
Date: 03 April 2006

Systems Modeling Language (SysML) Specification

OMG document: ad/2006-03-01

version 1.0
DRAFT

SysML Merge Team
American Systems Corporation
ARTISAN Software Tools*
BAE SYSTEMS
The Boeing Company
Deere & Company
EADS Astrium GmbH
EmbeddedPlus Engineering
Eurostep Group AB
Gentleware AG
Georgia Institute of Technology
I-Logix*
International Business Machines*
Lockheed Martin Corporation
Mentor Graphics*
Motorola, Inc.*
National Insitute of Standards and Technology
Northrop Grumman Corporation
oose Innovative Informatik GmbH
PivotPoint Technology Corporation
Raytheon Company
Sparx Systems
Telelogic AB*
THALES*
Vitech Corporation

* Submitter to OMG UML for Systems Engineering RFP
SysML Specification v1.0 Draft 1

COPYRIGHT NOTICE
© 2003-2006 American Systems Corporation
© 2003-2006 ARTISAN Software Tools
© 2003-2006 BAE SYSTEMS
© 2003-2006 The Boeing Company
© 2003-2006 Ceira Technologies
© 2003-2006 Deere & Company
© 2003-2006 EADS Astrium GmbH
© 2003-2006 EmbeddedPlus Engineering
© 2003-2006 Eurostep Group AB
© 2003-2006 Gentleware AG
© 2003-2006 I-Logix, Inc.
© 2003-2006 International Business Machines
© 2003-2006 International Council on Systems Engineering
© 2003-2006 Israel Aircraft Industries
© 2003-2006 Lockheed Martin Corporation
© 2003-2006 Mentor Graphics
© 2003-2006 Motorola, Inc.
© 2003-2006 National Insitute of Standards and Technology
© 2003-2006 Northrop Grumman
© 2003-2006 oose Innovative Informatik GmbH
© 2003-2006 PivotPoint Technology Corporation
© 2003-2006 Raytheon Company
© 2003-2006 Sparx Systems
© 2003-2006 Telelogic AB
© 2003-2006 THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a proposed language specification developed by an informal partnership of vendors and users,
with input from additional reviewers and contributors. This document does not represent a commitment to implement any
portion of this specification in any company’s products. See the full text of this document for additional disclaimers and
acknowledgments. The information contained in this document is subject to change without notice.

The specification proposes to customize the Unified Modeling Language (UML) specification of the Object Management
Group (OMG) to address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP,
OMG document number ad/2003-03-41. This document includes references to and excerpts from the UML 2.0 Super-
structure Specification (OMG document number Formal/05-07-04) and UML 2.0 Infrastructure Specification (OMG doc-
ument number ptc/04-10-14) with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following conditions
are met:

• Redistributions of this specification must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• The Copyright Holders listed in the above copyright notice may not be used to endorse or promote products derived from
this specification without specific prior written permission.
2 SysML Specification v1.0 Draft

• All modified versions of this specification must include a prominent notice stating how and when the specification was
modified.

THIS SPECIFICATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TRADEMARKS

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since SysML Part-
ners has established their usage to identify this specification without any trademark status or restriction. Organizations that wish to es-
tablish trademarks related to this specification should distinguish them somehow from SysML and Systems Modeling Language, for
example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company names mentioned are used for iden-
tification purposes only, and may be trademarks of their respective owners.
SysML Specification v1.0 Draft 3

4 SysML Specification v1.0 Draft

Table of Contents
0 Preface for OMG submission. 1
0.1 Copyright waiver and trademark usage. 1
0.2 Submission contact point . 1
0.3 Guide to material in the submission . 2
0.4 Overall design rationale. 3
0.5 Statement of proof of concept . 3
0.6 Resolution of RFP requirements and requests . 3
0.7 Response to RFP issues to be discussed. 3
0.8 Proposed specification . 3
0.9 Proposed compliance points . 3
0.10 Summary of requests versus requirements. 3
0.11 Changes or extensions required to adopted OMG specifications 4

Part I - Introduction . 5
1 Scope. 6
2 Normative references. 6
3 Additional information . 7

3.1 Relationships to other standards. 7
3.2 How to read this specification . 7
3.3 Acknowledgements . 7

4 Language Architecture. 11
4.1 Design principles . 11
4.2 Architecture . 12
4.3 Extension mechanisms . 14
4.4 SysML diagrams . 15

5 Compliance . 16
5.1 Compliance with UML subset (UML4SysML) . 16
SysML Specification v1.0 Draft i

5.2 Compliance with SysML extensions . 17
5.3 Meaning of compliance . 18

6 Language Formalism . 21
6.1 Levels of formalism . 21
6.2 Chapter specification structure . 21
6.3 Conventions and typography. 22

Part II - Structural Constructs. 23
7 Model Elements . 24

7.1 Overview . 24
7.2 Diagram elements . 25
7.3 UML extensions. 28
7.4 Usage examples . 32

8 Blocks . 35
8.1 Overview . 35
8.2 Diagram elements . 35
8.3 UML extensions. 41
8.4 Usage examples . 51

9 Ports and Flows . 57
9.1 Overview . 57
9.2 Diagram elements . 58
9.3 UML extensions. 61
9.4 Usage examples . 67

10 Constraint Blocks . 72
10.1 Overview . 72
10.2 Diagram elements . 73
10.3 UML extensions. 74
10.4 Usage examples . 76

Part III - Behavioral Constructs . 79
11 Activities. 80

11.1 Overview . 80
11.2 Diagram elements . 81
11.3 UML extensions. 88
SysML Specification v1.0 Draft ii

11.4 Usage examples . 96
12 Interactions . 102

12.1 Overview . 102
12.2 Diagram elements . 103
12.3 UML extensions. 106
12.4 Usage examples . 107

13 State Machines . 110
13.1 Overview . 110
13.2 Diagram elements . 110
13.3 UML extensions. 114
13.4 Usage examples . 114

14 Use Cases . 115
14.1 Overview . 115
14.2 Diagram elements . 116
14.3 UML extensions. 117
14.4 Usage examples . 118

Part IV - Crosscutting Constructs. 120
15 Allocations . 121

15.1 Overview . 121
15.2 Diagram elements . 122
15.3 UML extensions . 123
15.4 Usage examples . 126

16 Requirements. 134
16.1 Overview . 134
16.2 Diagram elements . 136
16.3 UML extensions. 139
16.4 Usage examples . 145

17 Profiles & Model Libraries . 151
17.1 Overview . 151
17.2 Diagram elements . 152
17.3 UML extensions. 157
17.4 Usage examples . 158
iii SysML Specification v1.0 Draft

Part V - Appendices . 164
Appendix A. Diagrams . 165

A.1 Overview. 165
A.2 Guidelines. 169

Appendix B. Sample Problem . 171
B.1 Purpose . 171
B.2 Scope . 171
B.3 Problem Summary . 171
B.4 Diagrams. 171

Appendix C. Non-Normative Extensions . 203
C.1 Activity diagram extensions . 203
C.2 Requirements diagram extensions . 206
C.3 Parametric diagram extensions for Trade Studies 209
C.4 Model Library for Dimensions and Units. 211
C.5 Distribution Extensions . 213

Appendix D. Model Interchange. 216
D.1 Overview. 216
D.2 Context for Model Interchange . 216
D.3 XMI Serialization of SysML. 216
D.4 Overview of AP233. 216

Appendix E. Requirements Traceability. 222
Appendix F. Terms and Definitions . 249
Appendix G. BNF Diagram Syntax Definitions. 250

G.1 Overview. 250
G.2 Summary of BNF syntax definition conventions 250
G.3 BNF definition of SysML diagrams . 251
SysML Specification v1.0 Draft iv

Table of Figures
Figure 4-1. Overview of SysML/UML interrelationship .11
Figure 4-2. SysML Extension of UML .12
Figure 4-3. SysML Package Structure. .14
Figure 4-4. SysML Diagram Taxonomy. .15
Figure 7-1. Notation for the Rationale stereotype of Comment .28
Figure 7-2. Stereotypes defined in package ModelElements. .29
Figure 7-3. View/Viewpoint example .32
Figure 7-4. Rationale and Problem example .33
Figure 8-1. Nested property reference. .44
Figure 8-2. Stereotypes defined in SysML Blocks package. .45
Figure 8-3. Abstract syntax extensions for SysML properties .46
Figure 8-4. Abstract syntax extensions for SysML value types. .46
Figure 8-5. Abstract syntax extensions for SysML connector ends. .46
Figure 8-6. Model Library for Blocks .51
Figure 8-7. Block diagram for the Wheel Package .52
Figure 8-8. Internal Block Diagram for WheelHubAssembly .53
Figure 8-9. Defining Value Types with units and dimensions .53
Figure 8-10. SUV EPA Fuel Economy Test. .55
Figure 9-1. Port Stereotypes .62
Figure 9-2. ItemFlow Stereotype .63
Figure 9-3. Usage Example of StandardPorts. .68
Figure 9-4. Interfaces of the Internal Combustion Engine ctrl Standard Port .68
Figure 9-5. Usage of Atomic Flow Ports in the HybridSUV Sample - ibd:FuelDist diagram69
Figure 9-6. Using Flow Ports to Connect the PowerControlUnit to the ElectricalPowerController, Transmission and
InternalCpmbustionEngine over a CAN bus .70
Figure 9-7. Flow Specification for the InternalCombustionEngine flow port to allow its connection over the CAN bus
71
Figure 10-1. Stereotypes defined in SysML ConstraintBlocks package.. .75
Figure 10-2. Constraint block definitions in a Block Definition diagram. .77
Figure 10-3. Constraints on a parametric diagram. .78
Figure 11-1. Block definition diagram with activities as blocks.. .89
Figure 11-2. CallBehaviorAction notation.with behavior stereotype .90
Figure 11-3. CallBehaviorAction notation.with action name .90
Figure 11-4. Control flow notation .90
Figure 11-5. Class or block definition diagram with activities as classes associated with types of object nodes.. .91
Figure 11-6. ObjectNode notation in activity diagrams.. .91
Figure 11-7. ObjectNode notation in activity diagrams.. .91
Figure 11-8. Abstract Syntax for SysML Activity Extensions. .92
Figure 11-9. Control values. .95
SysML Specification v1.0 Draft v

Figure 11-10. Continuous system example 1. .97
Figure 11-11. Continuous system example 2. .98
Figure 11-12. Continuous system example 3. .98
Figure 11-13. Example block definition diagram for activity decomposition .99
Figure 11-14. Example block definition diagram for object node types .100
Figure 12-1. Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case . .107
Figure 12-2. Black box interaction during “starting the Hybrid SUV” .108
Figure 12-3. White box interaction for “starting the Hybrid SUV” .108
Figure 13-1. High level view of the states of the HybridSUV. .114
Figure 14-1. Top level use case diagram for the Hybrid SUV subject. .118
Figure 14-2. Operate the Vehicle use case at a lower level of abstraction .119
Figure 15-1. Abstract syntax extensions for SysML Allocation. .124
Figure 15-2. Abstract syntax expression for AllocatedActivityPartition .124
Figure 15-3. Generic Allocation, including /from and /to association ends.. .127
Figure 15-4. Behavior allocation .127
Figure 15-5. Example of flow allocation from ObjectFlow to Connector .128
Figure 15-6. Example of flow allocation from ObjectFlow to ItemFlow .128
Figure 15-7. Example of flow allocation from ObjectNode to FlowProperty .129
Figure 15-8. Example of Structural Allocation .129
Figure 15-9. AllocateActivityPartitions (Swimlanes) for HybridSUV Cellarette Example.130
Figure 15-10. Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example131
Figure 15-11. Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example 131
Figure 15-12. Allocation Matrix Showing Allocation for Hybrid SUV Cellarette Example 132
Figure 16-1. Abstract Syntax for Requirements Stereotypes. .141
Figure 16-2. Abstract Syntax for Requirements Stereotypes (cont) .142
Figure 16-3. Requirements Derivation. .146
Figure 16-4. Links between requirements and design. .147
Figure 16-5. Requirement satisfaction in an internal block diagram.. .148
Figure 16-6. Use of the copy dependency to facilitate reuse .148
Figure 16-7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram..149
Figure 16-8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram. . .150
Figure 17-1. Defining a stereotype .154
Figure 17-2. Using a stereotype .156
Figure 17-3. Using stereotypes and showing values. .157
Figure 17-4. Other notational forms for showing values .157
Figure 17-5. Definition of a profile .158
Figure 17-6. Profile Contents. .159
Figure 17-7. Two model libraries .160
Figure 17-8. A model with applied profile and imported model library. .161
Figure 17-9. Using two stereotypes on a model element .161
Figure 17-10. Using model library elements .162
Figure A-1. SysML Diagram Taxonomy .165
Figure A-2. Diagram Frame. .167
Figure A-3. Diagram Usages .169
Figure B-1. Establishing the User Model by Importing and Applying SysML Profile & Model Library. (Package Dia-
gram) .172
Figure B-2. Defining valueTypes and units to be Used in the Sample Problem.. .172
Figure B-3. Establishing Structure of the User Model using Packages and Views. (Package Diagram) 173
SysML Specification v1.0 Draft vi

Figure B-4. Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal
Block Diagram) Completeness of Diagram Noted in Diagram Description. .174
Figure B-5. Establishing Top Level Use Cases for the Hybrid SUV. (Use Case Diagram)175
Figure B-6. Establishing Operational Use Cases for “Drive the Vehicle”. (Use Case Diagram)176
Figure B-7. Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case. (Sequence Diagram)177
Figure B-8. Finite State Machine Associated with “Drive the Vehicle”. (State Machine Diagram) 178
Figure B-9. Black Box Interaction for “StartVehicle”, referencing White Box Interaction. (Sequence Diagram) . .179
Figure B-10. White Box Interaction for “StartVehicle”. (Sequence Diagram) .179
Figure B-11. Establishing HSUV Requirements Hierarchy (containment). (Requirements Diagram)180
Figure B-12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy. (Re-
quirements Diagram) .181
Figure B-13. Acceleration Requirement Relationships. (Requirements Diagram) .182
Figure B-14. Requirements Relationships Expressed in Tabular Format. (Table) .183
Figure B-15. Defining the Automotive Domain (compare with Figure B-4). (Block Definition Diagram).184
Figure B-16. Defining Structure of the Hybrid SUV System. (Block Definition Diagram) 184
Figure B-17. Internal Structure of Hybrid SUV. (Internal Block Diagram) .185
Figure B-18. Defining Structure of Power Subsystem (Block Definition Diagram) .186
Figure B-19. Internal Structure of the Power Subsystem. (Internal Block Diagram) .187
Figure B-20. Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram) . . .187
Figure B-21. Initially Defining Flow Specifications for the CAN Bus. (Block Definition Diagram) 188
Figure B-22. Consolidating Interfaces into the CAN Bus. (Internal Block Diagram) .188
Figure B-23. Elaborating Definition of Fuel Flow. (Block Definition Diagram) .189
Figure B-24. Defining Fuel Flow Constraints. (Parametric Diagram) .189
Figure B-25. Detailed Internal Structure of Fuel Delivery Subsystem. (Internal Block Diagram) 190
Figure B-26. Defining Analyses for Hybrid SUV Engineering Development. (Block Definition Diagram)191
Figure B-27. Establishing a Performance View of the User Model. (Package Diagram).192
Figure B-28. Defining Measures of Effectiveness and Key Relationships. (Parametric Diagram) 193
Figure B-29. Establishing Mathematical Relationships for Fuel Economy Calculations. (Parametric Diagram) . .194
Figure B-30. Straight Line Vehicle Dynamics Mathematical Model. (Parametric Diagram) 195
Figure B-31. Defining Straight-Line Vehicle Dynamics Mathematical Constraints. (Block Definition Diagram) . .196
Figure B-32. Results of Maximum Acceleration Analysis. (Timing Diagram) .197
Figure B-33. Behavior Model for “Accelerate” Function. (Activity Diagram) .198
Figure B-34. Decomposition of “Accelerate” Function. (Block Definition diagram) .198
Figure B-35. Detailed Behavior Model for “Provide Power”. (Activity Diagram)
Note hierarchical consistency with Figure B-33 .. .199
Figure B-36. Flow Allocation to Power Subsystem. (Internal Block Diagram). .200
Figure B-37. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem. (Table)
200
Figure B-38. Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers) . .
201
Figure C-1. Example activity with «effbd» stereotype applied . 205
Figure C-2. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities. . . . 205
Figure C-3. Example extensions to Requirement .209
Figure C-4. SI Definitions model library. .211
Figure C-5. SI Base Units.. .211
Figure C-6. SI Derived Units Expressed In Base Units. .212
Figure C-7. SI Derived Units With Special Names. .213
Figure C-8. Basic distribution stereotypes. .214
vii SysML Specification v1.0 Draft

Figure C-9. Distribution Example. .215
Figure D-1. AP233 Modules .218
Figure D-2. Mapping Model .221
SysML Specification v1.0 Draft viii

Table of Tables
Table 4-1. Detail of UML Reuse. 13
Table 5-1. Metamodel packages added in Level 1 . 16
Table 5-2. Metamodel packages added in Level 2 . 17
Table 5-3. Metamodel packages added in Level 3 . 17
Table 5-4. SysML package dependence on UML4SysML compliance levels 18
Table 5-5. Example compliance statement . 19
Table 5-6. Example feature support statement . 20
Table 7-1. Graphical nodes defined by ModelElements package.. 25
Table 7-2. Graphical paths defined by ModelElements package. 27
Table 8-1. Graphical nodes defined in Block Definition diagrams. . 36
Table 8-2. Graphical paths defined by in Block Definition diagrams.. 38
Table 8-3. Graphical nodes defined in Internal Block diagrams. 40
Table 8-4. Graphical paths defined in Internal Block diagrams. . 41
Table 9-1. Extensions to Block Definition Diagram . 58
Table 9-2. Extension to Internal Block Diagram. 60
Table 10-1. Graphical nodes defined in Block Definition diagrams. . 73
Table 10-2. Graphical nodes defined in Parametric diagrams. 74
Table 11-1. Graphical nodes included in activity diagrams.. 81
Table 11-2. Graphical paths included in activity diagrams. 86
Table 11-3. Other graphical elements included in activity diagrams.. 88
Table 12-1. Graphical nodes included in sequence diagrams. . 103
Table 12-2. Graphical paths included in sequence diagram . 106
Table 13-1. Graphical nodes included in state machine diagrams. 111
Table 13-2. Graphical paths included in state machine diagrams . 114
Table 14-1. Graphical nodes included in Use Case diagrams. 116
Table 14-2. Graphical paths included in Use Case diagrams.. 116
Table 15-1. Extension to graphical nodes included in diagrams.. 122
Table 16-1. Graphical nodes included in Requirement diagrams . 136
Table 16-2. Graphical paths included in Requirement diagrams. 137
Table 17-1. Graphical nodes used in profile definition. 152
Table 17-2. Graphical paths used in profile definition . 153
Table 17-3. Notations for Stereotype Use . 155
Table C-1. Addition stereotypes for EFFBDs. 203
SysML Specification v1.0 Draft ix

Table C-2. Streaming options for activities . 204
Table C-3. Additional Requirement Stereotypes . 206
Table C-4. Requirement property enumeration types . 207
Table C-5. Stereotypes for Measures of Effectiveness . 210
Table C-6. Distribution Stereotypes . 214
SysML Specification v1.0 Draft x

0 Preface for OMG submission

This Systems Modeling Language (SysML) Specification draft is being submitted to the OMG in response to the UML for
Systems Engineering (SE) RFP. Material in this submission that responds directly to the format required by the OMG submis-
sion process is included within this Preface. By separating the information unique to the OMG technical process and submis-
sion format, and referencing the applicable portions of the technical specification, we are able to organize the specification in
a form that can facilitate further stages of the OMG technology adoption and ISO Publicly Available Specification (PAS) pro-
cesses.

OMG RFP RESPONSE

The following OMG members have submitted Letters of Intent to the OMG to respond to its UML for SE RFP: ARTiSAN
Software Tools, IBM, I-Logix, Mentor Graphics, Motorola, Telelogic, and THALES.

The information required by Section 4.9.2 (“Required Outline”) of the UML for SE RFP is provided in the following parts.

PART I of RFP Response

0.1 Copyright waiver and trademark usage
An unlimited number of copies of this document may be made by OMG or by OMG members in accordance with the Berke-
ley-style open source license described in the Licenses section that precedes this Preface. Note that the copyrights for this
specification are shared by a group of companies, some of whom are not current OMG members.

As noted in the Trademarks section that precedes this preface, Systems Modeling Language and SysML, which are used to
identify this specification, are not usable as trademarks. Organizations that wish to establish trademarks related to this specifi-
cation should distinguish them somehow from SysML and Systems Modeling Language (for example, by adding a unique pre-
fix such as OMG SysML).

0.2 Submission contact point
The following persons may be contacted for information regarding this submission:

For general questions, contact:

Sanford Friedenthal

3201 Jermantown Rd, Fairfax VA 22030

USA

Sanford.Friedenthal@lmco.com.

Submitter Point of Contacts include:

Alan Moore

ARTiSAN Software Tools

Suite 701 Eagle Tower Cheltenham GL50 1TA

UK

alan.moore@artisansw.com
SysML Specification v1.0 Draft 1

Laurent Balmelli, Ph.D

IBM Research Division

19 Skyline Road, Hawthorne, NY, 10532

USA

balmelli@us.ibm.com

John Low

I-Logix

3 Riverside Dr. Andover, MA 10810

USA

 jlow@ilogix.com

Stephen J Mellor

Mentor Graphics, Corp.

7400 N. Oracle Rd, #365, Tucson AZ 85704-6342
USA

stephen_mellor@mentor.com
Anders Ek

Telelogic AB

PO Box 4128

SE-203 12 MALMÖ

Sweden

anders.ek@telelogic.com
Véronique Normand

Thales Research & Technology

RD 128 91767 PALAISEAU CEDEX

France

veronique.normand@thalesgroup.com

0.3 Guide to material in the submission
An overview of the background, goals and technical content of this proposal is described in Chapter 1, “Scope” of this docu-
ment.
2 SysML Specification v1.0 Draft

0.4 Overall design rationale
The design rationale for the language architecture and the specification approach used by this specification are provided in
Chapter 4, “Language Architecture” and Chapter 6, “Language Formalism” of this document. The “Requirements Traceabil-
ity” in Appendix E shows how the requirements of the UML for SE RFP are satisfied by this specification.

0.5 Statement of proof of concept
This proposed specification has been prototyped or implemented by more than one of the submitting organizations.

0.6 Resolution of RFP requirements and requests
The proposed specification makes use of existing OMG specifications and follows OMG guidelines in conformance with Sec-
tion 5 “General Requirements on Proposals” of the RFP.

Section 6.5 “Mandatory Requirements” of the RFP requires a specific form of matrix that indicates how the proposed solution
satisfies each of the numbered requirements in the “Specific Requirements on Proposals” section of the RFP. The “Require-
ments Traceability” in Appendix E addresses this requirement, and is included in this section by reference to the Appendix.

0.7 Response to RFP issues to be discussed.
Section 6.7 of the RFP, “Issues to be discussed” contains a single issue, which requests a sample problem description as fol-
lows:

Submissions shall include models of one or more sample problems to demonstrate how their customization of UML for
SE addresses the requirements of this RFP. The submitter may select one or more sample problems of their choosing,
or apply their proposed solution to the sample problem descriptions included on the RFP page at http://syseng.omg.org/
UML_for_SE_RFP.htm. The compliance matrix referred to in Section 6.5, must include a reference to the portion of
the sample problem, which demonstrates how each requirement is being addressed.

The response to this “Issue to be discussed” is provided in Appendix B “Sample Problem” of this document.

PART II of RFP Response

0.8 Proposed specification
The specification is contained in the body of this document in parts II-IV. This specification includes both normative and
explanatory material in a format that is largely self-contained and which could be adopted and published in conformance with
the OMG process. Parts II-IV contain the normative part of this specification. The appendixes in Part V contain additional
informative information.

0.9 Proposed compliance points
Proposed compliance points are described in Chapter 5, “Compliance” of this specification.

PART III of RFP Response

0.10 Summary of requests versus requirements
See Section 0.6 in this Preface.
SysML Specification v1.0 Draft 3

0.11 Changes or extensions required to adopted OMG specifications
This specification is based on the UML Superstructure specification. The goal was to reuse the UML Superstructure specifica-
tion as much as practical for application to the systems engineering domain. The developers of this specification found some
cases where the original concepts as expressed in the superstructure specification were overly constraining for this application
domain. As a result, this specification includes a small number of cases where the constraints and/or semantics of the super-
structure specification needed to be relaxed or modified per the original intent. However, by making these relatively small
number of changes, the authors believe we are better leveraging the UML Superstructure specification without having to intro-
duce entirely new constructs into the language. A summary of these areas are highlighted below.

• Relaxation of constraint 3 on InternalStructures::Connector to support nested connector ends

• Relaxation of semantics on owned behavior on activity partition
4 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 5

Part I - Introduction
This specification defines a general-purpose modeling language for systems engineering applications, called the Systems
Modeling Language (SysML). SysML supports the specification, analysis, design, verification and validation of a broad range
of complex systems. These systems may include hardware, software, information, processes, personnel, and facilities.

