names

Flow Improvements

End-to-end flows composed of end-to-end flows

• Ete12 : end to end flow ete1 -> conn12 -> ete2

• Ete13 : end to end flow ete1 -> conn13 -> ete3

Flow through data components
Data component

38
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

c1

fs2

fs1

T2

End-to-end: T1.fs1 -> c1 (write) -> d -> c2 (read) -> T2.fs2

T1

d
c2

Counter to

connection

direction

Data component

flow spec

Did you know

Multiple end-to-end flows from

feature group connections and

connections involving arrays

System Modeling

Layered architectures

• Use of system implementation declarations

• Implemented_As property

Asynchronous systems

39
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Synchronization domains

• Reference_Time property

What’s New in AADL2

Packages and classifier visibility

New classifiers

Classifier matching and substitution

Explicit parameterization of classifiers (prototypes)

Abstract features

Connection improvements

40
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Connection improvements

Feature groups

Arrays of components

Property improvements

Threads and communication timing

Subprograms and subprogram groups

Mode improvements

Flow improvements

Outline

AADL: The Language

What’s New in AADL V2

Modeling with AADL

• What is your system?

• Modeling multiple tiers

41
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Finding the right abstraction

• Filling in the software architecture

• Team support & Variants

• Modeling a reference architecture

Towards Architecture Centric Engineering

Build on architecture tradeoff analysis (e.g., SEI ATAM)
• Provides focused evaluation method

• MBE/AADL provides quantitative analysis & starter models to build on

Facilitate pattern-based technical architecture root cause analysis
• Identify systemic risks in technology migration and refresh

• AADL provides semantic framework to reason about technical problem
areas and potential mitigation strategies

42
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Scalability through architecture extraction
• Leverage existing design data bases

• Challenge: abstract away from design details

• Focus on “what” instead of “how”

Support system and software assurance
• Provides structured approach to safety/dependability assurance

• MBE/AADL provides evidence based on validated models

Software & System Engineering

SAE AADL

Embedded
Software System
Engineering

System
Engineering

SysML

43
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Embedded
Software
System

Physical
System
Model

Physical
System

Computing
Platform

Embedded
Software

Application Domain

Operational
Environment

AADL – SysML

coordination

Modeling an Embedded System Architecture

Elements of an embedded system architecture

• Software Architecture PLUS

• Hardware Architecture PLUS

• Physical system/environment PLUS

• Logical interface between software and physical system PLUS

• Physical interface between hardware and physical system PLUS

44
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Physical interface between hardware and physical system PLUS

• Deployment of software on hardware

Outline

What is your system?

Modeling multiple Tiers

Finding the right abstraction

Filling in the software architecture

Team support & Variants

45
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Team support & Variants

Modeling a reference architecture

Multiple Tiers of a System

Aircraft system: (Tier 1)
Engine, Landing, Cockpit, …
weight, electrical, fuel, hydraulics, …

IMA System: (Tier 2)
Hardware platform, software partitions
Power, MIPS, RAM capacity & budgets
End-to-end flow latency

46
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Subcontracted software subsystem: (Tier 3)
Tasks, periods, execution time
Software allocation, schedulability

Abstraction in System Architecture

Bus to represent resource such as
hydraulics

Bus to represent resource
connections such as hydraulic lines

47
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Embedded Software Architecture

Computing Platform Application Software

48
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Outline

What is your system?

Modeling multiple Tiers

Finding the right abstraction

Filling in the software architecture

Team support & Variants

49
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Team support & Variants

Modeling a reference architecture

Hardware as an Abstraction

Memory
• Individual memory modules

• Processor with memory

High-speed Ethernet switch
• As bus with latency properties

• As collection of hardware components with processing queues

Multi-core processors

50
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Multi-core processors
• As single AADL processor

• Individual cores as processors

Digital camera

• As AADL device

• Implemented_as system with hardware and software

Challenge: abstract away from
design details
Focus on “what” instead of “how”

Intended Data Flow in Task Architecture

Navigation
Sensor

Processing

Integrated
Navigation

20Hz

10Hz

From other
Partitions

D
e
c
re

a
s
in

g
 P

ri
o

ri
ty

Periodic I/O

20Hz

To other
Partitions

Shared
data
area

Pr 1

Pr 2

Pr 3

Intended flow
documented in design

Priority inversion &
non-determinism

51
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Navigation

Guidance
Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

5Hz

2Hz

D
e
c
re

a
s
in

g
 P

ri
o

ri
ty

Pr 4

Pr 6

Pr 9

Priority assignment
achieves desired data

flow

documented in design
document table

non-determinism
through preemption

Modeling the What

Navigation
Sensor
Processing

Integrated
Navigation Guidance

Processing

20Hz

10Hz 20Hz

From

Partitions

To

Partitions

Guidance

Nav

sensor

data

Nav signal

data

Nav

dataNav sensor

data

52
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Flight Plan
Processing

Aircraft
Performance
Calculation

5Hz

2Hz

Fuel Flow

FP data

Performance

data

data

Nav data

FP data

Immediate and delayed
data port connections for
deterministic sampling

Input-compute-output (ICO)
AADL thread semantics

Types Vs. Properties

Example: Power supply

Type enforcement by AADL semantics

Multiple properties mapped into types

53
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Multiple properties mapped into types

54
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Outline

What is your system?