The origins of the SysML initiative can be traced to a strategic decision by the International Council on Systems Engineering’s
(INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling Language (UML)
for systems engineering applications. This resulted in a collaborative effort between INCOSE and the Object Management
Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems Engineering Domain Special
Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the ISO AP 233 workgroup, developed
the requirements for the modeling language, which were subsequently issued by the OMG as part of the UML for Systems
Engineering Request for Proposal (UML for SE RFP; OMG document ad/03-03-41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry, SysML
is intended to unify the diverse modeling languages currently used by systems engineers.

SysML reuses a subset of UML 2.0 and provides additional extensions needed to address the requirements in the UML for SE
RFP. SysML uses the UML 2.0 extension mechanisms as further elaborated in Chapter 17, “Profiles & Model Libraries” of
this specification as the primary mechanism to specify the extensions to UML 2.0.

Since SysML uses UML 2.0 as its foundation, systems engineers modeling with SysML and software engineers modeling with
UML 2.0 will be able to collaborate on models of software-intensive systems. This will improve communication among the
various stakeholders who participate in the systems development process and promote interoperability among modeling tools.
It is anticipated that SysML will be customized to model domain specific applications, such as automotive, aerospace, commu-
nications and information systems.

1 Scope

The purpose of this document is to specify Systems Modeling Language (SysML), a new general-purpose modeling language
for systems engineering that satisfies the requirements of the UML for SE RFP. Its intent is to specify the language so that sys-
tems engineering modelers may learn to apply and use SysML, modeling tool vendors may implement and support SysML,
and both can provide feedback to improve future versions.

SysML reuses a subset of UML 2.0 and provides additional extensions to satisfy the requirements of the language. This speci-
fication documents the language architecture in terms of the parts of UML 2.0 that are reused and the extensions to UML 2.0.
The specification includes the concrete syntax (notation) for the complete language and specifies the extensions to UML 2.0.
The reusable portion of the UML 2.0 specification is not included directly in the specification but is included by reference.
The specification also provides examples of how the language can be used to solve common systems engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering problems. It is
particularly effective in specifying requirements, structure, behavior, and allocations, and constraints on system properties to
support engineering analysis. The language is intended to support multiple processes and methods such as structured, object-
oriented, and others, but each methodology may impose additional constraints on how a construct or diagram kind may be
used. The initial version of the language supports most, but not all of the requirements of the UML for SE RFP, as shown in the
Requirements Traceability Matrix in Appendix E. These gaps are intended to be addressed in future versions of SysML as
indicated in the matrix.

SysML is intended to be supported by two evolving interoperability standards: the OMG XMI 2.1 model interchange standard
for UML 2.0 modeling tools and the ISO AP233 data interchange standard for systems engineering tools. While the details of
this alignment are beyond the scope of this specification, overviews of the alignment approach and relevant references are fur-
nished in Appendix D.

The following sections provide background information about this specification. Instructions to either systems engineers and
vendors who read this specification are provided in Section 3.2, ’How to read this specification’. The main body of this docu-
ment (Parts II-IV) describes the normative technical content of the specification. The appendices include additional informa-
tion to aid in understanding and implementation of this specification.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications.

• UML for Systems Engineering RFP (OMG document number ad/2003-03-41)

• UML 2.0 Superstructure Specification (OMG document number formal/05-07-04)

• UML 2.1 Superstructure Specification convenience document (OMG document number ptc/06-01-02)

• UML 2.0 Infrastructure Specification (OMG document number ptc/04-10-14)

• XMI 2.1 Specification (OMG document number formal/2005-09-01)
6 SysML Specification v1.0 Draft

3 Additional information

3.1 Relationships to other standards
SysML is defined as an extension of the OMG UML 2.0 Superstructure Specification.

SysML is intended to be supported by two evolving interoperability standards including the OMG XMI 2.1 model interchange
standard for UML 2.0 modeling tools and the ISO AP233 data interchange standard for systems engineering tools. The over-
views of the approach to model interchange and relevant references are included in Appendix D.

SysML supports the OMG’s Model Driven Architecture initiative by its reuse of the UML and related standards.

3.2 How to read this specification
This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling tool
vendors so that they may implement and support SysML. As background, all readers are encouraged to first read Part I “-
Introduction”.

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three parts:
Part II - “Structural Constructs”, Part III - “Behavioral Constructs”, and Part IV - “Crosscutting Constructs”. Systems engi-
neers should read the Overview, Diagram Elements and Usage Examples sections in each chapter, and explore the UML
Extensions as they see fit. Modeling tool vendors should read all sections. In addition, systems engineers and vendors should
read Appendix B - “Sample Problem” to understand how the language is applied to an example, and Appendix E - “Require-
ments Traceability” to understand how the requirements in the UML for SE RFP are satisfied by this specification.

Although the chapters are organized into logical groupings that can be read sequentially, this specification can be used for ref-
erence and may be read in a non-sequential manner.

3.3 Acknowledgements
The following companies submitted or supported parts of this specification:

• Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik GmbH

• PivotPoint Technology
SysML Specification v1.0 Draft 7

• Raytheon

• THALES

• US Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

• Vendors

• ARTISAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

• Academia

• Georgia Institute of Technology

• Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor, Bruce
Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal Hamilton,
Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu, Alan Moore, Vero-
nique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper, Rick Steiner, Robert
Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim Long,
Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames and the Georgia Institute of Technology
research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak and Diego Tamburini. The SysML team also
8 SysML Specification v1.0 Draft

wants to acknowledge Pavel Hruby and his contribution by providing the Visio stencil for UML 2.0 that was adapted for most
of the figures throughout this specification.
SysML Specification v1.0 Draft 9

10 SysML Specification v1.0 Draft

4 Language Architecture

SysML reuses a subset of UML 2.0 and provides additional extensions needed to address the requirements in the UML for SE
RFP. This specification documents the language architecture in terms of the parts of UML 2.0 that are reused and the exten-
sions to UML 2.0. This chapter explains design principles and how they are applied to define the SysML language architec-
ture.

In order to visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 4-
1, where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked
“UML” and “SysML”, respectively. The intersection of the two circles, shown by the cross-hatched region marked “UML
reused by SysML,” indicates the UML modeling constructs that SysML re-uses. The compliance matrix in Table 4-1 below
specifies the UML packages that a SysML tool must reuse in order to implement SysML.

The region marked “SysML extensions to UML” in Figure 4-1 indicates the new modeling constructs defined for SysML
which have no counterparts in UML, or replace UML constructs. Note that there is also a part of UML 2.0 that is not required
to implement SysML, which is shown by the region marked “UML not required by SysML.”.

Figure 4-1. Overview of SysML/UML interrelationship

4.1 Design principles
The fundamental design principles for SysML are:

• Requirements driven. SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse. SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when modifications are
required, they are done in a manner that strives to minimize changes to the underlying language. Consequently, SysML is
intended to be relatively easy to implement for vendors who support UML 2.0 or later versions.

UML 2

UML 2
Reuse
(1, 2)

UML
reused by

SysML
(UML4SysML)

UML
not required

by SysML
(UML -

UML4SysML)

SysML
extensions to

UML
(SysML Profile

SysML
SysML Specification v1.0 Draft 11

• UML extensions. SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension mecha-
nism is the UML 2.0 profile mechanism as further refined in Chapter 17, “Profiles & Model Libraries”of this specifica-
tion.

• Partitioning. The package is the basic unit of partitioning in this specification. The packages partition the model elements
into logical groupings which minimize circular dependencies among them.

• Layering. SysML packages are specified as an extension layer to the UML metamodel.

• Interoperability. SysML inherits the XMI interchange capability from UML. SysML is also intended to be supported by
the ISO AP233 data interchange standard to support interoperability among other engineering tools.

4.2 Architecture
The SysML language reuses and extends many of the packages from UML. As shown in Figure 4-2, the set of UML meta-
classes to be reused are merged into a single metamodel package, UML4SysML. The detailed list of packages that are merged
are shown in Table 4-1. Some UML packages are not being reused, since they are not considered essential for systems engi-
neering applications to meet the requirements of the UML for SE RFP.

Figure 4-2. SysML Extension of UML

The SysML profile specifies the extensions to UML. It references the UML4SysML package, thus importing all the meta-
classes into SysML that are either reused as-is from UML or extended in SysML. The semantics of UML profiles ensures that
when a user model “strictly” applies the SysML profile, only the UML metaclasses referenced by SysML are available to the
user of that model. If the profile is not “strictly” applied, then additional UML metaclasses which were not explicitly refer-

«profile»
SysML

«reference»

«metamodel»
UML4SysML

BehaviorStateMachines

«merge»

CompleteActivities

InformationFlows SimpleTime

Profiles

StructuredClasses

«merge»

«merge» «merge»
«merge»

«merge»

«merge»

«profile»
StandardProfileL1

«import»

PowerTypes

«merge»

Fragments
«merge»

CompositeStructures::
StructuredActivities

CompleteActions

AssociationClasses

«merge»

«merge»
12 SysML Specification v1.0 Draft

enced may also be available. The SysML profile also imports the Standard Profile L1 from UML to make use of its stereo-
types.

Table 4-1. Detail of UML Reuse

UML Language
Unit

UML Package Metaclasses

Actions Actions::BasicActions All

Actions::StructuredActions All

Actions::IntermediateActions All

Actions::CompleteActions All

Activities Activities::FundamentalActivities All

Activities::BasicActivities All

Activities::IntermediateActivities All

Activities::StructuredActivities All

Activities::CompleteActivities All

Classes Classes::Kernel All

Classes::Dependencies All

Classes::Interfaces All

Classes::PowerTypes All

Classes::AssociationClasses All

General Behavior CommonBehaviors::BasicBehaviors All

CommonBehaviors::SimpleTime All

Information Flows AuxiliaryConstructs::InformationFlows All

Interactions Interactions::BasicInteractions All

Interactions::Fragments All

Models AuxiliaryConstructs::Models All

Profiles AuxiliaryConstructs::Profiles All

State Machines StateMachines::BehaviourStateMachines All

Structures CompositeStructures::InternalStructures All

CompositeStructures::StructuredClasses All

CompositeStructures::InvocationActions All

CompositeStructures::Ports All

CompositeStructures::StructuredActivities All

Use Cases UseCases All
SysML Specification v1.0 Draft 13

Figure 4-3. SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the specific
concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in Figure 4-3 con-
tains a set of packages that correspond to concept areas in SysML that have been extended. The reusable portion of UML that
has not been extended is included by reference to the merged package (UML4SysML), and includes Interactions, State
Machines, Use Cases, and Profiles.

The SysML packages extend UML as follows:

• SysML::Model Elements refactors and extends the UML kernel portion of UML classes

• SysML::Blocks reuses structured classes from composite structures

• SysML::ConstraintBlocks extends Blocks to support the parametric modeling

• SysML::Ports and Flows extends UML::Ports, UML::InformationFlows and SysML::Blocks

• SysML::Activities extends UML activities.

• SysML::Allocations extends UML dependencies

• SysML::Requirements extends UML classes and dependencies

4.3 Extension mechanisms
This specification uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

«profile»
SysML

«profile»
ConstraintBlocks

«profile»
Blocks

«profile»
Activities

«modelLibrary»
Blocks

«modelLibrary»
ControlValues

«profile»
Ports&Flows

«profile»
Requirements

«profile»
Allocations

«profile»
ModelElements

«import» «import»
14 SysML Specification v1.0 Draft

• Model libraries

SysML stereotypes define new modeling constructs by extending existing UML 2.0 constructs with new properties and con-
straints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from UML 2.0.
SysML model libraries describe specialized model elements that are available for reuse. Additional non normative extensions
are included in Appendix C.

The SysML user model is created by instantiating the metaclasses and applying the stereotypes specified in the SysML profile
and subclassing the model elements in the SysML model library. Chapter 17, “Profiles & Model Libraries” describes how pro-
files and model libraries are applied and how they can be used to further extend SysML.

4.4 SysML diagrams
The SysML diagram taxonomy is shown in Figure 4-4. The concrete syntax (notation) for the diagrams along with the corre-
sponding specification of the UML extensions is described in Parts II - IV of this specification. The Diagram Appendix A
describes generalized features of diagrams, such as their frames and headings.

Figure 4-4. SysML Diagram Taxonomy

SysML
Diagram

Structure
D iagram

Behavior
D iagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirem ent
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2
SysML Specification v1.0 Draft 15

5 Compliance

Compliance with SysML requires that the subset of UML required for SysML is implemented, and the extensions to the UML
subset required for SysML are implemented. In order to fully comply with SysML, a tool must implement both the concrete
syntax (notation) and abstract syntax (metamodel) for the required UML subset and the SysML extensions. The following sec-
tions elaborate the definition of compliance for SysML.

5.1 Compliance with UML subset (UML4SysML)
The subset of UML required for SysML is specified by the UML4SysML package as described in Chapter 4, “Language
Architecture”. UML has three compliance levels (L1, L2, L3) that SysML applies to the subset in the UML4SysML package.
The levels are:

• Level 1 (L1). This level provides the core UML concepts from the UML kernel and adds language units for use cases,
interactions, structures, actions, and activities.

• Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for state machine
modeling, and profiles.

• Level 3 (L3). This level represents the complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, and model packaging.

These compliance levels are constructed in the same fashion as for UML and readers are referred to the UML 2.0 Superstruc-
ture document for further information.

5.1.1 Compliance level contents

The following tables identify the metamodel packages whose contents contribute to the individual compliance levels. The
metaclasses in each level are included in addition to those that are defined in lower levels (Level (N) includes all the packages
supported by Level (N-1)).

Table 5-1. Metamodel packages added in Level 1

Language Unit Metamodel Packages
Actions Actions::BasicActions
Activities Activities::FundamentalActivities

Activities::BasicActivities
Classes Classes::Kernel

Classes::Dependencies
Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors
Structures CompositeStructure::InternalStructures
Interactions Interactions::BasicInteractions
UseCases UseCases
16 SysML Specification v1.0 Draft

5.2 Compliance with SysML extensions
In addition to UML, further units of compliance for SysML are the sub packages of the SysML profile. The list of these pack-
ages is provided in Chapter 4, “Language Architecture”.

For an implementation of SysML to comply with a particular SysML package, it must also comply with any packages on
which the particular package depends. For SysML, this includes not only other SysML packages, but the UML4SysML com-
pliance level that introduces all the metaclasses extended by stereotypes in that package. The following table identifies the
level of UML4SysML on which each SysML package depends. Note that some of the SysML packages such as Model Ele-

Table 5-2. Metamodel packages added in Level 2

Language Unit Metamodel Packages
Actions Actions::StructuredActions

Actions::IntermediateActions
Activities Activities::IntermediateActivities

Activities::StructuredActivities
General Behavior CommonBehaviors::Communications

CommonBehaviors::SimpleTime
Interactions Interactions::Fragments
Profiles AuxilliaryConstructs::Profiles
Structures CompositeStructures::InvocationActions

CompositeStructures::Ports
CompositeStructures::StructuredClasses

State Machines StateMachines::BehaviorStateMachines

Table 5-3. Metamodel packages added in Level 3

Language Unit Metamodel Packages
Actions Actions::CompleteActions
Activities Activities::CompleteActivities
Classes Classes::PowerTypes

Classes::AssociationClasses
Information Flows AuxilliaryConstructs::InformationFlows
Models AuxilliaryConstructs::Models
Structures CompositeStructures::StructuredActivities
SysML Specification v1.0 Draft 17

ments, have two compliance points. This occurs when different stereotypes within the package extend metaclasses that are at
more than one UML compliance level..

5.3 Meaning of compliance
An implementation of SysML must comply with both the subset of UML4SysML and the SysML extensions as described
above. The meaning of compliance in SysML is based on the UML definition of compliance, excluding diagram interchange
(note that diagram interchange is different from model interchange which is included in SysML - refer to XMI below).

Compliance can be defined in terms of the following:

• Abstract syntax compliance. For a given compliance level, this entails:

• compliance with the metaclasses, stereotypes and model libraries, their structural relationships, and any constraints
defined as part of the abstract syntax for that compliance level and,

• the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

• Concrete syntax compliance. For a given compliance level, this entails

• Compliance to the notation defined in the “Diagram Elements” tables and diagrams extension sections in each
chapter of this specification for those metamodel elements that are defined as part of the merged metamodel or
profile subset for that compliance level and, by implication, the diagram types in which those elements may
appear.

Compliance for a given level can be expressed as:

• abstract syntax compliance

• concrete syntax compliance

• abstract syntax with concrete syntax compliance

The fullest compliance response is “YES”, which indicates full realization of all language units/stereotypes that are defined
for that compliance level. This also implies full realization of all language units/stereotypes in all the levels below that level.
“Full realization” for a language unit at a given level means supporting the complete set of modeling concepts defined for that
language unit at that level. A compliance response of “PARTIAL” indicates partial realization and requires a feature support

Table 5-4. SysML package dependence on UML4SysML compliance levels

SysML Package UML4SysML
Compliance Level

Activities (without Probability) Level 2
Activities (with Probablity) Level 3
Allocations Level 2
Blocks Level 2
Constraint Blocks Level 2
Model Elements (without View) Level 1
Model Elements (with View) Level 3
Ports and Flows (without ItemFlow) Level 2
Ports and Flows (with ItemFlow) Level 3
Requirements Level 1
18 SysML Specification v1.0 Draft

Compliance Summary

Compliance level Abstract Syntax Concrete Syntax

UML4SysML Level 1 YES YES

UML4SysML Level 2 PARTIAL YES

UML4SysML Level 3 NO NO

YES YES

NO NO

PARTIAL PARTIAL

YES YES

YES YES

YES YES

NO NO

YES YES

NO NO

YES YES

statement detailing which concepts are supported. These statements should reference either the language unit and metaclass, or
profile package and stereotype for abstract syntax, or a diagram element for concrete syntax (the diagram elements in SysML
are given unique names to allow unambiguous references). Finally, a response of “NO” indicates that none of the language
units/stereotypes in this compliance point is realized.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with Level 1. A tool that is com-
pliant at a given level must be able to import models from tools that are compliant to lower levels without loss of information.

In the case of “PARTIAL” support for a compliance point, in addition to a formal statement of compliance, implementors and
profile designers must also provide feature support statements. These statements clarify which language features are not satis-
fied in terms of language units and/or individual packages, as well as for less precisely defined dimensions such as semantic
variation points.

Table 5-5. Example compliance statement

Activities (without
Probability)

Activities (with
Probability)

Allocations

Blocks

Constraint Blocks

Model Elements (without
Views)

Model Elements (with
Views)

Ports and Flows (without
Item Flow)

Ports and Flows (with Item
Flow)

Requirements
SysML Specification v1.0 Draft 19

An example feature support statement is shown in Table 5-6 for an implementation whose compliance statement is given in
Table 5-5.

Note (1): States and state machines are limited to a single region
 Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Don’t show Blocks::StructuredCompartment notation

Table 5-6. Example feature support statement

Feature Support Statement

Compliance Level/ Detail Abstract
Syntax

Concrete
Syntax

Semantics

UML4SysML::Level 2: StateMachines::BehaviorStateMachines Note (1) Note(1) Note (2)

SysML::Blocks Block YES Note (3)
20 SysML Specification v1.0 Draft

6 Language Formalism

The SysML specification is defined by using UML 2.0 specification techniques. These techniques are used to achieve the fol-
lowing goals in the specification.

• Correctness.

• Precision.

• Conciseness.

• Consistency.

• Understandability.

The specification technique used in this specification describes SysML as a UML extension that is defined using stereotypes
and model libraries.

6.1 Levels of formalism
SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the pre-
cision of the language.

6.2 Chapter specification structure
The chapters in Parts II - IV are organized according to the SysML packages as described in the language architecture and
selected reusable portions of UML 2.0 packages. This section provides information about how each chapter is organized.

Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually associ-
ated with one or more SysML diagram types.

Diagram elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic nodes
and paths associated with the relevant diagram types. The diagram elements tables are intended to include all of the diagram-
matic constructs used in SysML. However, they do not represent all the different permutations in which they can be used. The
reader should refer to the usage examples in the chapters and the sample problem Appendix B for typical usages of the con-
crete syntax. General diagram information on the use of diagram frames and headings can be found in the Diagram Appendix
A.

A Backus-Naur-Form (BNF) included in Appendix G is used to more rigorously define the notation in selected chapters
(Model Elements, Blocks, Constraint Blocks). This formalism may be considered for application to other chapters in a future
revision.

UML extensions

This section specifies the SysML extensions to UML in terms of the diagram extensions and stereotype and model library
extensions. The diagram extensions are included when the concrete syntax uses notation other than the standard stereotype
notation as defined in the Profiles and Model Libraries chapter. The semantic extensions include both the stereotype and model
library extensions. The stereotype extension includes the abstract syntax that identifies which metaclasses a stereotype
SysML Specification v1.0 Draft 21

extends. Each stereotype includes a general description with a definition and semantics, along with stereotype properties
(attributes), and constraints. The model libraries are defined as subclasses of existing metaclasses.

Usage examples

This section shows how the SysML modeling constructs can be applied to solve systems engineering problems and is intended
to reuse and/or elaborate the sample problem in Appendix B

6.3 Conventions and typography
In the description of SysML, the following conventions have been used:

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a section is not applicable, it is not included.

• Stereotype, metaclass and metassociation names: initial embedded capitals are used (e.g., ‘ModelElement’, ‘ElementRef-
erence’).

• Boolean metaattribute names: always start with ‘is’ (e.g., ‘isComposite’).

• Enumeration types: always end with “Kind” (e.g., ‘DependencyKind’).
22 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 23

Part II - Structural Constructs
This Part defines the static and structural constructs used in SysML structure diagrams, including the package diagram, block
definition diagram, internal block diagram, and parametric diagram. The structural constructs are defined in the model ele-
ments, blocks, ports and flows, and constraint blocks chapters. The model elements chapter refactors the kernel package from
UML 2.0 and includes some extensions to provide some foundation capabilities for model management. The blocks chapter
reuses and extends structured classes from UML 2.0 composite structures to provide the fundamental capability for describing
system decomposition and interconnection, and different types of system properties including value properties, units and dis-
tributions. The ports and flows chapter provide the semantics for defining how blocks and parts interact through ports and how
items flow across connectors. The constraint blocks chapter defines how blocks are extended to be used on parametric dia-
grams that model a network of constraints on system properties to support engineering analysis, such as performance, reliabil-
ity, and mass properties analysis.

7 Model Elements

7.1 Overview
The ModelElements package of SysML reuses several general-purpose constructs that may be used in several diagrams. These
include package, model, various types of dependencies (i.e. import, access, refined, realization), constraints, and comments.
The package diagram defined in this chapter, is used to organize the model by partitioning model elements into packagable
elements and establishing dependencies between the packages and/or model elements within the package. The package defines
a namespace for the packageable elements. Model elements from one package can be imported and/or accessed by another
package. This organizational principle is intended to help establish unique naming of the model elements and avoid overload-
ing a particular model element name. Packages can also be shown on other diagrams such as the block definition diagram,
requirements diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on sev-
eral SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision branch, or a
mathematical expression. The constraint has been significantly enhanced in SysML as specified in Chapter 10, “Constraint
Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the model.
The comment is not included in the model repository. SysML has introduced an extension to a comment called rationale to
facilitate the system modeler in capturing decisions. The rationale may be attached to any entity, such as a system element
(block), or to any relationship, such as the satisfy relationship between a design element and a requirement. In the latter case, it
may be used to capture the basis for the design decision and may reference an analysis report or trade study for further elabo-
ration of the decision. In addition, SysML includes an extension of a comment to reflect a problem or issue that can be
attached to any other model element.

SysML has extended the concept of view and viewpoint from UML to be consistent with the IEEE 1471 standard. In particu-
lar, a viewpoint is a specification of rules for constructing a view to address a set of stakeholder concerns, and the view is
intended to represent the system from this viewpoint. This enables stakeholders to specify aspects of the system model that are
important to them from their viewpoint, and then represent those aspects of the system in a specific view. Typical examples
may include an operational, manufacturing, or security view/viewpoint.
24 SysML Specification v1.0 Draft

7.2 Diagram elements

7.2.1 Graphical nodes and paths

Table 7-1. Graphical nodes defined by ModelElements package.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

Comment

Comment text.

UML4SysML::Comment

ConstraintNote

{C1: {L1} E1.x > E2.y}

UML4SysML::Constraint

ConstraintTextualNote
Element1

(any graphical node)
{constraint text}

{constraint text}

(any graphical path)

UML4SysML::Constraint

Model UML4SysML::Model

PackageDiagram
pkg Package1

Subpackage1

Subpackage2

«import»

UML4SysML::Package

PackageWith
NameInTab

Subpackage1
Subpackage2«import»

Package1
UML4SysML::Package

Model
SysML Specification v1.0 Draft 25

PackageWith
NameInside

Package1

UML4SysML::Package

Problem

«problem»
The problem is that ...

SysML::ModelElements::Prob-
lem

Rationale

«rationale»
Description of rationale

SysML::ModelElements::Ratio-
nale

ViewWith
NameInside

«view»
{viewpoint=ViewName}

Name

SysML::ModelElements::View

ViewWith
NameInTab

«view»
Name

SysML::ModelElements::View

Viewpoint

stakeholders="..."
purpose="..."
concerns="..."
languages="..."
methods="..."

«viewpoint»
Name

SysML::ModelElements::View-
point

Table 7-1. Graphical nodes defined by ModelElements package.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
26 SysML Specification v1.0 Draft

Conform

«conform»

SysML::ModelElements::Con-
form

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

PublicPackageImport
«import»

UML4SysML::ElementImport
with visibility = public

PrivatePackageImport
«access»

UML4SysML::ElementImport
with visibility = private

PackageContainment UML4SysML::Package::
ownedElement

Realization UML4SysML::Realization

Refine

«refine»

UML4SysML::Refine

Table 7-2. Graphical paths defined by ModelElements package.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 27

7.3 UML extensions

7.3.1 Diagram extensions

7.3.1.1 Stereotype keywords or icons inside a comment note box

Description

«rationale»
Description of rationale

A comment note box may contain stereotype keywords or icons even though Comment is not a named element. UML specifies
placement of a stereotype keyword relative to the name of the element. SysML makes explicit that they may appear inside a
comment box as well. The stereotype keywords, if present, should appear prior to the comment text. The stereotype properties,
if present, should appear after the comment text. The typical placement of stereotype icons is in the upper-right-hand corner of
the containing graphical node.

Figure 7-1. Notation for the Rationale stereotype of Comment

7.3.1.2 UML diagram elements not included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not included
in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but SysML does not
support this capability for user-level models. Combining packages that have the same named elements, resulting in merged
definitions of the same names, could cause confusion in user models and adds no inherent modeling capability, and so has
been left out of SysML.

Dependency subtypes that are imported from UML are defined in the respective chapters where they are used.
28 SysML Specification v1.0 Draft

7.3.2 Stereotypes

Package ModelElements

Figure 7-2. Stereotypes defined in package ModelElements.

«metaclass»
UML4SysML::

Comment

«stereotype»
Rationale

«metaclass»
UML4SysML::

Package

/viewpoint:Viewpoint[1]

«stereotype»
View

«metaclass»
UML4SysML::

Class

stakeholders:String[*]
purpose:String
concerns:String[*]
languages:String[*]
methods:String[*]

«stereotype»
Viewpoint

«metaclass»
UML4SysML::
Dependency

«stereotype»
Conform

«stereotype»
Problem

7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified rules and con-
ventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as with other dependencies the
arrow direction points from the (client/source) to the (supplier/target).

Constraints
[1] The supplier/target must be an element stereotyped by «viewpoint».

[2] The client/source must be an element that is stereotyped by «view».

7.3.2.2 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need, or
other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or manufacture
and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be attached to any
other model element in the same manner as a comment.
SysML Specification v1.0 Draft 29

7.3.2.3 Rationale

Description

A Rational documents the justification for decisions such as and the requirements, design and other decisions. A Rationale can
be attached to any model element including relationships. It allows the user, for example, to specify a rationale that may refer-
ence more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.

7.3.2.4 View

Description

A view is a representation of a whole system from the perspective of a single viewpoint.

Attributes

• /viewpoint:Viewpoint[1]

The viewpoint for this View, derived from the supplier of the <<conform>>
dependency whose client is this View.

Constraints
[1] A view can only own element import, package import, comment, and constraint elements.

[2] The view is constructed in accordance with the methods and languages that are specified as part of the viewpoint. SysML
does not define the specific methods. The precise semantic of this constraint is a semantic variation point.

7.3.2.5 Viewpoint

Description

A viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of addressing a
set of stakeholder concerns. The languages and methods for specifying a view may reference methods and languages in
another viewpoint. They specify the elements expected to be represented in the view, and may be formally or informally
defined. For example, the security viewpoint may require the security requirements, security functional and physical architec-
ture, and security test cases.

Attributes

• stakeholders:String[*]

Set of stakeholders.

• concerns:String[*]

The interest of the stakeholders.

• purpose:String

The purpose addresses the stakeholder concerns.

• languages:String[*]

The languages used to construct the viewpoint
30 SysML Specification v1.0 Draft

• methods:String[*]

The methods used to construct the views for this viewpoint

Constraints
[1] A viewpoint cannot be the classifier of an instance specification.

[2] The property ownedOperations must be empty.

[3] The property ownedAttributes must be empty.

[4] The property isAbstract must be set to true.
SysML Specification v1.0 Draft 31

7.4 Usage examples

Figure 7-3. View/Viewpoint example

pkg [package] HSUVViews [Performance View]

«v iew»
{v iewpoint=Performance Viewpoint}

PerformanceView

Driver

Drive Car «viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system."
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

id = 2
Text = The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy.

<<requirement>>
Performance

«moe»
HSUValt1.Cos
tEffectivenes

s

«moe»
HSUValt1.FuelE

conomy

«moe»
HSUValt1.Zer

o60Time

«moe»
HSUValt1.Car
goCapacity

«moe»
HSUValt1.Quar
terMileTime

«constraint»
EconomyEquation

«constraint»
UnitCost Equation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«conform»
32 SysML Specification v1.0 Draft

Figure 7-4. Rationale and Problem example

bdd Master Cylinder requirements

«requirement»
Loss of Fluid

«requirement»
Reservoir

«block»
Brake System

m:MasterCylinder

«satisfy»

«satisfy»

«rationale»
The best-practice solution consists in
assigning one reservoir per brakeline.
See "automotive_d32_hdb.doc"

«problem»
The master cylinder in previous
version leaked.

SysML Specification v1.0 Draft 33

34 SysML Specification v1.0 Draft

8 Blocks

8.1 Overview
Blocks are modular units of a system description, which define a collection of features to describe a system or other elements
of interest. These may include both structural and behavioral features, such as properties and operations, to represent the state
of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of compo-
nents, the kinds of connections between them, and the ways these elements combine to define the total system can all be
selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of system spec-
ification and design, and can be applied to many different kinds of systems. These include modeling either the logical or phys-
ical decomposition of a system, and the specification of software, hardware, or human elements. Parts in these systems interact
by many different means, such as software operations, discrete state transitions, flows of inputs and outputs, or continuous
interactions.

The Block Definition Diagram in SysML defines features of a block and relationships between blocks such as associations,
generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations, and relationships
such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML captures the internal structure
of a block in terms of properties and connectors between properties. A block can include properties to specify its values, parts,
and references to other blocks. Ports are a special class of property used to specify allowable types of interactions between
blocks, and are described in Chapter 9, “Ports and Flows”. Constraint Properties are a special class of property used to con-
strain other properties of blocks, and are described in Chapter 10, “Constraint Blocks”. Various notations for properties are
available to distinguish these specialized kinds of properties on an internal block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its definition.
A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its defining block
within the specific context to which the part belongs. For example, a block that represents the definition of a wheel can be used
in different ways. The front wheel and rear wheel can represent different usages of the same wheel definition. SysML also
allows each usage to define context-specific values and constraints associated with the individual usage, such as 25 psi for the
front tires and 30 psi for the rear tires.

 Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this chapter
deals strictly with the definition of properties to describe the state of a system at any given point in time, including relations
between elements that define its structure. Chapter 9, “Ports and Flows” specifies the allowable types of interactions between
blocks, and the Behavioral Constructs in Section III including activities, interactions, and state machines can be applied to
blocks to specify its behavior. Chapter 15, “Allocations” in Part IV describes ways to allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks always include an ability to define internal connectors, regardless of whether this capability is needed for a par-
ticular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of constraints
and multi-level nesting of connector ends. SysML blocks include several notational extensions as specified in this chapter.

8.2 Diagram elements
Tables in the following sections provide a high-level summary of graphical elements available in SysML diagrams. A more
complete definition of SysML diagram elements, including the different forms and combinations in which they may appear, is
provided in Appendix G.
SysML Specification v1.0 Draft 35

8.2.1 Block Definition Diagram

8.2.1.1 Graphical nodes and paths

Table 8-1. Graphical nodes defined in Block Definition diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

BlockDefinition
Diagram bdd Namespace1

Block1 Block2
part1

1 0..*

SysML::Blocks::Block
UML4SysML::Package

Block

«block»
{isEncapsulated}

Block1

operations

operation1(p1: Type1): Type2

property1: Block1
parts

{ x > y}

property2: Block2 [0..*] {ordered}
references

property3: Integer = 99 {readOnly}
values

property4: Real = 10.0

constraints

SysML::Blocks::Block

Actor UML4SysML::Actor

DataType
«dataType»
dataType1

operations
operation1(p1: Type1): Type2

property1: Type3
properties

UML4SysML::DataType

«ac tor»
A cto r Nam e

A c torName
36 SysML Specification v1.0 Draft

ValueType

«valueType»
unit = UnitName

«valueType»
ValueType1

operations
operation1(p1: Type1): Type2

property1: Type3
properties

SysML::Blocks::ValueType

Enumeration

literalName1
literalName2

«enumeration»
Enumeration1

UML4SysML::Enumeration

AbstractDefinition

Name1

{abstract}
Name1

Name1
{abstract}

UML4SysML::Classifier with
isAbstract equal true

StereotypeProperty
Compartment «stereotype1»

Block1
«stereotype1»

property1 = value

UML4SysML::Stereotype

Namespace
Compartment Block1

namespace

Block2 Block3
part1

1 0..*

SysML::Blocks::Block

Structure
Compartment Block1

structure

p1: Type1 p2:
Type2

1
e1

c1:

SysML::Blocks::Block

Table 8-1. Graphical nodes defined in Block Definition diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 37

Table 8-2. Graphical paths defined by in Block Definition diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

ReferenceAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

PartAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

MultibranchPart
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared
Association

1

association1 property1

0..*

property3

property2

0..*

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization UML4SysML::Generalization

Multibranch
Generalization

UML4SysML:Generalization
38 SysML Specification v1.0 Draft

GeneralizationSet

{disjoint}
{overlapping}

UML4SysML::
GeneralizationSet

BlockNamespace
Containment

UML4SysML::Class::
nestedClassifier

Table 8-2. Graphical paths defined by in Block Definition diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 39

8.2.2 Internal Block Diagram

8.2.2.1 Graphical nodes and paths

Table 8-3. Graphical nodes defined in Internal Block diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

InternalBlockDiagram

ibd Block1

p1: Type1 p2: Type21
e1

c1:a1

SysML::Blocks::Block

BlockProperty

x: Integer = 4

p1: Type1
0..*

r1: Type2

p1: Type1 0..*

defaultValue
x1=5.0
x2="today"

p3: Type3

SysML::Blocks::BlockProperty

ActorPart SysML::Blocks::PartProperty
typed by UML4SysML::Actor

«actor»
ActorNam e

ActorName
40 SysML Specification v1.0 Draft

8.3 UML extensions

8.3.1 Diagram extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

Block and ValueType definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType defines
values that may be used within a model. SysML blocks are based on UML classes, as extended by UML composite structures.
SysML value types are based on UML data types. Diagram extensions for SysML blocks and value types are described by
other subheadings of this section.

PropertySpecificType

p1: [Type1]
values

«uniform»{mean=2,stdDeviation=0.1} x: Integer

p2
values

y: Integer = 5

SysML::Blocks::BlockProperty

Table 8-4. Graphical paths defined in Internal Block diagrams.

Dependency
«stereotype1»
dependency1

UML4SysML::Dependency

BindingConnector

1 0..*

UML4SysML::Connector

Bidirectional
Connector c1: association1

0..1 0..*

p2p1

UML4SysML::Connector

Unidirectional
Connector c1: association1

0..1 0..*

p1

UML4SysML::Connector

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

Table 8-3. Graphical nodes defined in Internal Block diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 41

Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared before the
name in the top compartment of the definition.

Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The com-
partments may partition the features shown according to various criteria. Some standard compartments are defined by SysML
itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order. SysML
defines two additional compartments, namespace and structure compartments, which may contain graphical nodes rather than
textual constraint or feature definitions. See separate subsections of this section for a description of these compartments.

Constraints compartment

SysML defines a special form of compartment, with the label constraints, which may contain one or more constraints owned
by the block. A constraint owned by the block may be shown in this compartment using the standard text-based notation for a
constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints is optional. The
note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed line, may also be used
to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint property is
a property of the block that is typed by a ConstraintBlock, as defined in Chapter 10, “Constraint Blocks”. Only the declaration
of the constraint property may be shown within the compartment, not the details of its parameters or binding connectors that
link them to other properties.

Namespace compartment

A compartment with the label namespace may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition diagram.
All blocks or other named elements defined in this compartment belong to the namespace of the containing block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions may
be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this compartment as
part of a separate definition box than a box which shows only feature compartments. Both namespace and structure compart-
ments, which may both need a wide compartment to hold graphical elements, could also be shown within a common definition
box.

Structure compartment

A compartment with the label structure may appear as part of a block definition to show connectors and other internal struc-
ture elements for the block being defined. This compartment may contain any of the graphical elements of an internal block
diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions may
be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this compartment as
part of a separate definition box than a box which shows only feature compartments. Both namespace and structure compart-
ments, which may both need a wide compartment to hold graphical elements, could also be shown within a common definition
box.

Unit and Dimension declarations

The declarations of value types have been extended to support the declaration of a unit of measure or a dimension. These dec-
larations must refer by name to an instance of a Unit or Dimension stereotype defined separately. A sample set of predefined
dimensions and units is given in Appendix C section C.4.
42 SysML Specification v1.0 Draft

Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of 1 on
its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity other than
the default should always be shown on a diagram.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined by
SysML.

Property types

Three general categories of properties are recognized in SysML: parts, references and value properties (see 8.3.2.2 Block
Property below). A part or value property is always shown on an internal block diagram with a solid-outline box. A reference
property is shown by a dashed-outline box, consistent with UML.

Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of the
diagram frame) must identify the name of a SysML block as its modelElementName. (See Appendix A for the definition of a
diagram heading name including the modelElementName component. This component is optional for many SysML diagram
types, but not for an internal block diagram.) All the properties and connectors which appear inside the internal block diagram
belong to the block that is named in the diagram heading name.

Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box. These
compartments may be given standard or user-customized labels just as on block definitions. All features shown within these
compartments must match those of the block or value type that types the property. For a property-specific type, these compart-
ments may be used to specify redefined or additional features of the locally defined type. An unlabeled compartment on an
internal property box is by default a structure compartment.

Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram. These
compartments must always follow an initial compartment which always shows the internal structure of a referenced block.
These compartments may have all the same contents as could be shown on a block definition diagram for the block defined at
the top level of the diagram frame.

Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name refer-
ences a nested property accessible through a sequence of intermediate properties from a referencing context. The name of the
referenced property is built by a string of names separated by “.”, resulting in a form of path name which identifies the prop-
erty in its local context. A colon and the type name for the property may optionally be shown following the dotted name string.

This notation is purely a notational shorthand for a property which could otherwise be shown within a structure of nested prop-
erty boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In other words,
the internal property shown with a path name in the left-hand side of Figure 8-1 below is equivalent to the innermost nested
box shown at the right:
SysML Specification v1.0 Draft 43

Figure 8-1. Nested property reference.

Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The connector is
owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype of a UML Con-
nectorEnd is automatically applied to any connector end that is nested more than one level deep within a containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties which a connec-
tor line may cross. The need for nested connector ends can be avoided if additional properties can be added to the block at each
containing level. Nested connector ends are available for cases where the introduction of these intermediate properties is not
feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be shown
on the same diagram.

Property-specific type

Enclosing the type name of an internal property in square brackets specifies that the type is a local specialization of the refer-
enced type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type, such as a value or distribution specifications, may be shown in the
compartments for the property. If the property name appears on its own, with no colon or type name, then the property-specific
type is entirely provided by its local declarations.

Default value compartment

A compartment with a label of “defaultValue” may be used to show the default value for a property as an alternative to an
“=”suffix string on its declaration within its containing block. It may be used for a property whose type has substructure
and a default value with many subvalues. A default value compartment on a property may be used instead of a property-
specific type when all that is required are property-specific values. If a default value is specified for a property nested any
level deeper than the top level of an internal block diagram frame, then its containing property must still have a property-
specific type, so that the default value specification can be included within that type.

Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown on a
diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML diagram elements not included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support for
n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a large

P1: Block1

Name1:

Name 2:

Name3:

P1: Block1

Name1.Name2.Name3:
44 SysML Specification v1.0 Draft

open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power. Qualified
associations, shown in SysML by an open box at the end of an association path with a property name inside, are a specialized
feature of UML that specifies how a property value can represent an identifier of an associated target. This capability, while
useful for data modeling, does not seem essential to accomplish any of the SysML requirements for support of systems engi-
neering. The use of navigation arrowheads on an association has been simplified by excluding the case of arrowheads on both
ends, and requiring that such an association always be shown without arrowheads on either end. An “X” on the end of an asso-
ciation to indicate that an end is “not navigable” has similarly been dropped, as has the use of a small filled dot at the end of an
association to indicate an owned end of an association. SysML still supports use of an arrowhead on one end of a unidirec-
tional association. Generalization relationships between associations are not supported. Their semantics in UML is not explic-
itly stated. SysML restricts the semantics of associations to providing supplementary specifications on properties at either or
both ends of the association, which must be owned by the associated classifier.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataTye) is not supported. Whether or not a value type definition has internal structure can be determined from the value
type itself.

8.3.1.4 UML diagram elements not included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this chapter. Other SysML
chapters add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes

Package Blocks

«metaclass»
UML4SysML::

Class

isEncapsulated: Boolean

«stereotype»
Block

Figure 8-2. Stereotypes defined in SysML Blocks package.
SysML Specification v1.0 Draft 45

«metaclass»
UML4SysML::

Property

«stereotype»
BlockProperty

«stereotype»
DistributedProperty

Figure 8-3. Abstract syntax extensions for SysML properties

«metaclass»
UML4SysML::

DataType

«stereotype»
ValueType

«stereotype»
Unit

«stereotype»
Dimension

0..
10..1

*

dimensionunit

*

Figure 8-4. Abstract syntax extensions for SysML value types.

«metaclass»
UML4SysML::
ConnectorEnd

propertyPath: Property [2..*] {ordered}

«stereotype»
NestedConnectorEnd

Figure 8-5. Abstract syntax extensions for SysML connector ends.
46 SysML Specification v1.0 Draft

8.3.2.1 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and behavioral fea-
tures, such as properties and operations, that represent the state of the system and behavior that the system may exhibit. Some
of these properties may hold parts of a system, which can also be described by blocks. A block may include a structure of con-
nectors between its properties to indicate how its parts or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability to repre-
sent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can describe not
only the connectivity relationships between the systems at any level, but also quantitative values or other information about a
system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of descrip-
tion that may be applied to a system or a set of system characteristics may be described by a block. Such reusable descriptions,
for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold between parts or
properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same con-
taining block. The type of a connector or its connected ends may specify the semantic interpretation of a specific connector. A
Binding Connector is a connector that is not typed by an association. If the two ends of a binding connector have the same
type, the connector specifies that the properties at the end of the connector must have the same values, recursively through any
nested properties within the connected properties.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference property.
This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of a unidirec-
tional reference that defines no named property for navigation in the inverse direction. SysML enforces its equivalence of nav-
igation and ownership by means of constraints that the block stereotype enforces on the existing UML metamodel.

Attributes

• isEncapsulated: Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only
be connected via its ports or directly to its outer boundary. If false, then connections
can be established to elements of its internal structure via deep-nested connector ends.

Constraints
[1] For an association in which both ends are typed by blocks, the number of ends must be exactly two.

[2] The number of ends of a connector must be exactly two. (In SysML, a binding connector is not typed by an association, so
this constraint is not implied entirely by the preceding constraint.)

[3] In the UML metamodel on which SysML is built, any instance of the Property metaclass that is typed by a block (a Class
with the «block» stereotype applied) and which is owned by an Association may not have a name and may not be defined
as a navigable owned end of the association. (While the Property has a “name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)

[4] In the UML metamodel on which SysML is built, a Property that is typed by a block must be defined as an end of an asso-
ciation. (An inverse end of this association, whether owned by another block or the association itself, must always be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)
SysML Specification v1.0 Draft 47

[5] The following constraint under Section 9.3.6, “Connector” in the UML 2.0 Superstructure Specification (OMG document
formal/05-07-04) is removed by SysML: “[3] The ConnectableElements attached as roles to each ConnectorEnd owned
by a Connector must be roles of the Classifier that owned the Connector, or they must be ports of such roles.”

8.3.2.2 BlockProperty

Description

The BlockProperty stereotype enforces additional constraints specific to SysML.

A property of a block may refer to another element of a system that is required to exist for the system to exist. Such properties
are called part properties. Part properties must always be defined as an end of an association whose other (inverse) end can
used to indicate whether the part can exist independently of the referencing system. A multiplicity of 0..1 on the inverse end
indicates that instances of the block that types part property may exist without being referenced by the part property of a sys-
tem that may own them. While referenced by the part property, however, these instances cannot cease to exist unless the own-
ing system also ceases to exist. A part property also imposes the restriction that an instance on the part end can be owned only
by a single block at any given time.

Parts may be used to show all the components from which a larger system is built. Consistent with UML, however, SysML
currently does not provide any means to indicate whether all the parts which make up a larger system are either shown on a
particular diagram or contained within a model. Various forms of diagram or model annotation, such as a Diagram Description
note as shown in Appendix A, may be used to communicate completeness of a diagram or model to a user.

SysML also supports the definition of properties which are typed by a block and that hold their instances under a form of
shared ownership, as indicated by a “white diamond” form of shared association. SysML defines no semantics or constraints
for properties held by a shared association. Specific interpretations of shared ownership properties may be established by a
particular model and communicated to a user under local conventions.

A property of a block may refer to another element of a system or system description, that is not owned by the block; these are
called reference properties. Any given element may be referenced by multiple reference properties within a system descrip-
tion. Reference properties can be used to represent elements of a system that require the identification of other elements to
define a compound situation or to express causal dependencies. For example, the mating of two system elements may require
the identification of two mated elements to describe the resulting connection between them, or a sensor may require the identi-
fication of a system whose properties it measures. Reference properties can also be used to share common information across
multiple elements of a model, such as descriptions of material properties for physical parts.

Alternatively a property of a block may hold a value; this is called a value property and will be typed either by a UML Data
Type, or a SysML Value Type. A value may be used to express information about a system, but cannot be identified apart from
the value itself. Since it lacks any identity separate from the value itself, each value held by a value property is independent of
any other, unless other forms of constraints are imposed. A value property may be used to express inherent characteristics
about a system such as its mass or length. A value property may also be used to hold elements of a system description that are
not inherent to the system itself but are nevertheless of interest, such as a design status or measured test results collected during
development of a system. The unit and dimension of a value property is obtained from its type (if a Value Type is used); to
specify the unit and dimension of the property directly, a property specific value type can be created for it and unit and dimen-
sion specified for that.

Constraints
[1] If the aggregation attribute of the property is equal to “composite” or “shared” then the type of the property must be a

block.
48 SysML Specification v1.0 Draft

8.3.2.3 DistributedProperty

DistributedProperty is a stereotype of BlockProperty used to apply a probability distribution to the values of the property. Spe-
cific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the distributions
represented by properties of those stereotype subclasses.

8.3.2.4 Dimension

A kind of quantity that may be stated by means of defined units. For example, the dimension of length may be measured by
units of meters, kilometers, or feet.

Dimension is defined as a stereotype of ValueType, but it may not be used directly to declare the type of any value. The only
valid use of a Dimension instance is to be referenced by the “dimension” property of a ValueType stereotype.

Constraints
[1] The “dimension” and “unit” attributes inherited from the ValueType stereotype must not contain any value.

8.3.2.5 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector.

Attributes

• propertyPath: Property [2..*] (ordered)

The propertyPath list of the NestedConnectorEnd stereotype must identify a path of
containing properties that identify the connected property in the context of the block
that owns the connector. The ordering of properties is from the outermost property of
the block that owns the connector, through the properties of each intermediate block
that types the preceding property, but not including the property which is directly
connected.

Constraints
[1] The property at the first position in the propertyPath attribute of the NestedConnectorEnd must be owned by the block that

owns the connector.

[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the block that types the property at the immediately preceding position.

8.3.2.6 Unit

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated. A unit often relies
on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may be specified as a multi-
ple of a particular wavelength of light. A unit may also specify less stable or precise ways to express some value, such as a cost
expressed in some currency, or a severity rating measured by a numerical scale.

Unit is defined as a stereotype of ValueType, but it may not be used directly to declare the type of any value. The only valid
use of a Unit instance is to be referenced by the “unit” property of a ValueType stereotype.
SysML Specification v1.0 Draft 49

Constraints
[1] The “unit” attribute inherited from the ValueType stereotype must not contain any value. (The “dimension” attribute may

be used to declare the dimension that the unit is declared to measure.)

8.3.2.7 ValueType

Description

A type that defines values which may be used to express information about a system, but which cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
a model is independent of any other, unless other forms of constraints are imposed.