Modeling multiple Tiers

Finding the right abstraction

Filling in the software architecture

Team support & Variants

55
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Team support & Variants

Modeling a reference architecture

Systems Context Diagrams

Defines all of the entities that are within the scope of an application

Shows the data flows that are included in the scope of a application
.

Focuses on relationships with external entities and identifies the
information that is exchanged between these external entities and
the system under review.

56
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

the system under review.

•

Context Diagram at the project level is the root of the Functional
Decomposition at the conceptual level of detail. (Level 0)

Subsequent decompositions (1 to n) identify components and the
logical flow of data between the components

A Typical Context Diagram

57
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Cruise Control
Functional Decomposition-Level 0

Throttl
e
Actuat

Display

Cruise

Engine

Speed
Sensor

58
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

User Input
Device

Actuat
or

Cruise
Control
System

Sensor

Brake
sensor Other

Control
elements

Feature Groups

Feature Groups are collections of individual ports and port groups such
that

• a feature group can be connected to individually

• a component feature group can be connected as a single unit

59
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

MBE with AADL

Course

Bundling of connections
reduces graphical clutter

Compute Desired Speed
Functional Decomposition-Level 2

desired_speed

CDS OK to run

Instantaneous velocity

Prevous sample
instantelous velocity

60
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Functional specification
in domain notation

Outline

What is your system?

Modeling multiple Tiers

Finding the right abstraction

Filling in the software architecture

Team support & Variants

61
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Team support & Variants

Modeling a reference architecture

Use of AADL Packages

AADL Packages as name spaces

• Qualify references by package name: BaseTypes::uint16

• Nested package names: edu::cmu::sei::MySystem::App1

Component libraries

• Component types and implementations

• Hardware & application libraries

• Subsystem details in separate packages

62
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Subsystem details in separate packages

Data dictionary

• Data types

• Domain information on data types

Interaction specifications

• Port group type specifications

Model Repository

Development Repositories

Integrator

Subcontractor1

Internal

Public Public Internal
Subsys

ICD rev

Common

data

dictionary

Subcontractor

data

dictionaryIntegrator

Packages as versioned units
Eclipse projects as
Configuration Items

63
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Subcontractor2

Public

Subsys

Spec

Subsys

ICD

Possibly Public

Per Sub

Subsys

Spec rev

Subsys

Impl

Public

dictionary

System

spec

dictionaryIntegrator

data

dictionary Subsys

Impl

Test

harness

Integration

test

harness

System

Impl

System

configurations

Modeling of System Configurations

64
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Use of contained property association to keep
deployment information in one place

Use of extends to specify configurations

Variants in System Families or Product Lines

Multiple interface variants
• AADL component types with extends

Multiple realizations
• Multiple AADL component implementations per type

Variation in component structure and communication
• Parameterized component implementations (AADL V2 Prototype)

AADL V2 supports multiple
data sets

65
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Dynamic variation through mode-specific subcomponents and connections

Source code variations
• Different source files as Source_Text property

• Conditional compilation flags as properties or property constants

Seed & calibration values
• As property values on data components

Outline

What is your system?

Modeling multiple Tiers

Finding the right abstraction

Filling in the software architecture

Team support & Variants

66
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Team support & Variants

Modeling a reference architecture

The Mission Data System

A reference architecture

• To be instantiated for different applications

An embedded systems architecture

• Consists of physical system, computing hardware, application software

A control systems architecture

67
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

A control systems architecture

• Feedback loops in application architecture

• Feedback loops in data management system

A multi-layered architecture

• From low-level control loops to goal-oriented planning and plan execution

A Reference Architecture

Generic Architecture Pattern

68
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Instantiation of Application Architecture
Computing Platform, and Physical System

Generic Architecture Pattern
With Connection Topology

Mission and Control Processing

Goal-oriented Mission Tasks

69
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Time-sensitive Continuous Control Tasks

A Layered Application System

Excerpt from the Textual Specification:
process implementation MDSControlSystem.basic

subcomponents
GoalPlanner: thread group ControlSoftware::GoalPlanner;

GoalExecutive: thread group ControlSoftware::GoalExecutive;

GoalMonitor: thread group ControlSoftware::XGoalMonitor;

StateEstimation: thread group ControlSoftware::estimator;

StateControl: thread group ControlSoftware::controller;

OperatorConsole: thread group
ControlSoftware::OperatorConsole;

70
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Textual & Graphical Representations

Focus on Information Flow

Mission Data System (MDS) Architecture*

Closed loop

Goal-Directed

Explicit models

Separation of Concerns

Integral Fault Protection

71
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

* M. Bennett, R. Knight, R. Rasmussen, M. Ingham, “State-Based Models for Planning and Execution, 2006-08-11.

Integral Fault Protection

Separation of Concerns: Data Management
System

Role of state history and state variables

• Information flow through application architecture

— Access to multiple data stream values

• Historical log of data stream for post mortem analysis

— Storage management through compression

72
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

• Distributed processing between space and ground system

— Proxies & telemetry

Managed data history variables

Flow-Oriented Model of Temperature Control

73
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

flow path

Reference Architecture Instantiation

74
AADL Introduction
Peter Feiler, June 2009

© 2009 Carnegie Mellon University

Instantiation of reference architecture
through refinement of AADL model

System
Under
Control

System
Under
Control

Heater 1

Switch 1
Actuator

Switch 1
command

Temperature

measurement

Temperature
Sensor

Switch 2
Actuator

Heater 2

Switch 2

command

PS2

PS1

+

-

Camera

Deployment on different
computing hardware platforms