Values may be used to type properties, operation parameters, or potentially other elements within SysML. SysML defines
ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be given
a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a real
number, but does not impose any restrictions on the precision or scale of a fixed or floating point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure or dimension associated with the value. A dimension is a
kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the value.
A unit is a particular value in terms of which a quantity of the same dimension may be expressed.

If these additional characteristics are not required then UML DataType may be used.

Attributes

• dimension: ValueType [0..1]

A kind of quantity that may be stated by means of defined units, as identified by an
instance of the Dimension stereotype. A value type may optionally specify a dimension
without any unit. Such a value has no concrete representation, but may be used to
express a value in an abstract form independent of any specific units.

• unit: ValueType [0..1]

A quantity in terms of which the magnitudes of other quantities that have the same
dimension can be stated, as identified by an instance of the Unit stereotype.

Constraints
[1] The dimension attribute must reference a ValueType to which the «dimension» stereotype has been applied.

[2] The unit attribute must reference a ValueType to which the «unit» stereotype has been applied.

[3] If a value is present for the unit attribute, the dimension attribute must be equal to the dimension property of the refer-
enced unit.
50 SysML Specification v1.0 Draft

8.3.3 Model Libraries

Package Blocks

bdd [modelLibrary] Blocks

«valueType»
Real

realPart: Real
imaginaryPart: Real

«valueType»
Complex

Figure 8-6. Model Library for Blocks

8.3.3.1 Complex

Description

A value type to represent the mathematical concept of a complex number. A complex number consists of a real part defined by
a real number, and an imaginary part defined by a real number multiplied by the square root of -1. Complex numbers are used
to express solutions to various forms of mathematical equations.

Attributes

• realPart: Real

A real number used to express the real part of a complex number.

• imaginaryPart: Real

A real number used to express the imaginary part of a complex number.

8.3.3.2 Real

A value type to represent the mathematical concept of a real number. A Real value type may be used to type values that hold
continuous quantities, without committing a specific representation such as a floating point data type with restrictions on pre-
cision and scale.

8.4 Usage examples

8.4.1 Wheel hub assembly

In Figure 8-7 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property LugBolt-
Joint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values. Examples of
such distributions can be found in Section C.5 .
SysML Specification v1.0 Draft 51

Figure 8-7. Block diagram for the Wheel Package

bdd WheelPackage

WheelAssembly

values
diameter: mm
width: mm

Wheel

t

1

InflationValve

BalanceWeight

values
lugBoltSize: mm

LugBolt
MountingHole

weight
0..6

mountingHole

5

v

1

TireMountingRim

TireBead

1

1
PressureSeat

bead0..1

2

WheelHubAssembly

rim
0..1

2

values
lugBoltSize: mm
threadSize: mm

LugBolt
ThreadedHole

Hub values
«uniform»{min=75, max=85} torque: ft-lb
boltTension: lb

LugBoltJoint

0..1

1

wheel

hub

1

h0..1
5 1 0..1

threadedHole

1

0..1

mountingHole

lugBoltJoint0..5

w

0..1

1

values

inflationPressure: psi

Tire

values

tireSpecification: String

operations

mountTire()

WirelessTire
PressureMonitor

1

1

BandMount

operations
transmitPressure()
52 SysML Specification v1.0 Draft

Figure 8-8. Internal Block Diagram for WheelHubAssembly

In Figure 8-8 an internal block diagram shows how the blocks defined in the Wheel package are used. This ibd is a partial view
that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve and “weight” Bal-
anceWeight which are also parts of a Wheel.

8.4.2 SI Value Types

In the following figure, Figure 8-9 , several value types using SI units and dimensions are defined to be generally available in
the SI Value Types package for typing value properties. Because a unit already identifies the type of quantity, or dimension,
that the unit measures, a value type only needs to identify the unit to identify the dimension as well. The value types in this
example refer to units which are assumed to be defined in an imported package, such as the SI Definitions model library
defined in Section C.4.

Figure 8-9. Defining Value Types with units and dimensions

8.4.3 Design configuration for SUV EPA fuel economy test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure 8-10
shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique properties such as

ibd WheelHubAssembly

wheel: WheelAssembly

w: Wheel

mountingHoles:
LugBoltMountingHole

5

lugBoltJoint:
LugBoltJoint

t: Tire

bead:
TireBead

1

0..1

mountingHole

hub: Hub

rim:
TireMountingRim

: PressureSeat

0..5

22

h: LugBoltThreadedHole

1

0..1

threadedHole

5

bdd [package] SI Value Types

«valueType»
unit=Second

s

«valueType»
unit=New ton

N

«valueType»
unit=Meter

m

«valueType»
unit=Kilogram

kg
SysML Specification v1.0 Draft 53

its weight, color, and horsepower. This concept is distinct from the UML concept of instance specifications in that it does not
imply or assume any run-time semantic, and can also be applied to specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a context
block. The context block may capture a unique identity for the configuration, and utilizes parts and part-specific types to
express property design values within the specification of a particular system configuration. Such a context block may contain
a set of parts that represent the block instances in this system configuration, each containing specific values for each property.
This technique also provides for configurations that reflect hierarchical system structures, where nested parts or other proper-
ties are assigned design values using property-specific types. The following example illustrates the approach.
54 SysML Specification v1.0 Draft

.

Figure 8-10. SUV EPA Fuel Economy Test

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results]

values
VIN = G12345

TestVehicle1:[HybridSUV]

values
sn:ID = p67890

p:[PowerSubsystem]

c-bk:

b-c:

b-i:

bk-l:

c-p: bk-p:

Satisfies
«requirment»Emissions

values
sn:ID = bk45678

bk:[BrakeSubsystem]

values
sn:ID = c34567

c:[ChassisSubsystem]

values
sn:ID = lt56789

l:[LightingSubsystem]

values
sn:ID = b12345

b:[BodySubsystem]

values
sn:ID = i23456

i:[Interior]

«testCase»
testRun060401:

EPAFuelEconomyTest

values
sn:ID = sn90123

em:[ElectricalMotor] values
sn:ID = sn89012

t:[Transmission]

values
sn:ID = eid78901

ice:[InternalCombusti
onEngine]

em-t: ice-t:

Verifies
«requirement»Emissions
SysML Specification v1.0 Draft 55

56 SysML Specification v1.0 Draft

9 Ports and Flows

9.1 Overview
This chapter specifies flow ports that enable flow of items between blocks and parts, while standard ports enable invocation of
services on blocks and parts. A port is an interaction point between a block or part and its environment that is connected with
other ports via connectors. The main motivation for specifying such ports on system elements is to allow the design of modular
reusable blocks, with clearly defined interfaces. (Note: the block owns its ports and therefore the port is part of the blocks def-
inition). This chapter also specifies item flows across connectors and associations.

Standard Ports

A Standard Port specifies the services the owning Block provides (offers) to its environment as well as the services that the
owning Block expects (requires) of its environment. The specification of the services is achieved by typing the Standard Port
by the provided and/or required interfaces. In general Standard Ports are used in the context of service-oriented architectures,
which is typical for software component architectures. Since standard ports contain operations which specify bi-directional
flow of data, standard ports are typically used in the context of peer-to-peer synchronous request/reply communications. A
special case of a service is signal reception, which signifies a one way communication of signal instances, where the handling
of the request is asynchronous.

For example, a Block representing an automatic transmission in a car could have a Standard Port that specifies that the Trans-
mission Block can accept commands to switch gears. Standard Ports are another name for UML2.0 ports, in other words they
are defined by the same meta-class.

Flow Ports

A FlowPort specifies the input and output items that may flow between a Block and its environment. FlowPorts are interaction
points through which data, material or energy “can” enter or leave the owning Block. The specification of what can flow is
achieved by typing the FlowPort with a specification of things that flow. This can include typing an atomic flow port with a
single item that flows in our out, or typing a non-atomic flow port with a “flow specification” which lists multiple items that
flow. A block representing an automatic transmission in a car could have an atomic flow port that specifies “Torque” as an
input and another atomic flow port that specifies “Torque” as an output. A more complex flow port could specify a set of sig-
nals and/or properties that flow in and out of the flow port. In general, flow ports are intended to be used for asynchronous,
broadcast, or send and forget interactions. FlowPorts extend UML2.0 ports.

Item Flows

Item flows represent the things that flow between blocks and/or parts and across associations or connectors. Whereas the
FlowPort specifies what “can” flow in or out of a block, the item flows specify what “does” flow between blocks and/or parts
in a particular usage context. This important distinction enables blocks to be interconnected in different ways depending on its
usage context. For example, a tank may include a FlowPort that can accept fluid as an input. In a particular use of the tank,
“gasoline” flows across a connector into its FlowPort, and in another use of the tank, “water” flows across a connector into the
its FlowPort. The item flow would specify what “does” flow on the connector in the particular usage (e.g. gas, water), and the
FlowPort specifies what can flow (e.g. fluid). This enables type matching between the item flows and between flow ports to
assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a connector.
FlowAllocation is described in Chapter 15, “Allocations”and can be used to help ensure consistency across the different parts
of the model.
SysML Specification v1.0 Draft 57

9.2 Diagram elements

9.2.1 Extensions to Block Definition Diagram.

Table 9-1. Extensions to Block Definition Diagram

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

StandardPort

«block»
Transmission

p2
ITransCmd

ITransData

UML4SysML::Port

StandardPort
(Compartment Notation)

 p2 : ITransCmd

«block»
Transmission
standard ports

SysML::PortsAndFlows:Standard-
Port

FlowPort

«block»
Transmissionp:ITransmission

Flow port

«block»
Transmission

p:ITransmission

Conjugated Flow port

«block»
Transformator

ac:ACVoltage

Atomic Flow Ports

dc:DCVoltage

<>

<>

networkType:ElectricNetworkType

SysML::PortsAndFlows::FlowPort
58 SysML Specification v1.0 Draft

FlowPort
(Compartment Notation)

p : ITransmission

«block»
Transmission

Flow port

in ac : ACVoltage
out dc : DCVoltage
inout networkType : ElectricNetworkType

«block»
Transformator

Atomic Flow Ports

flow ports

p : ITransmission {conjugated}

«block»
Transmission

Conjugated Flow port

flow ports

flow ports

SysML::PortsAndFlows::FlowPort

Interface

+notifySpeedChange() : void

«interface»
ISpeedObserver

UML4SysML::Interfaces::Interface

FlowSpecification

in gearSelect : Gear
in engineTorque : Torque
out wheelsTorque : Torque

«flowSpecification»
ITransmission
flowProperties

SysML::PortsAndFlows::Flow-
Specification

ItemFlow

«block»
Engine

«block»
TransmissionTorque

itsEngine

1

SysML::PortsAndFlows::ItemFlow

Table 9-1. Extensions to Block Definition Diagram

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 59

9.2.2 Extensions to Internal Block Diagram

Table 9-2. Extension to Internal Block Diagram

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

StandardPort

«part»
trans:Transmission

p2
ITransCmd

ITransData

SysML::PortsAndFlows::Standard-
Port

FlowPort

«part»
t:Transmissionp:ITransmission

Flow port

«part»
t:Transmission

p:ITransmission

Conjugated Flow port

«part»
tr:Transformator

ac:ACVoltage

Atomic Flow Ports

dc:DCVoltage

<>

<>

networkType:ElectricNetworkType

SysML::PortsAndFlows::FlowPort
60 SysML Specification v1.0 Draft

9.3 UML extensions

9.3.1 Diagram Extensions

9.3.1.1 FlowPort

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow. The
notation of FlowPort is a square on the boundary of the owning Block or its usage. The label of the flow port is in the format
portName:portType. Atomic FlowPorts have an arrow inside them indicating the direction of the port with respect to the own-
ing Block. A non-atomic FlowPort have two open arrow heads facing away from each other (i.e. <>). The fill color of the
square is white and the line and text colors are black, unless the flow port is conjugated, in which case the fill color of the
square is black and the text is in white.

In addition, flow ports can be listed in a special compartment labeled ‘flow ports’. The format of each line is:

in | out | inout portName:portType [{conjugated}]

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a Block. A FlowProperty has the same notation of a Property only with
a direction prefix (in | out | inout). Flow Properties are listed in a compartment labeled “flowProperties”.

ItemFlow

«part»
trns:Transm ission

«part»
eng:Eng ine

p:Torque

Torque

p:Torque

I te m F lo w w ith a n i te m P r o p e r ty

« p a r t»
t r n s : T r a n s m is s io n

« p a r t»
e n g : E n g in e

p :T o r q u e

to r q e :T o r q u e

p :T o r q u e

SysML::PortsAndFlows::ItemFlow

Table 9-2. Extension to Internal Block Diagram

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 61

9.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that lists
the flow properties.

9.3.1.4 ItemFlow

An Item Flow describes the flow of items across a connector or an association. The notation of ItemFlow is a black arrow-head
on the connector or association. The arrow head is towards the target element. For an Item Flow with an itemProperty, the
label shows the name and type of the itemProperty (in name:type format). Otherwise the Item Flow is labeled with the name of
the conveyed Classifier.

9.3.2 Stereotypes

Package Ports&Flows

Figure 9-1. Port Stereotypes

{redefines ownedAttribute}

direction : FlowDirection

«stereotype»
FlowProperty

«metaclass»
UML4SysML::Property

«metaclass»
UML4SysML::Interface

in
out
inout

«enumeration»
FlowDirection

+ownedFlowProperty

*
«stereotype»

FlowSpecification
+isBehavior : Boolean

«metaclass»
UML4SysML::Port

/isAtomic[1] : Boolean
direction[0..1] : FlowDirection
isConjugated[0..1] : Boolean

«stereotype»
FlowPort
62 SysML Specification v1.0 Draft

9.3.2.1 Block

Description

Blocks may own StandardPorts and/or FlowPorts. See Chapter 8, “Blocks” for details of Block.

9.3.2.2 Standard Port

Description

StandardPorts are interaction points through which a Block provides and requires a set of services to and from its environment.

The services that the Block provides to its environment via the StandardPort are specified by a set of provided interfaces. The
services that the Block requires from the environment via the StandardPort are specified by a set of required interfaces.

An interface may specify operations or signals. If the interface is provided, then external parts may call operations or send sig-
nals via the port to its owning block. If the interface is required, then the block may call operations or send signals via the port
to its environment.

StandardPorts are UML 2.0 ports. As a guideline, it is recommended StandardPorts are used in the context of service based
components and/or architectures, either when specifying software components or applying a service based approach to system
specification.

Figure 9-2. ItemFlow Stereotype

itemProperty[0..1] : BlockProperty

«stereotype»
ItemFlow

«metaclass»
UML4SysML::InformationFlow

The UML meta-classes are shown for completeness

«metaclass»
UML4SysML::Classifier

«metaclass»
UML4SysML::InformationItem

+conveyed

1..* *

«metaclass»
UML4SysML::NamedElement

+represented*

+representation

*

* +target 1..*

* +source1..*
SysML Specification v1.0 Draft 63

9.3.2.3 FlowDirection

Description

FlowDirection is an enumeration type that defines literals used for specifying input and output directions. FlowDirection is
used by FlowProperties to indicate if the property is an input or an output with respect to its owner.

Literal Values are

in: Indicates that the flow property is input to the owning Block.

out: Indicates that the flow property is an output of the owning Block.

inout: Indicates that the flow property is both an input and an output of the owning Block.

9.3.2.4 FlowPort

Description

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow. This
enables the owning block to declare which items it may exchange with its environment and what are the interaction points
through which the exchange is made.

We distinguish between Atomic Flow Port and a Non-Atomic Flow Port: Atomic Flow Ports relay a single usage of a Block,
Value-Type, Data-Type or Signal. A Non-Atomic Flow Port relays items of several types as specified by a FlowSpecification.

The distinction between Atomic and Non-Atomic Flow Ports is made according to the FlowPort’s type: If a FlowPort is typed
by a FlowSpecification then it is Non-Atomic, if the FlowPort is typed by a Block, ValueType, DataType or Signal, then it is
Atomic.

In addition, if the Flow Port is behavioral (in case the isBehavioral:Boolean meta-attribute from UML2.0 Port is set to True)
then the port relays the item that flow through it to/from its owner. The relay of items of a behavioral FlowPort is bound only
to its owner’s classifier behavior.1 If the Flow Port is not behavioral then the items are relayed via internal Connectors to inter-
nal Parts (internal with respect to the port’s owner).

FlowPorts and associated Flow Specifications define “what can flow” between the block and its environment. Whereas Item-
Flows specify “what does flow” in a specific usage context.

Behavioral FlowPorts relay items to/from the associated connector to/from properties of the owning block or parameters of the
block behavior. This means that every FlowProperty contained within a FlowPort is bound to a property owned by the block or
a parameter of the block behavior. The binding of the flow properties on the ports to behavior parameters and/or block proper-
ties is a semantic variation point of this specification. One approach to specify binding is based on name and type matching,
and another approach is to explicitly use binding relationships between the ports properties and behavior parameters or block
properties.

In case of flow properties or Atomic FlowPort of type Signals, inbound properties/atomic FlowPort are mapped to a Reception
of the signal type (or a sub type) of the flow property's type. Outbound flow properties only declare the ability of the FlowPort
to relay the Signal over external connectors attached to it and are not mapped to a property of the behavioral flow-port's own-
ing Block.

The Item Flows specified as flowing on a connector between FlowPorts must match to the Flow Properties of the ports at each
end of the connector: the source of the Item Flow should be the port which has an outbound/bidirectional Flow Property that

1. Other owned behaviors of the owner’s classifier (a Classifier may have additional owned behaviors) are
invoked internally and therefore the port cannot relay items to them.
64 SysML Specification v1.0 Draft

matches the Item Flow’s type and the target of the Item Flow should be the port that has an inbound/ bidirectional Flow Prop-
erty that matches the type of the Item Flow.

If a FlowPort is connected to multiple external and/or internal connectors then the items are propagated (broadcasts) over all
connectors that have matching properties at the other end.

 Attributes

• direction : FlowDirection [0..1]

Indicates the direction in which an Atomic FlowPort relays its items. It applies only to
Atomic FlowPort (otherwise the multiplicity of this attribute is zero). If the direction is
set to in then the items are relayed from an external connector via the FlowPort into
the FlowPort’s owner (or one of its Parts). If the direction is set to out, then the items
are relayed from the FlowPort’s owner, via the FlowPort, through an external
connector attached to the FlowPort, and if the direction is set to inout then items can
flow both ways. By default, the value is inout.

• isConjugated : Boolean [0..1]

If set to True then all the directions of the FlowProperties specified by the
FlowSpecification that types a Non-Atomic FlowPort are relayed in the opposite
direction (i.e. in flow property is treated as an out flow property by the FlowPort and
vice-versa). By default, the value is False. This attribute applies only to Non-Atomic
FlowPorts.

• /isAtomic : Boolean (derived)

This is a derived attribute (derived from the FlowPort’s type). For Atomic FlowPort
the value of this attribute is True, for Non-Atomic FlowPort the value is False.

Constraints

[1] A FlowPort must be typed by a FlowSpecification, Block, Signal, DataType or ValueType

[2] If the FlowPort is Atomic, i.e. typed by a Block, Signal, DataType or ValueType then isAtomic=True, the multiplicity of
Direction is one and the multiplicity of isConjugated is zero

[3] If the FlowPort is Non-Atomic, i.e. typed by a FlowSpecification then isAtomic=False, the multiplicity of Direction is
zero and the multiplicity of isConjugated is one

[4] A Flow Port can be connected (via connectors) to one or more flow ports that have matching flow properties. The match-
ing of flow properties is done in the following steps:

1. Type Matching: The type being sent is the same type or a sub-type of the type being received
2. Direction Matching: If the connector connects two parts that are external to one another then the direction of the flow

properties must by opposite, or at least one of the ends should be inout. If the connector is internal to the owner of one of
the flow ports, then the direction should be the same or at least one of the ends should be inout

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property that
have the same name at the other end is selected. If there is no such property then the connection is ambiguous (ill-formed)
SysML Specification v1.0 Draft 65

9.3.2.5 FlowProperty

Description

A FlowProperty signifies a single flow element that can flow to/from a Block. A Flow Property’s values are either received
from or transmitted to an external Block. Flow Properties are defined directly on Blocks or Flow Specifications which are
those specifications which type the Flow Ports.

FlowProperties enable item flows across connectors connecting parts of the corresponding block types, either directly (in case
of the property is defined on the block) or via flowPorts. For Block, Data Type and Value Type properties, setting an out Flow-
Property value of a Block usage on one end of a connector will result in assigning the same value of an in FlowProperty of a
Block usage at the other end of the connector, provided the FlowProperties are matched. FlowProperties of type Signal imply
sending and/or receiving of a Signal usages. An out FlowProperty of type Signal means that the owning Block may broadcast
the signal via connectors and an in FlowProperty means that the owning Block is able to receive the Signal.

Attributes

• direction : FlowDirection

Specifies if the property value is received from an external Block (direction=in),
transmitted to an external Block (direction=out) or both (direction=inout).

Constraints
[1] FlowProperties are typed by a ValueType, DataType, Block or Signal.

[2] An in FlowProperty value cannot be modified by its owning Block.

[3] An out FlowProperty cannot be read by its owning Block

9.3.2.6 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by Flow Ports to
specify what flow items can flow via the port.

Constraints

[1] FlowSpecifications cannot own operations or receptions (they can only own FlowProperties).

9.3.2.7 ItemFlow

Description

An Item Flow describes the flow of items across a connector or an association. It may constrain the item exchange between
Blocks, Block usages or FlowPorts as specified by their FlowProperties. For example, a Pump connected to a Tank: the Pump
has an out FlowProperty of type Liquid and the Tank has an in FlowProperty of type Liquid. To signify that only Water flow
between the Pump and the Tank, we can specify an ItemFlow of type Water on the connector.

One can label an ItemFlow with the Classifiers that may be conveyed. For example: a label Water would imply that usages of
Water might be transmitted over this ItemFlow. In addition, if there is an itemProperty (corresponds to the conveyed Classi-
fier), then one can label the itemFlow with the itemProperty. For example, a label liquid:Water would imply that the itemFlow
relays Water and this relay is associated with an itemProperty liquid of the ItemFlow, i.e. the liquid itemProperty is set once
Water are relayed.
66 SysML Specification v1.0 Draft

Attributes

• itemProperty : BlockProperty [0..1]

An optional property that relates the flowing item to the instances of the connector’s
enclosing Block. This property is applicable only for ItemFlows assigned to
connectors, the multiplicity is zero if the ItemFlow is assigned to an Association

Constraints
[1] An ItemFlow can be assigned to a Connector or an Association

[2] An ItemFlow itemProperty is typed by a Block or by a ValueType

[3] ItemProperty is specified in the context of the Block owning the Connector or Association.

[4] The type of itemProperty should be the same or a sub-type of the conveyedClassifier

[5] The itemProperty multiplicity of itemProperty is zero in case the ItemFlow is assigned to an Association. The multiplicity
is [0..1] if the ItemFlow is assigned to a Connector.

9.4 Usage examples

9.4.1 Standard Ports

Figure 9-3 is a fragment of the ibd:PwrSys diagram used in the HybridSUV sample (Appendix B). The ecu:PowerControlUnit
part has three StandardPorts, each connected to a standard port of another part. Each of the standard ports in this example has
one provided and one required interface that specify the messages that can be sent via the ports. For example, the I_ICECmds
interface specifies the operations setMixture and setThrottle (Figure 9-4). This interface is provided by the ctrl port of Internal-
CombustionEngine and is required by the ice port of PowerControlUnit. Since the ecu:PowerControlUnit part and ice:Internal-
CombustionEngine part are connected via these ports, the ecu:PowerControlUnit part may send the messages setThrottle and
setMixture to the ice:InternalCombustionEngine part from its ice port, across the connector to the ctrl port of ice:InternalCom-
bustionEngine. By sending these messages, the PowerControlUnit can set the throttle and mixture of the InternalCombustion-
Engine. Inversely, the InternalCombustionEngine can report (notify) changes in its temperature, RPM and knockSensor by
having the I_ICEData (Figure 9-4) as required interface on its ctrl port and connecting this port to the ice port of the Power-
ControlUnit where this interface is provided.
SysML Specification v1.0 Draft 67

Figure 9-3. Usage Example of StandardPorts

bdd [block] PowerSubsystem [ICE Interface Definitions]

getRPM():integer
getTemperature():Real
isKnockSensor():Boolean

«interface»
I_ICEData

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

«interface»
I_ICECmds

Figure 9-4. Interfaces of the Internal Combustion Engine ctrl Standard Port

ibd [block] PowerSubsystem [Standard Ports Example]

trsm:Transmission

ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3:

c2:

c1:

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData
68 SysML Specification v1.0 Draft

9.4.2 Atomic Flow Ports and Item Flows

Figure 9-5 is taken from the HybridSUV example in Appendix B. Here we see how Fuel may flow between the FuelTankAssy
and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel flows across the
fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is distributed via other atomic
flow ports of type Fuel to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the fuelFitting
port across the fuelReturnLine connector. Note that it is possible to connect a single flow port to multiple connectors: in this
example the direction of the flow via the fuelFitting port on the external connectors is implied by the direction of the flow
ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow
on the internal connectors is implied by the direction of the atomic flow ports of the engine’s internal parts.

Figure 9-5 also shows the usage of ItemFlow, here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines.

Figure 9-5. Usage of Atomic Flow Ports in the HybridSUV Sample - ibd:FuelDist diagram

ibd [block] PowerSubsystem [Fuel Distribution Detail]

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupplyLine:

fuelSupply:Fuel
fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fuelReturnLine:

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

fuelFitting:Fuel

<>
SysML Specification v1.0 Draft 69

9.4.3 Non-Atomic Flow Ports and Flow Specification

Figure 9-6 taken from Appendix B shows a way to connect the PowerControlUnit to other parts over a CAN bus. Since
connections over buses are characterized by broadcast asynchronous communications, flow ports are used to connect the parts
to the CAN bus. To specify the flow between the flow ports, we need to specify Flow Specifications as done in Figure 9-7.
Here the flow specification has three flow properties: an out flow property of type signal (ICEData) and two in flow properties
of type float. This allows the InternalCombustionEngine to transmit an ICEData signal via its fp flow port which will be
transmitted over the CAN bus to the ice port of PowerControlUnit (a conjugated flow port typed by the FS_ICE flow
specification). This single signal carries the temperature, rpm and knockSensor information of the engine. In addition, the
PowerControlUnit can set the mixture and throttle of the InternalCombustionEngine via the mixture and throttlePosition flow
properties of the FS_ICE flow specification.

ibd [block] PowerSubsystem [CAN Bus description]

trsm:Transmission ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

:CAN_Bus

fp:FS_EPC fp:FS_TRSM fp:FS_ICE

epc:IFS_EPC etrsm:IFS_TRSM ice:IFS_ICE

<> <> <>

<> <> <>

Figure 9-6. Using Flow Ports to Connect the PowerControlUnit to the ElectricalPowerController, Transmission and
InternalCpmbustionEngine over a CAN bus
70 SysML Specification v1.0 Draft

bdd CAN Bus FlowSpecifications

flowProperties
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«flowSpecification»
FS_ICE

rpm:Integer
temperature:Real
knockSensor:Boolean

«signal»
ICEData

Figure 9-7. Flow Specification for the InternalCombustionEngine flow port to allow its connection over the CAN bus
SysML Specification v1.0 Draft 71

10 Constraint Blocks

10.1 Overview
Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models with
other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical expres-
sions such as {F=m*a} and {a=dv/dt} which constrain the physical properties of a system. Such constraints can also be used to
identify critical performance parameters and their relationships to other parameters, which can be tracked throughout the sys-
tem life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a. Con-
straint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for Newton’s
Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may be specified on
block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such constraints can be arbi-
trarily complex mathematical or logical expressions. The constraints can be nested to enable a constraint to be defined in terms
of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a constraint
binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass, that provide values
for the parameters. The constrained properties, such as mass or response time, typically have simple value types that may also
carry units, dimensions, and probability distributions. A pathname dot notation can be used to refer to nested properties within
a block hierarchy. This allows a value property (such as an engine displacement) that may be deeply nested within a containing
hierarchy (such as vehicle, power system, engine) to be referenced at the outer containing level (such as vehicle-level equa-
tions). The context for the usages of constraint blocks must also be specified in a parametric diagram to maintain the proper
namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a local
or global clock which produces a continuous or discrete time value property. Other values of time can be derived from this
clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time can be derived
from this global time property. SysML includes the time model from UML, but other UML specifications offer more special-
ized descriptions of time which may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water temperature is
below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state results in a different set
of constraint equations. This can be accommodated by specifying constraints which are conditioned on the value of the state
property.
Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to compare
alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a weighting of
utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example, could be associ-
ated with system performance, cost, or desired physical characteristics. Properties bound to parameters of the objective func-
tion may have probability distributions associated with them that are used to compute expected or probabilistic measures of
the system. The use of an objective function and measures of effectiveness in parametric diagrams are included in the Non-
Normative Extensions Appendix C.

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The interpre-
tation of a given constraint block (e.g., a mathematical relation between its parameter values) must be provided. An expression
may rely on other mathematical description languages both to capture the detailed specification of mathematical or logical
relations, and to provide a computational engine for these relations. In addition, the block constraints are non-causal and do not
specify the dependent or independent variables. The specific dependent and independent variables are often defined by the ini-
tial conditions, and left to the computational engine.
72 SysML Specification v1.0 Draft

A constraint block is defined by a keyword of «constraint» applied to a block definition. The properties of this block define the
parameters of the constraint. The usage of a constraint block is distinguished from other parts by a box having rounded corners
rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal block diagram that
shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram elements
Tables in the following sections provide a high-level summary of graphical elements available in SysML diagrams. A more
complete definition of SysML diagram elements, including the different forms and combinations in which they may appear, is
provided in Appendix G

10.2.1 Block Definition Diagram

The diagram elements described in this section are additions to the Block Definition diagram described in Chapter 8,
“Blocks”.

10.2.1.1 Graphical nodes

ConstraintBlock

parameters
x: Real
y: Real

constraints
{{L1} x > y}
nested: ConstraintBlock2

«constraint»
ConstraintBlock1

SysML::ConstraintBlocks::
ConstraintBlock

10.2.2 Parametric Diagram

The diagram elements described in this section are additions to the Internal Block Diagram described in Chapter 8, “Blocks”.
The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the restrictions described in
Section 10.3.1.2 below.

Table 10-1. Graphical nodes defined in Block Definition diagrams.

ELEMENT NAME CONCRETE SYNTAX EXAMPLE METAMODEL REFERENCE
SysML Specification v1.0 Draft 73

10.2.2.1 Graphical nodes

Table 10-2. Graphical nodes defined in Parametric diagrams.

ParametricDiagram
par Block1

 C1: Constraint1

x:

y:

length: Real

width: Real

SysML::ConstraintBlocks::Con-
straintBlock
SysML::Blocks::Block

ConstraintProperty

 C1: Constraint1

x: Real

y: Real

x: Real

y: Real

«constraint»
C1: Constraint1

SysML::ConstraintBlocks::
ConstraintProperty

10.3 UML extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

Constraint block definition

The <<constraint>> keyword on a block definition states that the block is a constraint block. An expression that specifies the
constraint may appear in the constraints compartment of the block definition, using either formal statements in some language,
or informal statements using text. This expression can include a formal reference to a language in braces as indicated in
Table 10-1. Parameters of the constraint may be shown in a compartment with the predefined compartment label “parameters.”

Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters”, which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints compart-
ment, for nested constraint properties, or within the parameters compartment

ELEMENT NAME CONCRETE SYNTAX EXAMPLE METAMODEL REFERENCE
74 SysML Specification v1.0 Draft

10.3.1.2 Parametric diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain constraint
properties and their parameters, along with other properties from within the internal block context. All properties that appear,
other than the constraints themselves, must either be bound directly to a constraint parameter, or contain a property that is
bound to one (through any number of levels of containment).

Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical shape dis-
tinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint» keyword. Other-
wise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword shown.
Compartments and internal properties may be shown within the shape just as for other types of internal properties.

«constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations for
internal properties. The stereotype ConstraintProperty is applied to a constraint property, but only the shorthand keyword
«constraint» is used when shown on an internal property.

Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a text
string close to the square box. The text string for such a value property may include all the elements that could ordinarily be
used to declare the property in a compartment of a block, including an optional default value. The box may optionally be
shown with one edge flush with the boundary of a containing property. Placement of property boxes is purely for notational
convenience, for example to enable simpler connection from the outside, and has no semantic significance. If a connector is
drawn to a region where an internal property box is shown flush with the boundary of a containing property, the connector is
always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package ConstraintBlocks

«stereotype»
SysML::Blocks::Block

«stereotype»
ConstraintBlock

«stereotype»
SysML::Blocks::
BlockProperty

«stereotype»
ConstraintProperty

Figure 10-1. Stereotypes defined in SysML ConstraintBlocks package.

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to constrain
properties of other blocks. A constraint block includes the definition of one or more parameters which can be bound to proper-
ties in a specific context where the constraint is used. In a containing block where the constraint is used, the constraint block is
SysML Specification v1.0 Draft 75

used to type a property that holds the usage. A constraint parameter is a property of a constraint block which may be bound to
a property in a surrounding usage context. All properties of a constraint block define parameters of the constraint block, with
the exception of constraint properties that hold internally nested usages of other constraint blocks.

[1] A constraint block may not own any structural or behavioural elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-pur-
pose model management and crosscutting elements.

10.3.2.2 ConstraintProperty

Description

A Constraint Property is a Block Property that is typed by a Constraint Block, and owned by a containing block. Parameters of
the constraint property may be bound to properties of the surrounding context using binding connectors as defined in Chapter
8, “Blocks”.

Constraints
[1] The type of a constraint property must be a constraint block.

10.4 Usage examples

10.4.1 Definition of constraint blocks on a block definition diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they must have the «con-
straint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML constraints, using a
special compartment to hold the constraint. This is shown in Figure 10-2 below. These particular constraints are specified only
76 SysML Specification v1.0 Draft

in an informal language, but a more formal language such as OCL or MathML could also be used. The compartment labeled
parameters shows the parameters of this constraint which are bound on the parametric diagram.

10.4.2 Usage of constraint blocks on a parametric diagram

Figure 10-3 shows the use of constraint properties on a parametric diagram (note that this is a subset of the corresponding dia-
gram in the sample problem). This diagram shows the use of nested property references to the properties of the parts; paramet-
ric diagrams can make use of the nested property name notation to refer to multiple levels of nested property containment, as
shown in this example. A parametric diagram is similar to an internal block diagram with the exception that the only connec-

Figure 10-2. Constraint block definitions in a Block Definition diagram.

bdd [package] HSUVAnalysis [Def inition of Dynamics]

parameters
w hlpow r:Horsepw r
Cd:Real
Cf :Real
tw :Weight
tp:Horsepw r
v:Vel
i:Real

constraints
{tp = w hlpow r - (Cd*v) -
(Cf*tw *v)}

«constraint»
Pow erEquation

parameters
tw :Weight
delta-t:Time
tp:Horsepw r
a:Accel

constraints
{a = (550/32)*tp(hp)*delta-
t*tw }

«constraint»
AccelerationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
w hlpow r:Horsepw r
Cd:Real
Cf :Real
tw :Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynam ics

accvel
pw r

pos
SysML Specification v1.0 Draft 77

tors that may be shown are binding connectors connected to constraint parameters on at least one end. The Sample Problem in
Appendix B provides definitions of the containing EconomyContext block for which this parametric diagram is shown.

Figure 10-3. Constraints on a parametric diagram.

par [block] EconomyContext

dyn:StraightLine
VehicleDynam ics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w :TotalWeight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw : fw :

ad.HSUV.Pow erSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw :

tw :

tw :

Cf :

Cf :

fe:FuelEfficiency
Equationw hlpw r:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpw r:

ebpw r:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

w hlpw r:

ad.HSUV.VehicleDryWeight

ad.HSUV.Pow erSybsystem.
ElectricMotorGenerator.

GeneratorEf f iciency

ad.HSUV.Pow erSybsystem.
ElectricMotorGenerator.

MotorEf f iciency

ad.HSUV.Pow erSybsystem.
InternalCombustionEngine.

ICEEff iciency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
78 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 79

Part III - Behavioral Constructs
This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, including the activity diagram,
sequence diagram, state machine diagram, and use case diagram. The behavioral constructs are defined in Chapter 11, “Activ-
ities”, Chapter 12, “Interactions”, Chapter 13, “State Machines”, and Chapter 14, “Use Cases”. The activities chapter defines
the extensions to UML 2.0 activities, which represent the basic unit of behavior that is used in activity, sequence, and state
machine diagrams. The activity diagram is used to describe the flow of control and flow of inputs and outputs among actions.
The state machines chapter describes the constructs used to specify state based behavior in terms of system states and their
transitions. The interactions chapter defines the constructs for describing message based behavior used in sequence diagrams.
The use case chapter describes behavior in terms of the high level functionality and uses of a system, that are further specified
in the other behavioral diagrams referred to above.

11 Activities

11.1 Overview
Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides a
flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML 2.0 Activity dia-
grams. For additional information see extensions for Enhanced Functional Flow Block Diagrams in Appendix C.

Control as data

SysML extends control in activity diagrams as follows.

• In UML 2.0 Activities, control can only enable actions to start. SysML extends control to support disabling of actions that
are already executing. This is accomplished by providing a model library with a type for control values that are treated
like data (see “ControlValue” in Figure 11-9).

• A control value is an input or output of a control operator, which is how control acts as data. A control operator can repre-
sent a complex logical operation that transforms its inputs to produce an output that controls other actions (see “Control-
Operator” in Figure 11-8).

Continuous systems

SysML provides extensions that might be very loosely grouped under the term “continuous”, but are generally applicable to
any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a behavior (see
“Rate” in Figure 11-8). This includes both discrete and continuous flows, either of material, energy, or information. Dis-
crete and continuous flows are unified under rate of flow, as is traditionally done in mathematical models of continuous
change, where the discrete increment of time approaches zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values that are already in
the object nodes (see “Overwrite” in Figure 11-8). SysML also extends object nodes with the option to discard values if
they do not immediately flow downstream (see “NoBuffer” in Figure 11-8). These two extensions are useful for ensuring
that the most recent information is available to actions by indicating when old values should not be kept in object nodes,
and for preventing fast or continuously flowing values from collecting in an object node, as well as modeling transient
values, such as electrical signals.

Probability

SysML introduces probability into activities as follows (see “Probability” in Figure 11-8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will traverse
an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.

Activities as classes

In UML 2.0, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on block
definition and class diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and defines
consistency rules between these diagrams and activity diagrams. See section 11.3.1.
80 SysML Specification v1.0 Draft

Timelines

Timelines can be developed to correspond to SysML activity diagrams. The simple time model can be used to represent time
and constraints can be used to annotate the activity diagram to represent timing constraints. Although UML 2 timing diagram
was not included in this version of SysML, it does provide a capability to represent a timeline and can be used as a comple-
ment to SysML. More sophisticated SysML modeling techniques can incorporate constraint blocks from Chapter 10, “Con-
straint Blocks” to specify resource and related constraints on the properties of the inputs, outputs, and other system properties.
(Note: refer to Section 11.3.1.4 for constraining properties of object nodes). This in turn could be used to drive a simulation
engine.

11.2 Diagram elements
..

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Action, CallBehaviorAction,
AcceptEventAction, Send-
SignalAction

UML4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity UML4SysML::Activity

ActivityFinal UML4SysML::ActivityFinalNode

ActivityNode See ControlNode and ObjectNode. UML4SysML::ActivityNode

Action action name :
behavior name

Event

Signal

TimeEvent

act
SysML Specification v1.0 Draft 81

ActivityParameterNode UML4SysML::ActivityParameter-
Node

ControlNode See DecisionNode, FinalNode, ForkNode, Initial-
Node, JoinNode, and MergeNode.

UML4SysML::ControlNode

ControlOperator SysML::Activities::ControlOpera-
tor

DecisionNode UML4SysML::DecisionNode

FinalNode See ActivityFinal and FlowFinal. UML4SysML::FinalNode

FlowFinal UML4SysML::FlowFinalNode

ForkNode UML4SysML::ForkNode

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

act

«controlOperator»
CallBehaviorAction

act
«controlOperator»

[guard]

[else]

...
82 SysML Specification v1.0 Draft

InitialNode UML4SysML::InitialNode

JoinNode UML4SysML::JoinNode

isControl UML4SysML::Pin.isControl

isStream UML4SysML::Parameter.isStream

Local pre- and postcondi-
tions

UML4SysML::Action.localPrecon-
dition,
UML4SysML::Action.localPost-
condition

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

...
{ control }

Action
{ control }

{ stream }{ stream }
Action

{ stream }

act

Action

«localPrecondition»
constraint

Action

«localPostcondition»
constraint
SysML Specification v1.0 Draft 83

MergeNode UML4SysML::MergeNode

NoBuffer SysML::Activities::NoBuffer

ObjectNode UML4SysML::OjectNode and its
children, SysML::Activi-
ties::ObjectNode

Optional SysML::Activities::Optional

OverWrite SysML::Activities::Overwrite

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

«noBuffer»
Action

«noBuffer»

object node name :
type name

 [state, state ...]

Actionpin name : type name
 [state, state ...]

«optional» «optional»
Action

«optional»

act

«overwrite»
Action

«overwrite»
84 SysML Specification v1.0 Draft

ParameterSet UML4SysML::ParameterSet

Probability SysML::Activities::Probability

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Action

act

Action

{ probability =
valueSpecification }

{ probability =
valueSpecification }

act
{ probability =

valueSpecification }

{ probability =
valueSpecification }
SysML Specification v1.0 Draft 85

Rate SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11-2. Graphical paths included in activity diagrams.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

ActivityEdge See ControlFlow and ObjectFlow. UML4SysML::ActivityEdge

ControlFlow UML4SysML::ControlFlow
SysML::Activities::ControlFlow

Table 11-1. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

«discrete»
Object Node

«continuous»
Object Node

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Object Node

Object Node

«rate»
rate = constant

rate = distribution

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Action
{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

act
86 SysML Specification v1.0 Draft

ObjectFlow UML4SysML::ObjectFlow

Probability SysML::Activities::Probability

Rate SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11-2. Graphical paths included in activity diagrams.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

{ probability = valueSpecification }

{ probability = valueSpecification }

Action

{ probability = valueSpecification }

{ probability = valueSpecification }

Object Node

{ probability = valueSpecification }

{ probability = valueSpecification }

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»
SysML Specification v1.0 Draft 87

11.3 UML extensions

11.3.1 Diagram extensions

The following specify diagram extensions to the notations defined in Chapter 17, “Profiles & Model Libraries”.

11.3.1.1 Activity

Notation

In UML 2.0, all behaviors are classes, including activities, and their instances are executions of the activity. This follows the
general practice that classes define the constraints under which the instances must operate. Creating an instance of an activity

Table 11-3. Other graphical elements included in activity diagrams.

ELEMENT NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

In Block Definition Dia-
grams, Activity, Associa-
tion

SysML::Activities, Diagram Usage
for Block Definition Diagrams

ActivityPartition UML4SysML::ActivityPartition

InterruptibleActivityRe-
gion

UML4SysML::InterruptibleActivity-
Region

«activity»
activity name

action
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

bdd

Pa
rti

tio
n

N
am

e

Action
(Partition Name)
88 SysML Specification v1.0 Draft

causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the corresponding execu-
tion, and vice versa. Terminating an execution also terminates the execution of any other activities that it invoked synchro-
nously, that is, expecting a reply.

Activities as classes can have associations between each other, including composition associations. Composition means that
destroying an instance at the whole end destroys instances at the part end. When composition is used with activity classes, the
termination of execution of an activity on the whole end will terminate executions of activities on the part end of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition associa-
tion, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an activity on the
whole end is terminated, then the executions of the activities on the part end are also terminated. The upper multiplicity on the
part end restricts the number of concurrent synchronous executions of the behavior that can be invoked by the containing
activity. The lower multiplicity on the part end is always zero, because there will be some time during the execution of the con-
taining activity that the lower level activity is not executing. See Constraints Sections below.

Activities in block definition diagrams or class diagrams appear as regular blocks or classes, using the «activity» keyword for
clarity, as shown in Figure 11-1. See example in section 11.4. This provides a means for representing activity decomposition in
a way that is similar to classical functional decomposition hierarchies. The names of the CallBehaviorActions that correspond
to the association can be used as end names of the association on the part end. Activities in block definition diagrams or class
diagrams can also appear with the same notation as CallBehaviorAction, except the rake notation can be omitted, if desired.
Also see use of activities in block definition diagrams that include ObjectNodes.

Constraints

The following constraints apply when composition associations in block definition diagrams or class diagrams are defined
between activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composing activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.

[3] The lower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behaviour.

Figure 11-1. Block definition diagram with activities as blocks.

action
name

action
name

action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

action
name

«activity»
activity name

bdd
SysML Specification v1.0 Draft 89

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as shown
in Figure 11-2.

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior using
the colon notation shown in Figure 11-3.

11.3.1.3 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11-3.

11.3.1.4 ObjectNode

Notation

See Section 11.3.1.1 concerning activities appearing in block definition diagrams or class diagrams. Associations can be used
between activities and classifiers (classes, blocks, or datatypes) that are the type of object nodes in the activity, as shown in
Figure 11-5. This supports linking the execution of the activity with items that are flowing through the activity and happen to
be contained by the object node at the time the link exists. The names of the object node that correspond to the association can
be used as end names of the association on the end towards the object node type. Like any association end or property, these

Figure 11-2. CallBehaviorAction notation.with behavior stereotype

Figure 11-3. CallBehaviorAction notation.with action name

Figure 11-4. Control flow notation

«stereotype name»

behavior name

action name : behavior name

Action Action
90 SysML Specification v1.0 Draft

can be the subject of parametric constraints, design values, units and dimensions. The upper multiplicity on the object node
end restricts the number of instances of the item type that can reside in the object node at one time, which must be lower than
the maximum amount allowed by the object node itself. The lower multiplicity on the object node end is always zero, because
there will be some time during the execution of the containing activity that there is no item in the object node. The associations
may be composition if the intention is to delete instances of the classifier flowing the activity when the activity is terminated.
See example in Section 11.4 .

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as shown in
Figure 11-6.

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11-7, when the object
node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins notated by the
object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins notated by the
object node.

Figure 11-5. Class or block definition diagram with activities as classes associated with types of object nodes.

Figure 11-6. ObjectNode notation in activity diagrams.

Figure 11-7. ObjectNode notation in activity diagrams.

object
node
name

object
node
name

object
node
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

«block»
block name

«block»
block name

bdd

object node name : type name

«stereotype name»

object node name
SysML Specification v1.0 Draft 91

Constraints

The following constraints apply when associations in block definition diagrams and class diagrams are defined between activ-
ities and classifiers typing object nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.

[2] The classifier must be the same as the type of the corresponding object node.

[3] The lower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this chapter and which metaclasses they extend. The descriptions,
attributes and constraints for each stereotype is specified below.

Package Activities

11.3.2.1 Continuous

Continuous rate is a special case of rate of flow, see “Rate”, where the increment of time between items approaches zero. It is
intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous signal, or con-
tinuous energy flow. It is independent from UML streaming, see Section 11.3.2.8 . A streaming parameter may or may not
apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close to
zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that flow

Figure 11-8. Abstract Syntax for SysML Activity Extensions

Behavior

<<metaclass>>

ControlOperator
<<stereotype>>

ObjectNode

<<metaclass>>

Overwrite
<<stereotype>>

ActivityEdge

<<metaclass>>

Parameter

<<metaclass>>

Optional
<<stereotype>>

NoBuffer
<<stereotype>>

ParameterSet

<<metaclass>>

Probability
<<stereotype>>

probability : ValueSpecification

Operation

<<metaclass>>

Rate
<<stereotype>>

rate : InstanceSpecification

Discrete
<<stereotype>>

Continuous
<<stereotype>>

UML4SysML:: UML4SysML::UML4SysML::

UML4SysML:: UML4SysML::UML4SysML::
92 SysML Specification v1.0 Draft

through an activity. In particular, the value may represent as small a number as needed, for example to simulate continuous
material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In particular, token flow
on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms for numerical solvers of ordi-
nary differential equations, such as Runge-Kutta.

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to enable
and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes control values as
inputs or provides them as outputs, that is, it treats control as data (see “ControlValue” in Section 11.3.3.1). When the «con-
trolOperator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The «controlOperator»
stereotype also applies to operations, with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable based
on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so the control value can
be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or indicating the end-
ing of it.

Constraints
[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at least one parameter typed by

ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by Control-
Value.

[2] A behavior must have the «controlOperator» stereotype applied if it is a method of an operation that has the «controlOper-
ator» stereotype applied.

11.3.2.3 Discrete

Discrete rate is a special case of rate of flow, see “Rate”, where the increment of time between items is non-zero. Examples
include the production of assemblies in a factory and signals set at periodic time intervals.

Constraints
[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.

11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by out-
going edges, or refused by actions for object nodes that are input pins. This is typically used with fast or continuously flowing
data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are the tar-
get of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token offer-
ing semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the semantics
is as in UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input pins, are
held until they can leave the object node.

Constraints
[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.
SysML Specification v1.0 Draft 93

11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones already
there (a full object node has as many tokens as allowed by its upper bound). This is typically used on an input pin with an
upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the token replaced
is the one that would be the last to be selected according to the ordering kind for the node. For FIFO ordering, this is the most
recently added token, for LIFO it is the least recently added token. A null token removes all the tokens already there. The num-
ber of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For object nodes that are the target of
continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype does not override UML token offering
semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the semantics is as
in UML, specifically, tokens arriving at object nodes do not replace ones that are already there.

Constraints
[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. This means the parame-
ter is not required to have a value for the activity to begin execution. Otherwise, the lower multiplicity must be greater than
zero, which is called “required”. The absence of this stereotype indicates a constraint, see below.

Constraints
[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise multiplic-

ity.lower must be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an expres-
sion for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up to one for
edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be given
values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the same
behavior at the time the probabilities are used.

Constraints
[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or

to output parameter sets.

[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to all edges coming out of the
same source.

[3] When the «probability» stereotype is applied to an output parameter set, it must also be applied to all the parameter sets of
the behavior or operation owning the original parameter set.

[4] When the «probability» stereotype is applied to an output parameter set, all the output parameters must be in some param-
eter set.
94 SysML Specification v1.0 Draft

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the number of objects and values that traverse the edge
per time interval, that is, the rate they leave the source node and arrive at the target node. It does not refer to the rate at which a
value changes over time. When the stereotype is applied to a parameter, the parameter must be streaming, and the stereotype
gives the number of objects or values that flow in or out of the parameter per time interval while the behavior or operation is
executing. Streaming is a characteristic of UML behavior parameters that supports the input and output of items while a
behavior is executing, rather than only when the behavior starts and stops. The flow may be continuous or discrete, see the spe-
cialized rates in Section 11.3.3, and Section 11.3.2.3. The «rate» stereotype has a rate property of type InstanceSpecification.
The values of this property must be instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Chap-
ter 8, “Blocks”, and they must use units and dimensions appropriate to rates of flow. In particular, the denominator for units
used in the rate property must be time units.

Constraints
[1] The value of the rate attribute must be an instance specification that is typed by a classifier that is stereotyped by

SysML::«valueType» or SysML::«distributionDefinition».

[2] When the «rate» stereotype is applied to a parameter, the parameter must be streaming.

[3] The rate of a parameter must be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

11.3.3 Model library

The SysML model library for activities is shown in Figure 11-9 below.

11.3.3.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML control pins. It
can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible runtime val-
ues are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as suspend, resume,
with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning (compare to
suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Constraints
[1] UML4SysML::ObjectNode::isControlType is true for object nodes with type ControlValue.

Figure 11-9. Control values.

ControlValue
disable
enable

<<enumeration>>
SysML Specification v1.0 Draft 95

11.4 Usage examples
The following examples illustrate modeling continuous systems (see “Continuous systems” in Section 11.1). Figure 11-10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on starts two
behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters to communi-
cate with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are
executing, as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior
parameters that supports the input and output of items while a behavior is executing, rather than only when the behavior starts
and stops). Brake pressure information also flows to a control operator that outputs a control value to enable or disable the
Monitor Traction behavior. No control pins are used on Monitor Traction, so once it is enabled, the continuously arriving
enable control values from the control operator have no effect, per UML semantics. When the brake pressure goes to zero, dis-
able control values are emitted from the control operator. The first one disables the monitor, and the rest have no effect. While
the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by the ABS system. The rake
notations on the control operator and Monitor Traction indicate they are further defined by activities, as shown in Figures 11-
11 and 11-12. An alternative notation for this activity decomposition is shown in Figure 11-13.
96 SysML Specification v1.0 Draft

The activity diagram for Monitor Traction is shown in Figure 11-11. When Monitor Traction is enabled, it begins listening for
signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which begin listen-
ing automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower of the two signal
rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does not buffer values.

Figure 11-10. Continuous system example 1.

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

«continuous»

act Operate Car
SysML Specification v1.0 Draft 97

The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate Modulation Frequency deter-
mines the output of the activity.

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11-12. The decision node and
guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that output an
enabling or disabling control value from the activity. The edges coming out of the decision node indicate the probability of
each branch being taken.

Figure 11-13 shows a block definition diagram with composition associations between the activities in Figures 11-10, 11-11,
and 11-12, as an alternative way to show the activity decomposition of Figures 11-10, 11-11, and 11-12. Each instance of
Operating Car is an execution of that behavior. It owns the executions of the behaviors it invokes synchronously, such as Driv-

Figure 11-11. Continuous system example 2.

Figure 11-12. Continuous system example 3.

[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

act Monitor Traction

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable

[else]
{probability = 90%}

{probability = 10%}

«controlOperator»
act Enable on Brake Pressure > 0
98 SysML Specification v1.0 Draft

ing. Like all composition, if an instance of Operating Car is destroyed, terminating the execution, the executions it owns are
also terminated.

Figure 11-14 shows a block definition diagram with composition associations between the activity in Figure 11-10 and the
types the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Break Pressure
and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity

Figure 11-13. Example block definition diagram for activity decomposition

mt
1..1

«activity»

Driving
«activity»

Braking
«activity»

Monitor
Traction

«activity»
Turn

Key to On

«controlOperator »
Enable on Brake

Pressure > 0

«activity»

Calculate
Traction

«activity»
Calculate

Modulation
Frequency

«activity»

Operating Car

enableOnBrakePressure>0
0..1

calculateTraction
0..1

calculateModulationFrequency
0..1

oc
0..1

oc
1..1

oc
0..1 oc

1..1

oc
1..1

monitorTraction
 0..1

driving
0..1

turnKeyOn
0..1

mt
1..1

braking
0..1

bdd
SysML Specification v1.0 Draft 99

.

Figure 11-14. Example block definition diagram for object node types

«activity»

Operating Car

oc
1..1

oc
1..1

mf
 0..1

 bp
0..1

«value»

BreakPressure

«value»

ModulationFrequency

bdd
100 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 101

12 Interactions

12.1 Overview
Interactions are used to describe interactions between entities. UML 2.0 Interactions are supported by four diagram types
including the Sequence Diagram, Communications Diagram, Interaction Overview Diagram, and Timing Diagram. The
Sequence Diagram is the most common of the Interaction Diagrams. SysML includes the Sequence Diagram only and
excludes the Interaction Overview Diagram and Communication Diagram, which were considered to offer significantly over-
lapping functionality without adding significant capability for system modeling applications. The Timing Diagram is also
excluded due to concerns about its maturity and suitability for system engineering needs.

The sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system. This
diagram represents the sending and receiving of messages between the interacting entities called lifelines, where time is repre-
sented along the vertical axis. The sequence diagrams can represent highly complex interactions with special constructs to rep-
resent various types of control logic, reference interactions on other sequence diagrams, and decomposition of lifelines into
their constituent parts.
102 SysML Specification v1.0 Draft

12.2 Diagram elements

12.2.1 Sequence Diagram

Table 12-1. Graphical nodes included in sequence diagrams1.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

SequenceDiagram UML4SysML::Interaction

Lifeline UML4SysML::Lifeline

Execution
Specification

UML4SysML::ExecutionSpecification

sd In teraction1

b1:Block1

b1:Block1

execSpec

b1:Block1
SysML Specification v1.0 Draft 103

1. Table is compliant with UML 2.0 Superstructure source document dated 050704.

InteractionUse UML4SysML::InteractionUse

CombinedFragment UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
 seq - Weak Sequencing
 alt - Alternatives
 opt - Option
 break - Break
 par - Parallel
 strict - Strict Sequencing
 loop - Loop
 critical - Critical Region
 neg - Negative
 assert - Assertion
 ignore - Ignore
 consider - Consider

StateInvariant /
Continuations

UML4SysML::Continuation

UML4SysML::StateInvariant

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

ref
Interaction3

sd Interaction1

msg2

msg1[if x < 10]

[else]

alt

b1:Block1 b2:Block2 b3:Block3

msg3

:Y

p==15
104 SysML Specification v1.0 Draft

Coregion UML4SysML::CombinedFragment (under
parallel)

CreationEvent
DestructionEvent

UML4SysML::CreationEvent
UML4SysML::DestructionEvent

DurationConstraint
Duration
Observation

UML4SysML::Interactions

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

s[u]:B

m3

m2

b1:Block1

b2:Block2create

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}
SysML Specification v1.0 Draft 105

Table 12-2. Graphical paths included in sequence diagram

12.3 UML extensions

12.3.1 Diagram extensions

The following specify diagram extensions to the notations defined in Chapter 17, “Profiles & Model Libraries”

TimeConstraint
TimeObservation

UML4SysML::Interactions

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Message UML4SysML::Message

Lost Message
Found Message

UML4SysML::Message

GeneralOrdering UML4SysML::GeneralOrdering

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

CardOut {0..13}

OK
t=now

{t..t+3}

asyncSignal

syncCall(param)

b1:Block1 b2:Block2

lost

found
106 SysML Specification v1.0 Draft

12.3.1.1 Exclusion of communication diagram, interaction overview diagram and timing diagram

Communication diagrams and interaction overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing Diagrams are
also excluded due to concerns about their maturity and suitability for system engineering needs.

12.4 Usage examples

12.4.1 Sequence Diagrams

The diagram in Figure 12-1 illustrates the overall system behavior for operating the vehicle in sequence diagram format. To
manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further elaborate the
system behavior. (“ref StartVehicleBlackBox”) CombinedFragments are used to illustrate that steering can take place at the
same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising, or braking.

Figure 12-1. Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case

sd DriveBlackBox

par

alt controlSpeed

driver:Driver hybridSUV:HybridSUV

ref StartVehicleBlackBox

ref Park/ShutdownVehicle

ref Steer

ref Accelerate/Cruise

ref Brake

ref Idle

[self.oclInState(idle)]

[self.oclInState(accelerating/cruising)]

[self.oclInState(braking)]
SysML Specification v1.0 Draft 107

The diagram in Figure 12-2 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further elaborates
what happens inside the “hybridSUV” when the vehicle is started.

Figure 12-2. Black box interaction during “starting the Hybrid SUV”

The diagram in Figure 12-3 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is
started successfully.

Figure 12-3. White box interaction for “starting the Hybrid SUV”

sd StartVehicleBlackBox

driver:Driver
hybridSUV:HybridSUV

ref StartVehicleWhiteBox

1: StartVehicle

turnIgnitionToStart

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1.1: Enable

1:
StartVehicle

1.2:read
y

108 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 109

13 State Machines

13.1 Overview
The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state transi-
tion systems. The state machine represents behavior as the state history of an object in terms of its transitions and states. The
activities that are invoked during the transition, entry, and exit of the states are specified along with the associated event and
guard conditions. Activities that are invoked while in the state are specified as "do Activities", and can be either continuous or
discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The standard
UML state machine concept (called behavior state machines in UML) are thought to be sufficient for expressing protocols.

13.2 Diagram elements

13.2.1 State Machine Diagram

No differences between SysML State Machine Diagrams and UML 2.0 State Machine Diagrams.
110 SysML Specification v1.0 Draft

Table 13-1. Graphical nodes included in state machine diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

StateMachineDiagra
m

UML4SysML::StateMachines

Choice pseudo state UML4SysML::PseudoState

Composite state UML4SysML::State

Entry point UML4SysML::PseudoState

Exit point UML4SysML::PseudoState

Final state UML4SysML::FinalState

stm OwnedStateMachine1

[Id>10]

[Id<=10]

CompositeState1

State1

State2

againagain

abortedabortedabortedaborted
SysML Specification v1.0 Draft 111

History, Deep
Pseudo state

UML4SysML::PseudoState

History, Shallow
pseudo state

UML4SysML::PseudoState

Initial pseudo state UML4SysML::PseudoState

Junction pseudo state UML4SysML::PseudoState

Receive signal action UML4SysML::Transition

Send signal action UML4SysML::Transition

Action UML4SysML::Transition

Region UML4SysML::Region

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

H*

H

Req(Id)

TurnOn

MinorReq := Id;

S
112 SysML Specification v1.0 Draft

Simple state UML4SysML::State

State list UML4SysML::State

State Machine UML4SysML::StateMachine

Terminate node UML4SysML::PseudoState

Submachine state UML4SysML::State

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

State1

State2

entry / entryActivity
do / doActivity
exit / exitActivity

State1, State2

ReadAmountSM

aborted

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted
SysML Specification v1.0 Draft 113

Table 13-2. Graphical paths included in state machine diagrams

13.3 UML extensions
None.

13.4 Usage examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the state
machine diagram in Figure 13-1.

Figure 13-1. High level view of the states of the HybridSUV

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Transition UML4SysML::Transition

trigger[guard]\activity

stm HSUVO perationalS tates

O perate

Idle

Accellerating/
Cruising Braking

engageBrake

accelerate stopped

releaseBrake

shutO ff

O ff

start

keyO ff

Refines
«requirem ent»
PowerSource
M anagem ent

Nom inal
states only
114 SysML Specification v1.0 Draft

14 Use Cases

14.1 Overview
The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is realized by
the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/or capabilities
that are accomplished through the interaction between the subject and its actors. Use case diagrams include the use case and
actors and the associated communications between them. Actors represent classifier roles that are external to the system that
may correspond to users, systems, and or other environmental entities. They may interact either directly or indirectly with the
system. The actors are often specialized to represent a taxonomy of user types or external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use case
represent the communications that occurs between the actors and the subject to accomplish the functionality associated with
the use case. The subject of the use case can be represented via a system boundary. The use cases that are enclosed in the sys-
tem boundary represent functionality that is realized by behaviors such as activity diagrams, sequence diagrams, and state
machine diagrams.

The use case relationships are “communication”, "include", "extend", and "generalization". Actors are connected to use cases
via communication paths, that are represented by an association relationship. The "include" relationship provides a mechanism
for factoring out common functionality which is shared among multiple use cases, and is always performed as part of the base
use case. The "extend" relationship provides optional functionality, which extends the base use case at defined extension
points under specified conditions. The "generalization" relationship provides a mechanism to specify variants of the base use
case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the packages.
SysML Specification v1.0 Draft 115

14.2 Diagram elements

14.2.1 Use Case Diagram

UseCaseName

extension points
p1, p2

UseCaseName

<<actor>>
ActorNam e

Acto rN am e

SubjectName

 .

Table 14-1. Graphical nodes included in Use Case diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Use Case UML4SysML::UseCase

Use Case with
ExtensionPoints

UML4SysML::UseCase

Actor UML4SysML::Actor

Subject Role name on Classifier

Table 14-2. Graphical paths included in Use Case diagrams.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Communication
path

UML4SysML::Association
116 SysML Specification v1.0 Draft

14.3 UML extensions
There are no SysML extensions to UML 2.0 use cases.

Include Subclass of
UML4SysML::Directed Relation-
ship

Extend Subclass of
UML4SysML::Directed Relation-
ship

Extend with Condi-
tion

Subclass of
UML4SysML::Directed Relation-
ship

Generalization UML4SysML::Kernel

Table 14-2. Graphical paths included in Use Case diagrams.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

 «include»

 «extend»

 «extend»

Condition: {boolean expression}
extension point: p1, p2
SysML Specification v1.0 Draft 117

14.4 Usage examples

Figure 14-1. Top level use case diagram for the Hybrid SUV subject

Figure 14-1 is a top-level set of use cases for the Hybrid SUV System. Figure 14-2 shows the decomposition of the Operate the
Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases. The convention of
naming the package with the same name as the top level use case has been employed. This practice offers an implicit tracing
mechanism that complements the explicit trace relationships in SysML.

uc HSUVTopLevelUseCases

Hybrid SUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
118 SysML Specification v1.0 Draft

Figure 14-2. Operate the Vehicle use case at a lower level of abstraction

uc OperateTheVehicle

Hybrid SUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
SysML Specification v1.0 Draft 119

120 SysML Specification v1.0 Draft

Part IV - Crosscutting Constructs
This Part specifies cross-cutting constructs that apply to both structure and behavior. These constructs are defined in Chapter
15, “Allocations”, Chapter 16, “Requirements”, and Chapter 17, “Profiles & Model Libraries”. The Allocations chapter
defines a basic allocation relationship that can be used to allocate a set of model elements to another, such as allocating behav-
ior to structure or allocating logical to physical components. The Requirements chapter specifies constructs for system require-
ments and their relationships. The Profiles and Model Libraries chapter specifies the approach to further customize and extend
SysML for specific applications.

15 Allocations

15.1 Overview
Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within the
various structures or hierarchies of a user model. The concept of "allocation" requires flexibility suitable for abstract system
specification, rather than a particular constrained method of system or software design. System modelers often associate var-
ious elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used early in the
design as a precursor to more detailed rigorous specifications and implementations. The allocation relationship can provide an
effective means for navigating the model by establishing cross relationships, and ensuring the various parts of the model are
properly integrated.

This chapter does not try to limit the use of the term "allocation", but provides a basic capability to support allocation in the
broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A typical
example is the allocation of activities to blocks (e.g. functions to components). This chapter specifies an extension for an allo-
cation relationship and selected subclasses of allocation, along with the notation to represent allocations in a SysML model.
SysML Specification v1.0 Draft 121

15.2 Diagram elements

15.2.1 Representing Allocation on Diagrams

Table 15-1. Extension to graphical nodes included in diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Allocated stereotype

«allocated»
Named
Element

SysML::Allocation:Allocated

Allocation derived
properties displayed in
compartment of a
Block. allocatedFrom

«elementType»ElementName
allocatedTo

«elementType»ElementName

BlockName

SysML::Allocation:Allocated

Allocation derived
properties displayed in
Comment. allocatedFrom

«elementType»ElementName
allocatedTo
«elementType»ElementName

ElementName

SysML::Allocation:Allocated

Allocation derived
properties displayed in
compartment of Part
on Internal Block Dia-
gram.

«block»
BlockName

allocatedFrom
«elementType»ElementName

PartName

SysML::Allocation:Allocated

Allocation derived
properties displayed in
compartment of Action
on Activity Diagram.

allocatedTo
«elementType»ElementName

ActivityName

SysML::Allocation:Allocated
122 SysML Specification v1.0 Draft

15.3 UML extensions

15.3.1 Diagram extensions

15.3.1.1 Tables

 Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is the
client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and supplier
appear in this table.

15.3.1.2 Allocate relationship rendering

The "allocate" relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation. In
other words, the directed line points "from" the element being allocated "to" the element that is the target of the allocation.

15.3.1.3 Allocated property compartment format

When properties of an «allocated» model element are displayed in a property compartment, a shorthand notation is used as
shown in Table 15-1. This shorthand groups and displays the AllocatedFrom properties together, then the AllocatedTo proper-
ties. These properties are shown without the use of brackets {}.

15.3.1.4 Allocated property callout format

When an «allocate» property component is not used, a property callout may be used. An «allocate» property callout uses the
same shorthand notation as the «allocate» property compartment. This notation is also shown in Table 15-1. For brevity, the
«elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the diagram.

Allocation Activity
Partition «allocate»

:ElementName

ActivityName

SysML::Allocation:AllocateAc-
tivityPartition

Allocation (general)

« a l lo ca te »
C l i e n t S upplie r

SysML::Allocation:Allocate

Table 15-1. Extension to graphical nodes included in diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE
SysML Specification v1.0 Draft 123

15.3.1.5 AllocatedActivityPartition label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name («allocateActiv-
ityPartition»). For brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the
diagram.

15.3.2 Stereotypes

Package Allocations

«stereotype»
Allocate

UML4SysML::Abstraction UML4SysML::
NamedElement

/allocatedFrom:NamedElement[*]
/allocatedTo:NamedElement[*]

«stereotype»
Allocated

Figure 15-1. Abstract syntax extensions for SysML Allocation.

UML4SysML::ActivityPartition

«stereotype»
AllocateActivityPartition

Figure 15-2. Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML::abstraction. It is a mechanism for associating elements of different types, or in dif-
ferent hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design activ-
ity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete relationship
between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction which is permissible between any two NamedElements. It is depicted
as a dependency with the "allocate" keyword attached to it.

Allocate is directional in that one NamedElement is the "from" end (no arrow), and at least one NamedElement is the "to" end
(the end with the arrow).

The following paragraphs describe types of allocation that are typical in system engineering.
124 SysML Specification v1.0 Draft

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires indepen-
dent models of "function" (behavior) and "form" (structure), and a separate, deliberate mapping between elements in each of
these models. It is acknowledged that this concept does not support a standard object oriented paradigm, nor is this always
even desirable. Experience on large scale, complex systems engineering problems have proven, however, that segregation of
form and function is a valuable approach. In addition, behavior allocation may also include the allocation of Behaviors to
BehavioralFeatures of Blocks, e.g. Operations.

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for how
object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed in SysML,
but may be represented by relating an ItemFlow to the Control Flow using the UML relationship InformationFlow.realizin-
gActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity diagram to
the itemFlow on an internal block diagram. ItemFlow is discussed in Chapter 9, “Ports and Flows”.

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate "logical" and "physical" representations of a system. It is often
necessary to construct separate depictions of a system and define mappings between them. For example, a complete system
hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete assembly hier-
archy at a more concrete level. The set of models supporting complex systems development may include many of these levels
of abstraction. This specification will not define "logical" or "physical" in this context, except to acknowledge the stated need
to capture allocation relationships between separate system representations.

Constraints

A single «allocate» dependency shall have only one supplier (from), but may have one or many clients (to).

If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation then they should
have constraints applied to supplier and client as appropriate.

15.3.2.2 Allocated(from Allocations)

Description

«allocated» is a stereotype that applies to any NamedElement that has at least one allocation relationship with another Named-
Element. «allocated» elements may be designated by either the /from or /to end of an «allocate» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the ele-
ment at the opposite end of any «allocate» dependency. This stereotype provides for the properties “allocatedFrom” and “allo-
catedTo”, which are derived from the «allocate» dependency.

Attributes

The following properties are derived from any «allocate» dependency:

• /allocatedTo:NamedElement[*]

The element types and names of the set of elements that are clients (“to” end of the
concrete syntax) of an «allocate» whose client is extended by this stereotype
(instance). This property is the union of all clients to which this instance is the
SysML Specification v1.0 Draft 125

supplier, i.e. there may be more than one /allocatedTo property per allocated model
element. Each allocatedTo property will be expressed as «elementType»
ElementName.

• /allocatedFrom:NamedElement[*]

Reverse of allocatedTo: the element types and names of the set of elements that are
suppliers (from) of an «allocate» whose supplier is extended by this stereotype
(instance). The same characteristics apply as to /allocatedTo. Each allocatedFrom
property will be expressed as «elementType» ElementName.

For uniformity, the «elementType» displayed for the /allocatedTo or /allocatedFrom properties should be from the following
list, as applicable. Other «elementType» designations may be used, if none of the below apply.

«activity», «objectFlow», «controlFlow», «objectNode»

«block», «itemFlow», «connector», «port», «flowPort», «atomicFlowPort»,
«interface», «value»

Note that the supplier or client may be an Element (e.g. Activity, Block), Property (e.g. Action, Part), Connector, or Behavior-
alFeature (e.g. Operation). For this reason, it is important to use fully qualified names when displaying /allocatedFrom and /
allocatedTo properties. An example of a fully qualified name is the form (PackageName::ElementName.PropertyName). Use
of such fully qualified makes it clear that the «allocate» is referring to the definition of the element, or to it’s specific usage as
a property of another element.

15.3.2.3 AllocateActivityPartition(from Allocations)

Description

AllocateActivityPartition is used to depict an <allocate> relationship on an Activity diagram. The AllocateActivityPartition is
a standard UML2::ActivityPartition, with modified constraints such that any Actions within the partition must result in an
<allocate> dependency between the Activity used by the Action, and the element that the partition represents.

Constraints

An Action appearing in an <AllocateActivityPartition> will be the /supplier (from) end of an <allocate> dependency. The ele-
ment represented by the <AllocateActivityPartition> will be the /client (to) end of the same <allocate> dependency.

The «AllocateActivityPartition» maintains the constraints, but not the semantics, of the UML2::ActivityPartition. Classifiers,
Instances, or Parts represented by an «AllocateActivityPartition» do not have any direct responsibility for invoking behavior
depicted within the partition boundaries.

15.4 Usage examples
The following examples depict allocation relationships as property callout boxes (basic), property compartment of a Block
(basic), and property compartments of Activities and Parts (advanced). Figure 15-3 shows generic allocation for Blocks.
126 SysML Specification v1.0 Draft

Figure 15-3. Generic Allocation, including /from and /to association ends.

15.4.1 Behavior Allocation of Actions to Parts, and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15-4. Note that the AllocateActivityPartition, if used in
this manner, is unambiguously associated with behavior allocation.

Figure 15-4. Behavior allocation

15.4.2 Allocate Flow

Figure 15-5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of ControlFlow
is not shown as an example, but it is not prohibited in SysML. Independent of the ObjectFlow allocation, it may be valuable to
allocate the corresponding ObjectNode to an ItemProperty associated with the ItemFlow.

allocatedFrom
«elementType»Element2

allocatedTo
«elementType»Element3

Block1

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

Activity6

«block»
Block4

allocatedFrom
«activity»Activity6

Part5

allocatedTo
«block»Block4.Part5

allocatedTo
«block»Block4.Part5

Activity6

«allocate»
:Block4.Part5

Activity6

«block»
Block4

Part5

allocatedFrom
«activity»Activity6
SysML Specification v1.0 Draft 127

Figure 15-5. Example of flow allocation from ObjectFlow to Connector

Figure 15-6. Example of flow allocation from ObjectFlow to ItemFlow

ibd [block] Block0 [Example1]

act Activity0 [Example1]
«block»
Block5

Part6

Part7

allocatedFrom
«objectFlow»ObjectFlow3

ObjectFlow3
Action1 Action2

allocatedTo
«connector»Connector8

Connector8

ibd [block] Block0 [Example2]

act Activity0 [Example2]

ObjectFlow3
Action1 Action2

«block»
Block5

Part6

Part7

allocatedTo
«itemFlow»ItemFlow9

allocatedFrom
«objectFlow»ObjectFlow3

ItemFlow9
128 SysML Specification v1.0 Draft

bdd [block] Block0 [Example3]act Activity0
[Example3]

allocatedTo
«block»Block6

Action1

allocatedTo
«block»Block10

ObjectNode4
«block»
Block5 allocatedFrom

«objectNode»ObjectNode4

«block»
Block10

allocatedFrom
«activity» Activity1

out:Block10

«block»
Block6

allocatedFrom
«activity» Activity2

in:Block10

«block»
Block7

allocatedTo
«block»Block7

Action2

Figure 15-7. Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have a frequent need to allocate structural model elements (e.g blocks, parts, or connectors) to other struc-
tural elements. For example, if a particular user model includes an abstract logical structure, it may be important to show how
these model elements are allocated to a more concrete physical structure. The need also arises, when adding detail to a struc-
tural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

Figure 15-8. Example of Structural Allocation

ibd [package] Block1 [Abstract to Concrete Structural
Allocation]

«block»
AbstractExample

Part2

Part3

«block»
ConcreteExample

Part6

Part7

Part5

cktrA
cktrB

cktrC

«allocate»

«allocate»

«allocate»
«allocate»

«allocate»
SysML Specification v1.0 Draft 129

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing power
are allocated to blocks within the Hybrid SUV, as shown in Figure 15-9. This example is consistent with Appendix B.

Figure 15-9. AllocateActivityPartitions (Swimlanes) for HybridSUV Cellarette Example

«(UserDefined)Swimlane Diagram»
act ProvidePower [with Swimlane

Allocation]

«allocate»
PowerControlUnit

«allocate»
InternalCombustionEngi

ne

«allocate»
ElectricalPowerContr

oller

«allocate»
ElectricalMotorGener

ator

a1:Proportion
Power

a3:Control
ElectricPower

a2:ProvideGas
Power

«continuous»
speed

«continuous»
battCond

«continuous»
eThrottle

«continuous»
gThrottle

a4:Provide
ElectricPower

«continuous»
driveCurrent

«continuous»
elecDrivePower

«continuous»
gasDrivePower

«continuous»
accelPosition transModeCmd

keyOff

«continuous»
drivePower

«continuous»
vehCond

allocatedTo
«itemFlow»i1:ElectricCurrent
130 SysML Specification v1.0 Draft

ibd [block] PowerSubsystem [Power Functional Allocation]

 allocatedFrom
«activity»Convert
ElectricToPower

emg:ElectricalMotor
Generator

trsm:Transmission

 allocatedFrom
«activity»ConvertGasToPower

ice:InternalCombustionEngine

 allocatedFrom
«activity»Proportion
PowerLoad

ecu:PowerControlUnit
epc:IFS_EPC

fp:FS_ICE

allocatedFrom
«activity»Control
ElectricPower

epc:ElectricalPower
Controller

i1:Electric
Current

i2:Electric
Current

fp:FS_EPC

fp:FS_TRSM

allocatedFrom
«objectNode»driveCurrent

allocatedFrom
«connector»c1:

 «connector»c2:
 «connector»c3:

can:CAN_Bus

ice:IFS_ICE

etrsm:IFS_TRSM

<>

<>

<>

<>

<>

<>

<>

<>

«diagramDescription»
version=”0.1"
description=”allocation of
behavior and connectors to
elements of power subsystem"
reference=”null”
completeness=”partial. Power
subsystem elements that have
no allocation yet have been
elided”

Figure 15-10. Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example

15.4.3 Tabular Representation

The table shown in Figure 15-11 below is provided as a specific example of how the «allocate» dependency may be depicted
in tabular form, consistent with the automotive example above.

Figure 15-11. Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example

table [activity] ProvidePower [Allocation Tree for Provide Power
Activities]

type name end relation end type name
activity a1:ProportionPower from allocate to block PowerControlUnit
activity a2:ProvideGasPower from allocate to block InternalCombustionEngine
activity a3:ControlElectricPower from allocate to block ElectricalPowerController
activity a4:ProvideElectricPower from allocate to block ElectricalMotorGenerator
objectNode driveCurrent from allocate to itemFlow i1:ElectricCurrent
SysML Specification v1.0 Draft 131

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15-12:

Figure 15-12. Allocation Matrix Showing Allocation for Hybrid SUV Cellarette Example

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities]

Source Target
 PowerControlUnit InternalCombu

stionEngine
Electrical
PowerContr
oller

ElectricalMo
torGenerator

I1:ElectricC
urrent

A1:ProportionPower allocate
A2:ProvideGasPower allocate
A3:ControlElectricPo
wer

 allocate

A4:ProvideElectriPow
er

 allocate

driveCurrent allocate

132 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 133

16 Requirements

16.1 Overview
A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function that
a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to represent
text based requirements and relate them to other modeling elements. The requirements diagram described in this chapter can
depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other diagrams to
show its relationship to other modeling elements. The requirements modeling constructs are intended to provide a bridge
between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as well as
to other model elements. These include relationships for defining a requirements hierarchy, deriving requirements, satisfying
requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its containing
child requirements. A composite requirement may state that the system shall do A and B and C, which can be decomposed into
the child requirements that the system shall do A, the system shall do B, and the system shall do C. An entire specification can
be decomposed into children requirements, which can be further decomposed into their children to define the requirements
hierarchy.

There is a real need for requirement re-use across product families and projects. Typical scenarios are regulatory, statutory or
contractual requirements that are applicable across products and/or projects and requirements that are re-used across product
families (versions/variants). In these cases, one would like to be able to reference a requirement, or requirement set in multiple
contexts with updates to the original requirements propagated to the re-used requirement(s).

The use of namespace containment to specify requirements hierarchies precludes re-using requirements in different contexts
since a given model element can only exist in one namespace. Since the concept of requirements reuse is very important in
many applications, SysML introduces the concept of a slave requirement. A slave requirement is a requirement whose text
property is a read-only copy of the text property of a master requirement. The text property of the slave requirement is con-
strained to be the same as the text property of the related master requirement. The master/slave relationship is indicated by the
use of the copy relationship

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves analysis
to determine the multiple derived requirements that support a source requirement. The derived requirements generally corre-
spond to requirements at the next level of the system hierarchy. A simple example may be a vehicle acceleration requirement
that is analyzed to derive requirements for engine power, vehicle weight and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system mod-
eler specifies the system design elements that are intended to satisfy the requirement. In the example above, the engine design
satisfies the engine power requirement.

The verify relationship defines how a test case verifies a requirement. In SysML, a test case is intended to be used as a general
mechanism to represent any of the standard verification methods for inspection, analysis, demonstration or test. Additional
subclasses can be defined by the user if required to represent the different verification methods. A verdict property of a test
case can be used to represent the verification result. The SysML test case is defined consistent with the UML testing profile to
facilitate integration between the two profiles.
134 SysML Specification v1.0 Draft

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text based functional requirement.
Alternatively, it may be used to show how a text based requirement refines a model element. In this case, some elaborated text
could be used to refine a less fine grained model element.

A generic trace requirement relationship provides a general purpose relationship between a requirement and any other model
element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it is recommended that
the trace relationship not be used in conjunction with the other requirements relationships described above.

The rationale construct that is defined in Chapter 7, “Model Elements” is quite useful in support of requirements. It enables the
modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a rationale can be
attached to a satisfy relationship that refers to an analysis report or trade study that provides the supporting rationale for why
the particular design satisfies the requirement. Similarly, this can be used with the other relationships such as the derive
relationship. It also provides an alternative mechanism to capture the verify relationship by attaching a rationale to a satisfy
relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For exam-
ple, a modeler may want to define requirements categories to represent operational, functional, interface, performance, physi-
cal, storage, activation/deactivation, design constraints, and other specialized requirements such as reliability and
maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add constraints that
restrict the types of model elements that may be assigned to satisfy the requirement. For example, a functional requirement
may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state machine, or interaction. Some
potential Requirement subclasses are defined in the non-normative extensions Appendix C.
SysML Specification v1.0 Draft 135

16.2 Diagram elements

16.2.1 Requirements Diagrams

SysML::Requirements::Re
quirement,
SysML::ModelElements::P
ackage

SysML::Requirements::Re
quirement

TestCase SysML::Requirements::Tes
tCase

Table 16-1. Graphical nodes included in Requirement diagrams

NODE NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE

Requirement
Diagram

Requirement

req ReqDiagram

«requirement»
Requirement name

text=”The system shall do”
Id=”62j32.”

«testCase»
TestCaseName
136 SysML Specification v1.0 Draft

Table 16-2. Graphical paths included in Requirement diagrams

PATH TYPE CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE

Requirement
containment
relationship

UML4SysML::NestedClassif
ier

CopyDependenc
y

SysML::Requirments::Copy

Master
«requirement»Master

«requirement»
Slave

MasterCallout SysML::Requirments::Copy

DeriveDependency SysML::Requirments::Deriv
eReqt

DeriveCallout

Derived
«requirement» ReqB

DerivedFrom
«requirement» ReqA

«requirement»
ReqB

«requirement»
ReqA

SysML::Requirments::Deriv
eReqt

SatisfyDependen
cy

SysML::Requirements::Satis
fy

«requirement»
Parent

<<requirement>>
Child1

<<requirement>>
Child2

«requirement»
Slave

«requirement»
Master«copy»

« re q u ire m e n t»
C lie n t

« re q u ire m e n t»
S u p p l ie r< < d e r iv e R e q t> >

<<satisfy>> «requirement»
SupplierNamedElement
SysML Specification v1.0 Draft 137

Satisfies
«requirement» ReqANamedElement

SatisfiedBy
NamedElement

<<requirement>>
ReqA

SatisfyCallout SysML::Requirements::Satis
fy

VerifyDependency SysML::Requirements::Verif
y

VerifyCallout

Verifies
«requirement» ReqA

«testcase»
TestCaseName

VerifiedBy
«testcase» TestCaseName

«requirement»
ReqA

SysML::Requirements::Verif
y

RefineDependency UML4SysML::Refine

RefineCallout

Refines
 «requirement» ReqANamedElement

RefinedBy
NamedElement

<<requirement>>
ReqA

UML4SysML::Refine

Table 16-2. Graphical paths included in Requirement diagrams

PATH TYPE CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE

<<verify>>«testcase»
Client

«requirement»
Supplier

«refine» «requirement»
ClientNamedElement
138 SysML Specification v1.0 Draft

16.3 UML extensions

16.3.1 Diagram extensions

16.3.1.1 Requirement Diagram

The Requirements Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satsify, verify, refine, copy and trace can be shown on a requirement diagram. The
callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype properties
compartment (e.g. id and text) can be elided.

16.3.1.3 Requirement property callout format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in Table 16-
2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on other diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The compartment
and callout notation described in 16.3.1.2 and 16.3.1.3 can be used. The callouts represents the requirement that is attached to
another model element such as a design element.

TraceDependency UML4SysML::Trace

TracedFrom
«requirement» ReqANamedElement

TracedTo
NamedElement

«requirement»
ReqA

TraceCallout UML4SysML::Trace

Table 16-2. Graphical paths included in Requirement diagrams

PATH TYPE CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE

«trace»«requirement»
Client

«requirement»
Supplier
SysML Specification v1.0 Draft 139

16.3.1.5 Requirements table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

• Requirements with their properties in columns

• A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace)

• A column that includes the model elements that satisfy the requirement

• A column that represents the rationale for any of the above relationships, including reference to analysis reports for trace
rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to the
table used for allocations (Section 15.4.3 (“Tabular Representation”)). The table should include the source and target elements
names (and optionally kinds) and the requirement dependency kind..

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
140 SysML Specification v1.0 Draft

16.3.2 Steretoypes

Package Requirements

Figure 16-1. Abstract Syntax for Requirements Stereotypes.

«stereotype »
UML4SysML::Trace «metaclass»

UML4SysML::Realization

«stereotype»
TestCase

«metaclass»
UML4SysML::Operation

«metaclass»
UML4SysML::Behavior

«metaclass»
UML4SysML::Class

«stereotype»
Requirement

Text: String
Id: String
/Derived: Requirement[*]
/DerivedFrom: Requirement[*]
/SatisfiedBy: NamedElement[*]
/RefinedBy: NamedElement[*]
/TracedTo: NamedElement[*]
/VerifiedBy: TestCase[*]
/Master: Requirement

«enumeration»
VerdictKind

pass
fail
inconclusive
error

«stereotype »
DeriveReqt

«stereotype »
Verify «stereotype »

Satisfy
«stereotype »

Copy
SysML Specification v1.0 Draft 141

Figure 16-2. Abstract Syntax for Requirements Stereotypes (cont)

16.3.2.1 Copy (from Requirements)

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text of the
client requirement is a read-only copy of the text of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements for the
purpose of requirements re-use in different contexts. When a Copy dependency exists between two requirements, the require-
ment text of the client requirement is a read-only copy of the requirement text of the requirement at the supplier end of the
dependency.

Constraints
[1] A Copy dependency may only be created between two classes that have the "requirement" stereotype, or a sub-type of the

"requirement" stereotype applied.

[2] If the supplier requirement has sub-requirements, copies of the sub-requirements are made recursively in the context of
the client requirement and Copy dependencies are created between each sub-requirement and the associated copy.

[3] The text property of the client requirement is constrained to be a read only copy of the text property of the supplier
requirement.

[4] Constraint [3] is applied recursively to all sub-requirements.

16.3.2.2 DeriveReqt (from Requirements)

Description

A dependency relationship between two requirements in which a client requirement can be derived from the supplier require-
ment. For example, a system requirement may be derived from a business need, or lower level requirements may be derived
from a system requirement. As with other dependencies, the arrow direction points from the derived (client) requirement to the
(supplier) requirement from which it is derived.

Constraints
[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

«stereotype »
RequirementRelated

/Verif ies: Requirement[*]
/TracedFrom: Requirement[*]
/Satsf ies: Requirement[*]
/Refines: Requirement[*]

«metaclass»
UML4SysML::NamedElement
142 SysML Specification v1.0 Draft

[2] The client must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.3.2.3 Requirement (from Requirements)

Description

A requirement specifies a capability or condition that must (or should) be satisfied.. A requirement may specify a function that
a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a contract
between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound requirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subrequirements can be accessed through the nestedClassifier property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested requirements, a functionality inherited from UML.

Attributes

• text: String

The textual representation or a reference to the textual representation of the requirement.

• id: String

The unique id of the requirement.

• /satisfiedBy: NamedElement[*]

Derived from all elements that are the client of a <<satisfy>> relationship for which this
requirement is a supplier.

• /verifiedBy: NamedElement[*]

Derived from all elements that are the client of a <<verify>> relationship for which this
requirement is a supplier.

• /tracedTo: NamedElement[*]

Derived from all elements that are the client of a <<trace>> relationship for which this
requirement is a supplier.

• /derived: Requirement[0..1]

Derived from all requirements that are the client of a <<deriveReqt>> relationship for
which this requirement is a supplier.

• /derivedFrom: Requirement[*]

Derived from all requirements that are the supplier of a <<deriveReqt>> relationship for
which this requirement is a client.

• /refinedBy: NamedElement[*]
SysML Specification v1.0 Draft 143

Derived from all elements that are the client of a <<refine>> relationship for which this
requirement is a supplier.

• /master: Requirement[0..1

This is a derived property that lists the master requirement for this slave requirement.
The master attribute is derived from the supplier of the Copy dependency that has this
requirement as the slave.

Constraints
[1] The property isAbstract must be set to true.

[2] The property ownedOperation must be empty.

[3] The property ownedAttribute must be empty.

[4] Classes stereotyped by «requirement» may not participate in associations.

[5] Classes stereotyped by «requirement» may not participate in generalizations.

[6] A nested classifier of a class stereotyped by «requirement» must also be stereotyped by «requirement».

16.3.2.4 RequirementRelated (from Requirements)

Description

This stereotype is used to add properties to those elements that are related to requirements via the various dependencies
described in Figure 16-1 . The property values are shown using call-out notation (i.e. notes) as shown in the diagram element
table.

Attributes

• \verifies: Requirement[*]

Derived from all requirements that are the supplier of a <<verify>> relationship for
which this element is a client.

• \satisfies: Requirement[*]

Derived from all requirements that are the supplier of a <<satisfy>> relationship for
which this element is a client

• \refines: Requirement[*]

Derived from all requirements that are the supplier of a <<refine>> relationship for
which this element is a client

• \tracedFrom: Requirement[*]

Derived from all requirements that are the supplier of a <<trace>> relationship for which
this element is a client

16.3.2.5 TestCase (from Requirements)

Description

 A method for verifying a requirement is satisfied.
144 SysML Specification v1.0 Draft

Constraints

[1] The type of return parameter of the stereotyped model element must be VerdictKind. (note this is consistent with the UML
Testing Profile).

16.3.2.6 Satisfy (from Requirements)

Description

A dependency relationship between a requirement and a model element that fulfills the requirement. As with other dependen-
cies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement that is satisfied.

Constraints
[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.3.2.7 Verify (from Requirements)

Description

A relationship between a requirement and a test case that can determine whether a system fulfills the requirement. As with
other dependencies, the arrow direction points from the (client) test case to the (supplier) requirement.

Constraints
[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes

[2] The client must be an element stereotyped by «testCase» or one of the «testCase» subtypes.

16.4 Usage examples
All the examples in this chapter are based on a set of publicly available (on-line) requirement specification from the National
Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the models are
shown in Figure 16-3. The name and ID of these requirements are referred to in the SysML usage examples that follow. See
NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement decomposition and traceability

The diagram in Figure 16-3 shows an example of a compound requirement decomposed into multiple subrequirements.
SysML Specification v1.0 Draft 145

Figure 16-3. Requirements Derivation

16.4.2 Requirements and design elements

The diagram in Figure 16-4 shows derived requirements and refers to the design elements that satisfy them. The rational is also
shown as a basis for the design solution.

req Safety test

«requirement»
ASTM R1337-90 «requirement»

Pavement friction

«requirement»
Adhesion utilization

«requirement»
Vehicle conditions

«requirement»
Test and procedure conditions<<deriveReqt>>

<<deriveReqt>>

Text = “..”
ID = “S7.4”

Text = “..”
ID = “S7.4.2”

Text = “The road test
surface produces a
peak friction coefficient
(PFC) of 0.9 when
measured using
an American Society for
Testing and Materials
(ASTM) E1136 standard
reference test tire,
in accordance with
ASTM Method E
1337–90, ”
ID = “S6.2.1”

Text = “(a) IBT: =65 °C (149 °F),
=100 °C (212 °F).
(b) Test surface: PFC of at least 0.9.”
ID=”S7.4.3"

Text = “This test method
covers the measurement
of peak braking coefficient
of paved surfaces using
a standard reference test
tire (SRTT) as described
in Specification E1136 that
represents current
technology passenger car
radial ties.”
ID = “A. 24241”
146 SysML Specification v1.0 Draft

.

Figure 16-4. Links between requirements and design.

req MasterCylinderSafety

«requirement»
Master Cylinder Efficacy

«requirement»
LossOfFluid

«requirement»
Reservoir

<<block>>
BrakeSystem

<<satisfy>>

Decelerate Car

<<refine>>

«rationale»
body = “This design of the brake
assembly satisfies the federal safety
requirements.”

Text =”Prevent complete loss of fluid”
ID = “S5.4.1a”

Text = "Separate reservoir compartment”
ID = “S5.4.1b”

Text =”A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”
ID = “S5.4.1”

«rationale»
body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

<<deriveReqt>> <<deriveReqt>>

f: FrontBrake
r: Rear Brake
l1: BrakeLine
l2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

SatisfiedBy
BrakeSystem::l1
BrakeSystem::l2

SatisfiedBy
BrakeSystem::m
SysML Specification v1.0 Draft 147

ibd BrakeSystem

m: MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake

Safisfies
«requirement»
MasterCylinderSafety::LossOf Fluid

Satisfies
«requirement» MasterCylinderSafety::Reservoir

Figure 16-5. Requirement satisfaction in an internal block diagram.

16.4.3 Requirements Reuse

Figure 16-6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements hier-
archies. The master tag provides a textual reference to the reused requirement.

Figure 16-6. Use of the copy dependency to facilitate reuse

req Safety Reuse

«requirement»
NHTSASafetyRequirements

«requirement»
Hybrid Engine A type

«requirement»
Hybrid Engine B type

master=NHTSASafetyR
equirements

«requirement»
Shared Safety
Requirements

master=NHTSASafetyR
equirement

«requirement»
Shared Safety
Requirements

«requirement»
Safety Requirements

for type A

«requirement»
Safety Requirements

for type B

<<copy>> <<copy>>

Text = “…"
ID = “157.135”
148 SysML Specification v1.0 Draft

16.4.4 Verification procedure (Test Case)

The example diagram in Figure 16-7 shows how a complex test case, in this example a performance test for a passenger-car
brake system, given as a set of steps in text form (see part of the procedure text at the upper right-handside corner of the fig-
ure), can be described using another type of diagram representation. The performance test, modeled as a Test Case is linked to
a requirement using the «verify»» relationship. Note that the modeling of test case can also be addressed using the UML Test-
ing Profile, available from the Object Management Group.

Figure 16-7. Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram.

req BurnishSafety

«requirement»
NHTSASafetyRequirements

<<deriveReqt>>

«requirement»
RoadTestSequence

«requirement»
Burnish

Text =”..”
ID = “157.135”

Text =”..”
ID = “S9.1”

RefinedBy
<<testCase>>BurnishTest

Text =”(a) IBT: = 100 °C (212
°F), (b) Test speed: 80 km/h
(49.7 mph), (c) Pedal force:
Adjust as necessary to
maintain specified constant
deceleration rate"
ID = “S7.1”
SysML Specification v1.0 Draft 149

Figure 16-8. Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram.

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate

Maintain

Brake

[IBT=100 or
d >= 2 km]

sm <<testCase>> BurnishTest

Refines
<<requirement>>Burnish
150 SysML Specification v1.0 Draft

17 Profiles & Model Libraries

17.1 Overview
The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them for
different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles mechanism is
consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to represent stereotype
properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by extend-
ing a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a requirement
could be extended to create a «functionalRequirement» as described in Appendix C. This would allow specific properties and
constraints to be created for a functional requirement. For example, a functional requirement may be constrained such that it
must be satisfied by an operation or behavior. When the stereotype is applied to a requirement, then the requirement would
include the notation «functionalRequirement» in addition to the name of the particular functional requirement. Extending the
metaclass requirement is different from creating a subclass of requirement called functionalRequirement.

 In addition to extending the language, profiles can also be used to restrict the language by identifying the subset of the base
metamodel that is required for the specific domain. For example, SysML does not require all of the UML metamodel. Chapter
4, “Language Architecture” describes the part of UML that is included in SysML and the part that is excluded.

The Usage Examples section provides guidance both on how to use existing profiles and how to create new profiles. In addi-
tion, the examples provide guidance on the use of model libraries. A model library is a library of model elements including
class and other type definitions that are considered reusable for a given domain. This guidelines can be applied to further cus-
tomize SysML for domain specific applications such as automotive, military, or space systems.
SysML Specification v1.0 Draft 151

17.2 Diagram elements

17.2.1 Profile Definition in Class Diagram

Stereotype UML4SysML::Stereotype

Metaclass

«metaclass»
MetaClassName

UML4SysML::Class

Profile UML4SysML::Profile

Model Library UML::StandardProfileL1

Table 17-1. Graphical nodes used in profile definition

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

«stereotype»
StereotypeName

«profile»
ProfileName

«modelLibrary»
LibraryName
152 SysML Specification v1.0 Draft

Note – In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[True|False].

Table 17-2. Graphical paths used in profile definition

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

Extension UML4SysML::Extension

Generalization UML4SysML::Generalization

ProfileApplication UML4SysML::ProfileApplication

MetamodelReference UML4SysML::PackageImport;
UML4SysML::ElementImport

Unidirectional Associ-
ation

UML4SysML::Association

«metaclass»
MetaClassName

«stereotype»
StereotypeName

{required}

«stereotype»
StereotypeName

«stereotype»
StereotypeName

«apply»{strict}

«reference»

propertyName
SysML Specification v1.0 Draft 153

17.2.1.1 Extension

In Figure 17-1., a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

«stereotype»
Clock

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

«metaclass»
Class

Figure 17-1. Defining a stereotype
154 SysML Specification v1.0 Draft

17.2.2 Stereotypes Used On Diagrams

Table 17-3. Notations for Stereotype Use

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

StereotypeNote UML4SysML::Element

StereotypeNote UML4SysML::Element

StereotypeInNode UML4SysML::Element

StereotypeInCompart-
mentElement

UML4SysML::Element

StereotypeOnEdge UML4SysML::Element

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
NamePathName

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

«stereotypeName»
{PropertyName=ValueString;

BooleanPropertyName}
NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}
ElementName

NodeName

Element
Name

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName
SysML Specification v1.0 Draft 155

17.2.2.1 StereotypeInNode

Figure 17-2. shows how the stereotype Clock, as defined in Figure 17-1., is applied to a class called AlarmClock.

Figure 17-2. Using a stereotype

 Start()

«clock»
{POSIXCompliant}

AlarmClock

StereotypeCompart-
ment

UML4SysML::Element

Table 17-3. Notations for Stereotype Use

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE

«stereotypeName»
 PropertyName=ValueString
 MultiPropertyName=ValueString,

ValueString
 BooleanPropertyName

«stereotypeName»
NodeName
156 SysML Specification v1.0 Draft

17.2.2.2 StereotypeInComment

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17-3., the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Figure 17-3. Using stereotypes and showing values

17.2.2.3 StereotypeInCompartment

«clock,creator»
StopWatch

Click()

«clock»
OSVersion=2.5
startOperation=Click
«creator»
name="Jones"
date="04-04-04"

Figure 17-4. Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note that
multiple stereotypes can be shown using multiple compartments.

17.3 UML extensions

None

Finally, the compartment form is shown..

 Start()

AlarmClock

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True
SysML Specification v1.0 Draft 157

17.4 Usage examples

17.4.1 Defining a Profile

Figure 17-5. Definition of a profile

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can build
upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a reference to a
metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses from UML that the
SysML profile references.

pkg SysML MetaModel

«profile»
SE Toolkit

«import»

«profile»
SysML

«metamodel»
UML4SysML «reference»
158 SysML Specification v1.0 Draft

17.4.2 Adding Stereotypes to a Profile
bdd SEToolkit

«metaclass»
NamedElement

«stereotype»
Block

«stereotype»
System

«stereotype»
Context

«stereotype»
Requirement

«stereotype»
Functional

Requirement

«metaclass»
Behavior

function

«stereotype»
ConfigurationItem

author: String
version: String
lastChanged: Date

«metaclass»
DirectedRelationship

Figure 17-6. Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationItem, is called
an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (called base) class or classes, in this
case NamedElement and DirectedRelationship from UML and adds new properties that every NamedElement or Directe-
dRelationship stereotyped by configurationItem must have. NamedElement and DirectedRelationship are abstract classes in
UML so it is their subclasses that can have the stereotype applied. The second mechanism is demonstrated by the system and
context stereotypes which are sub-stereotypes of an existing SysML stereotype, Block; sub-stereotypes inherit any properties
of their super-stereotype (in this case none) and also extend the same base class or classes. Note that TypedElements whose
type is extended by «system» do not display the «system» stereotype; this also applies to InstanceSpecifications. Any nota-
tional conventions of this have to be explicitly specified in a diagram extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).
SysML Specification v1.0 Draft 159

17.4.3 Defining a Model Library that uses a Profile

pkg [profile] SEToolkit

«modelLibrary»
SI Value Types

«valueType»
unit = KilogramPerCubicMeter

SIDensity

«valueType»
unit= CubicMeter

SIVolume

«valueType»
Real

«modelLibrary»
Physical

«valueType»
unit = Meter

SILength

«import»
density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

«modelLibrary»
SI Definitions

«import»

Figure 17-7. Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from them in its
own definition. It defines value types having specific units which can be used when property values are measured in SI units.
SI Definitions is a separately published model library, containing definitions of standard SI units and dimensions such as
shown in Appendix C Section C.4. A further model library, Physical, imports SI Value Types so it can define properties that
have those types. One model element, PhysicalObject, is shown, a block that can be used as a supertype for an physical object.

17.4.4 Guidance on whether to use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element. Stereotyping a
model element allows the model element to be identified with the «guillemet» notation. In addition, the stereotyped model
element can have stereotype properties, and the stereotype can specify constraints on the model element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason is to
be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from properties of
classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not have a unique value
for each instance of the class, although a class thus stereotyped can have a separate value for the property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where a ste-
reotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a reference to
another modeling element. In another example, SE Toolkit::configurationItem defined above, which applies to classes
amongst other concepts, is a stereotype because its properties characterize the author, version and last changed date of the
modeling element themselves. One test of this is whether the new properties are inheritable; in this case author, version and
last-changed date are not, because it is only those classes under configuration control that need the properties. To summarize,
in the following circumstances a stereotype is appropriate:
160 SysML Specification v1.0 Draft

• Where the model concept to be extended is not a class or class-based;

• Where the extensions include properties that reference other model elements;

• Where the extensions include properties that describe modeling data, not system data;

An example where a class is more appropriate is PhysicalObject from Figure 17-7. - in this case, the properties density and
volume, and the component numbers, have distinct values for each system element described by the class, and are inherited by
every subclass of PhysicalObject.

17.4.5 Using a Profile

Figure 17-8. A model with applied profile and imported model library

The HSUVModel is a system engineering model that needs to use stereotypes from SysML. It therefore needs to have the
SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Definitions model library.
Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can be used to
type properties.Both the SI Definitions model library and HSUVModel have applied the profile strictly which means that only
those metaclasses directly referenced by SysML can be used in those models.

17.4.6 Using a Stereotype

req HSUVRequirements

«functionalRequirement»
«configurationItem»

StoppingDistance
«functionalRequirement»

text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationItem»
author="Jones"
version="1.2"
date="04-04-04"

Figure 17-9. Using two stereotypes on a model element

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
SysML Specification v1.0 Draft 161

StoppingDistance has two stereotypes applied, functionalRequirement, that identifies it as a requirement that is satisfied by a
function, and configurationItem, which allows it to have configuration management properties. The modeler has provided val-
ues for all the newly available properties; those for criticalRequirement are shown in a compartment in the node symbol for
StoppingDistance; those for configurationItem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd Physics

circumference: SILength

«block»
Shot

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

Figure 17-10. Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a specialization of
PhysicalObject from the Physical model library. It adds a new property, circumference, of type SILength to measure the cir-
cumference of the (spherical) shot.
162 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 163

164 SysML Specification v1.0 Draft

Part V - Appendices
This section contains the following non-normative appendices for this specification.:

• A-Diagrams

• B-Sample Problem

• C-Non-normative Extensions

• D-Model Interchange

• E-Requirements Traceability

• F-Terms and Definitions

• G-BNF Diagram Syntax Definitions

Appendix A.Diagrams

A.1 Overview

SysML
Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2

SysML diagrams contains diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A-1. SysML reuses many of the major diagram types of UML. In some
cases, the UML diagrams are strictly re-used such as use case, sequence, state machine, and package diagram, whereas in
other cases they are modified so that they are consistent with SysML extensions. For example, the block definition
diagram and internal block diagram are similar to the UML class diagram and composite structure diagram respectively,
but include extensions as described in Chapter 8, “Blocks”. Activity diagrams have also been modified via the activity
extensions. Tabular representations, such as the allocation table, are used in SysML but are not considered part of the
diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, and deployment diagram. This is consistent with the approach that SysML represents
a subset of UML. In the case of deployment diagrams, the deployment of software to hardware can be represented in the
SysML internal block diagram. In the case of interaction overview and communication diagrams, it was felt that the
SysML behavior diagrams provided adequate coverage for representing behavior without the need to include these
diagram types. Two new diagram types have been added to SysML including the requirement diagram and the
parametric diagram.

Figure A-1. SysML Diagram Taxonomy

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text
based requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.
SysML Specification v1.0 Draft 165

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of
diagram elements that can appear on a particular diagram kind be constrained and well specified. The diagram elements
tables in each chapter describe what symbols can appear in the diagram, but do not specify the different combinations of
symbols that can be used. However, the BNF Diagram Syntax Definitions referred to in the Language Formalism section,
is intended to provide the formalism to specify this precisely. At this time, the SST has only implemented the BNF in the
three chapters referred to in Appendix G

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to represent
a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include a wide array of packageable elements. The callout notation
provides a mechanism for representing relationships between model elements that appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the allocation of an activity to a block on a
block definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are
other mechanisms for representing this including the compartment notation that is generally described in Chapter 17,
“Profiles & Model Libraries”. Chapter 16, “Requirements”and Chapter 15, “Allocations” provide specific guidance on
how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the ten SysML diagrams kinds are
described in the SysML chapters as indicated below.

• activity diagram - Activities chapter

• block definition diagram - Blocks chapter, Ports and Flows chapter

• internal block diagram - Blocks chapter, Ports and Flows chapter

• package diagram - Model Elements chapter

• parametric diagram - Constraint Blocks chapter

• requirements diagram - Requirements chapter

• state machine diagram - State Machines chapter

• sequence diagram - Interactions chapter

• use case diagram - Use Cases chapter

• Other (allocation tables) - Allocation Chapter
166 SysML Specification v1.0 Draft

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description see Figure A-2.

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame can
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified name
for the model element within the frame must be provided if it is not contained within default namespace associated with
the frame. The top level “Model” name is the highest level namespace for the model elements. The following are the
designated model elements associated with the different diagram kinds.

• activity diagram - activity

• block definition diagram - block, package, or constraint block

• internal block diagram - block or constraint block

• package diagram - package or model

• parametric diagram - block or constraint block

• requirement diagram - package or requirement

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package

The frame may include border elements associated with the designated model element, like ports for blocks, entry/exit
points on statemachines, gates on interactions, parameters for activities, and constraint parameters for constraint blocks.
The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary
graphical symbols that are supported, e.g. a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

Figure A-2. Diagram Frame

C onten ts

<<diagram U sage>>
d iagram K ind [m ode lE lem entType] m ode lE lem entN am e [d iagram N am e]

D iagram D escrip tion

V ers ion :
D escrip tion :
C om ple tion s ta tus:
R efe rence :
(U se r de fined fie lds)

H eader
SysML Specification v1.0 Draft 167

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are in
brackets. The heading name should always contain the diagram kind, and optionally include the additional information to
remove ambiguity. Ambiguity can occur if there is more than one model element type for a given diagram kind, or where
there is more than one diagram for the same model element.

SysML diagrams kinds should have the following names or (abbreviations) as part of the heading:

• activity diagram (act)

• block definition diagram (bdd)

• internal block diagram (ibd)

• package diagram (pkg)

• parametric diagram (par)

• requirement diagram (req)

• sequence diagram (sd)

• state machine diagram (stm)

• use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A-2 that
includes version, description, references to related information, a completeness field that describes the extent to which the
modeler asserts the diagram is complete, and other user defined fields. In addition, the diagram description may identify
the view associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns.
(refer to Model Elements chapter). The diagram description can be made more explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such
as a context diagram as a usage of an block definition diagram, internal block diagram, or use case diagram. The diagram
usage can be identified in the header above the diagramKind as <<diagramUsage>>. An example of a diagram usage
extension is shown in Figure A-3 . For this example, the header in Figure A-2 would replace diagram kind with “uc” and
<<diagramUsage>> with <<ContextDiagram>>. Applying a stereotype approach to specify a diagram usage can allow a
168 SysML Specification v1.0 Draft

tool implementation to check that the diagram constraints defined by the stereotype are satisfied. [Note: The use of
stereotype for diagram usage is not formally part of UML since a diagram is not currently a model element that can be
extended. However, the analogy was considered to be of value and adapted for this use.]

Some typical diagrams usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram

A.2 Guidelines
The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean decomposition in a
formal sense, but rather a reference to a more elaborated diagram of the model element that includes the rake symbol. The
rake on a model element may include the following:

• activity diagram - call behavior actions that can refer to another activity diagram

• internal block diagram - parts that can refer to another internal block diagram

Figure A-3. Diagram Usages

diagramKind

<<stereotype>>
diagramUsage

UseCaseDiagram

<<stereotype>>
ContextDiagram
SysML Specification v1.0 Draft 169

• package diagram - package that can refer to another package diagrams

• parametric diagram - constraint property that can refer to another parametric diagram

• requirement diagram - requirement that can refer to another requirement diagram

• sequence diagram - interaction fragments that can refer to another sequence diagram

• state machine diagram - state that can refer to another state machine diagram

• use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions)

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the label to its
symbol. This applies to ports, item flows, pins, etc.

• Page connectors - Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on dia-
grams, but should be used sparingly since they are equivalent to go-to’s in programming languages, and can lead to “spa-
ghetti diagrams”. Whenever practical elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown at both ends of a
line break and means that the two line end connect at the circle.

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a geo-
graphic map to provide a spatial context for the symbols.

• SysML provides the capability to represent a document using the UML 2.0 standard stereotype <<document>> applied to
the artifact model element. Properties of the artifact can capture information about the document. Use a <<trace>>
abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

• SysML diagrams including the enhancements described in this section is intended to conform to the Diagram Interchange
Standard to facilitate exchange of diagram and layout information. A more formal BNF has been introduced in selected
chapters to facilitate diagram interchange, which is referred to in the Language Formalism chapter.

• Tabular representation is an optional alternative notation that can be used in conjunction with the graphical symbols as
long as the information is consistent with the underlying metamodel. Tabular representations are often used in systems
engineering to represent detailed information such as interface definitions, requirements traceability, and allocation rela-
tionships between various types of model elements. They also can be convenient mechanisms to represent property values
for selected properties, and basic relationships such as function and inputs/outputs in N2 charts. The UML superstructure
contains a tabular representation of a sequence diagram in an interaction matrix (refer to Superstructure Appendix with
interaction matrix). The implementations of tabular representations are defined by the tool implementations and are not
standardized in SysML at this time. However, tabular representations may be included in a frame with the heading desig-
nator <<table>> in bold.

• Graph and tree representations are also an optional alternative notation that can be used in conjunction with graphical
symbols as long as the information is consistent with the underlying metamodel. These representations can be used for
describing complex series of relationships. One example is the browser window in many tools that depicts a hierarchical
view of the model. The implementations of graphs and trees are defined by the tool implementations and are not standard-
ized in SysML at this time.
170 SysML Specification v1.0 Draft

Appendix B. Sample Problem

B.1 Purpose
The purpose of this appendix is to illustrate how SysML can support of the specification, analysis, and design of a system
using some of the basic features of the language.

B.2 Scope
The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select simplified
fragments of the problem to illustrate how the diagrams can be applied, and also demonstrate some of the possible inter-
relationships among the model elements in the different diagrams. The sample problem does not highlight all of the features
of the language. The reader should refer to the individual chapters for more detailed features of the language. The diagrams
selected for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of
applying a typical systems engineering process, but this will vary depending on the specific process and methodology that is
used.

B.3 Problem Summary
The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a Hybrid gas/
electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently conflicting requirements,
viz. desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road capability. Technical accuracy and
the feasibility of the actual solution proposed were not high priorities. This sample problem focuses on design decisions
surrounding the power subsystem of the hybrid SUV; the requirements, performance analyses, structure, and behavior.

This appendix is structured to show each diagram in the context of how it might be used on such a example problem. The first
section shows SysML diagrams as they might be used to establish the system context; establishing system boundaries, and top
level use cases. The next section is provided to show how SysML diagrams can be used to analyze top level system behavior,
using sequence diagrams and state machine diagrams. The following section focuses on use of SysML diagrams for capturing
and deriving requirements, using diagrams and tables. A section is provided to illustrate how SysML is used to depict system
structure, including block hierarchy and part relationships. The relationship of various system parameters, performance
constraints, analyses, and timing diagrams are illustrated in the next section. A section is then dedicated to illustrating
definition and depiction of interfaces and flows in a structural context. The final section focuses on detailed behavior
modeling, functional and flow allocation.

B.4 Diagrams

B.4.1 Package Overview (Structure of the Sample Model)

B.4.1.1 Package Diagram - applying the SysML Profile
As shown in Figure B-1,the HSUVModel is a package that represents the user model. The SysML Profile must be applied to
this package in order to include stereotypes from the profile. The HSUVModel may also require model libraries, such as the SI
Units Types model library. The model libraries must be imported into the user model as indicated.
SysML Specification v1.0 Draft 171

Figure B-1. Establishing the User Model by Importing and Applying SysML Profile & Model Library. (Package Diagram)

Figure B-2 details the specification of units and valueTypes employed in this sample problem.

Figure B-2. Defining valueTypes and units to be Used in the Sample Problem.

B.4.1.2 Package Diagram - showing package structure of the model
The package diagram Figure B-3 shows the structure of the model used to evaluate the sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram. The
relationship between the views (OperationalView and PerformanceView) and the rest of the user model are explicitly
expressed using the «access» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}

pkg ModelingDomain [Values and Units]

«modelLibrary»
Automotive Value Types

Automotive Units

«modelLibrary»
SI Definitions

«import»

«unit»
{dimension=Power}

hp

«unit»
{dimension=Temperature}

°F

«unit»
{dimension=Acceleration}

g

«unit»
{dimension=Mass}

lb

«unit»
{dimension=Pressure}

psi

«unit»
{dimension=Time}

sec

«unit»
{dimension=Velocity}

mph

«unit»
{dimension=Distance}

ft

«unit»
{dimension=Volume}

ft^3

«valueType»
unit = g

Accel

«valueType»
unit = hp

Horsepwr

«valueType»
Real

«valueType»
unit = lb

Weight

«valueType»
unit = mph

Vel

«valueType»
unit = sec

Time

«valueType»
unit = ft

Dist

«valueType»
unit = psi

Press

«valueType»
unit = °F

Temp

«valueType»
unit = ft^3

Vol
172 SysML Specification v1.0 Draft

Figure B-3. Establishing Structure of the User Model using Packages and Views. (Package Diagram)

B.4.2 Setting the Context (Boundaries and Use Cases)

B.4.2.1 Internal Block Diagram - Setting Context
The term “context diagram”, in Figure B-4, refers to a user defined usage of an internal block diagram, which depicts some of
the top level entities in the overall enterprise and their relationships. The diagram usage enables the modeler or methodologist
to specify a unique usage of a SysML diagram type using the extension mechanism described in the Diagram Appendix A. The
entities are conceptual in nature during the initial phase of development, but will be refined as part of the development process.
The «system» and «external» stereotypes are user defined, not specified in SysML, but help the modeler to identify the system
of interest relative to its environment. Each model element depicted may include a graphical icon to help convey its intended
meaning. The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although this is not
specifically captured in the semantics. Also, a background such as a map can be included to provide additional context. The
associations among the classes may represent abstract conceptual relationships among the entities, which would be refined in
subsequent diagrams. Note how the relationships in this diagram are also reflected in the Automotive Domain Model Block
Definition Diagram, Figure B-15.

pkg HSUVModel

HSUVViews

HSUV
RequirementsHSUVStructureHSUVBehavior

DeliverPower
Behavior

HSUVAnalysis

«view»
Performance

View

«viewpoint»
Performance

Viewpoint

«import»

«conform»

«block»
Automotive

Domain

«view»
OperationalView

«viewpoint»
Operational
Viewpoint

«conform»

«import»

«import»

HSUVUseCases

HSUVInterfaces
«requirement»
Performance

«import» Automotive
ValueTypes
SysML Specification v1.0 Draft 173

Figure B-4. Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block
Diagram) Completeness of Diagram Noted in Diagram Description.

B.4.2.2 Use Case Diagram - Top Level Use Cases
The use case diagram for “Drive Vehicle” in Figure B-5 depicts the drive vehicle usage of the vehicle system. The subject
(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the use
case.

«ContextDiagram»
ibd [block] AutomotiveDomain

«external»
drivingConditions:Environment

x1:

x4:

Maintainer:

x5:

«external»
road:Road

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and other
external interfaces.”

«external»
object:ExternalObject

«system»
HSUV:

HybridSUV

«external»
weather:Weatherx2:

Driver:

Passenger:

1..*

1..*

«external»
vehicleCargo:

Baggage

x3:
174 SysML Specification v1.0 Draft

Figure B-5. Establishing Top Level Use Cases for the Hybrid SUV. (Use Case Diagram)

B.4.2.3 Use Case Diagram - Operational Use Cases
Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases help flesh
out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and insurance of the
vehicle would be covered under a separate set of goal-oriented use cases.

uc HSUVUseCases [TopLevelUseCases]

HybridSUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
SysML Specification v1.0 Draft 175

Figure B-6. Establishing Operational Use Cases for “Drive the Vehicle”. (Use Case Diagram)

B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

B.4.3.1 Sequence Diagram - Drive Black Box
Figure B-7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case. This
diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox” for the
purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements, without
revealing any interior detail.

The conditions for each alternative in the alt controlSpeed section are expressed in OCL, and relate to the states of the

uc HSUVUseCases [Operational Use Cases]

HybridSUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
176 SysML Specification v1.0 Draft

HybridSUV block, as shown in Figure B-8..

Figure B-7. Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case. (Sequence Diagram)

B.4.3.2 State Machine Diagram - HSUV Operational States
Figure B-8 depicts the operational states of the HSUV block, via a State Machine named “HSUVOperationalStates”. Note that
this state machine was developed in conjunction with the DriveBlackBox interaction in Figure B-7. Also note that this state
machine refines the requirement “PowerSourceManagmeent”, which will be elaborated in the requirements section of this
sample problem. This diagram expresses only the nominal states. Exception states, like “acceleratorFailure”, are not expressed
on this diagram.
SysML Specification v1.0 Draft 177

Figure B-8. Finite State Machine Associated with “Drive the Vehicle”. (State Machine Diagram)

B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box
The Figure B-9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure B-10 below), which will
decompose the lifelines within the context of the HybridSUV block.

stm HSUVOperationalStates

Operate

Idle

Accellerating/
Cruising Braking

engageBrake

accelerate stopped

releaseBrake

shutOff

Off

start

keyOff

Refines
«requirement»
PowerSource
Management

Nominal
states only
178 SysML Specification v1.0 Draft

Figure B-9. Black Box Interaction for “StartVehicle”, referencing White Box Interaction. (Sequence Diagram)

The lifelines on Figure B-10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This now
begins to consider parts contained in the HybridSUV block.

Figure B-10. White Box Interaction for “StartVehicle”. (Sequence Diagram)
SysML Specification v1.0 Draft 179

B.4.4 Establishing Requirements (Requirements Diagrams and Tables)

B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure B-11
below, including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes. The
containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.

Figure B-11. Establishing HSUV Requirements Hierarchy (containment). (Requirements Diagram)

B.4.4.2 Requirement Diagram - Derived Requirements
Figure B-12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUVSpecification in a manner
that specifically relates them to the HSUV system. Various other model elements may be necessary to help develop a derived
requirement, and these model element may be related by a «refinedBy» relationship. Note how PowerSourceManagement is
“RefinedBy” the HSUVOperationalStates model (Figure B-8). Note also that rationale can be attached to the «deriveReqt»
relationship. In this case, rationale is provided by a referenced document “Hybrid Design Guidance”.

req [package] HSUVRequirements [HSUV Specification]

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Accelleration

Id = R1.2.1
text = The vehicle shall meet Ultra-Low
Emissions Vehicle standards.

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest
180 SysML Specification v1.0 Draft

Figure B-12. Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy. (Requirements
Diagram)

B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
Figure B-13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The
“refineReqt” relation, introduced in Figure B-12, shows how the Acceleration requirement is refined by a similarly named use
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the Acceleration
requirement.

req [package] HSUVRequirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt» «deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy
HSUVStructure::HSUV.
HSUVOperationalStates

«rationale»
Power delivery must happen by coordinated
control of gas and electric motors. See
“Hybrid Design Guidance”

«problem»
Power needed for acceleration, off-road
performance & cargo capacity conflicts
with fuel economy
SysML Specification v1.0 Draft 181

Figure B-13. Acceleration Requirement Relationships. (Requirements Diagram)

B.4.4.4 Table - Requirements Table
Figure B-14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in
tabular form. This is a more compact representation than the requirements diagrams shown previously.

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:
:Accelerate

«block»
PowerSubsystem

«refine»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»
182 SysML Specification v1.0 Draft

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

table [requirement] Performance [Tree of Performance Requirements]

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement

Figure B-14. Requirements Relationships Expressed in Tabular Format. (Table)

B.4.5 Breaking down the Pieces (Block Definition Diagrams, Internal Block Diagrams)

B.4.5.1 Block Definition Diagram - Automotive Domain
Figure B-15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and StartVehicleBlackBox (described in Section B.4.3) are depicted as owned by the AutomotiveDomain
block.
SysML Specification v1.0 Draft 183

Figure B-15. Defining the Automotive Domain (compare with Figure B-4). (Block Definition Diagram)

B.4.5.2 Block Definition Diagram - Hybrid SUV
Figure B-16 defines components of the HybridSUV block Note that the BrakePedal and WheelHubAssembly are used by, but
not contained in, the PowerSubsystem block.

Figure B-16. Defining Structure of the Hybrid SUV System. (Block Definition Diagram)

bdd [package] HSUVStructure [Automotive Domain Breakdown]

interactions
DriveBlackBox
StartVehicleBlackBox

«domain»
AutomotiveDomain

«system»
HybridSUV

«external»
Baggage

Driver Maintainer Passenger

«external»
Environment

«external»
Road

1..* road

drivingConditionsvehicleCargoHSUV

«external»
Weather

«external»
ExternalObject

1..* objectweather

bdd [block] AutomotiveDomain [HybridSUV Breakdown]

«system»
HybridSUV

PowerSubsystem

p clibbk

BrakePedal

bkp

ChassisSubsytemBrakeSubsystem InteriorSubsystem LightingSubsystemBodySubsystem

WheelHubAssembly

42

«rationale»
2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability
184 SysML Specification v1.0 Draft

B.4.5.3 Internal Block Diagram - Hybrid SUV
Figure B-17 shows how the top level model elements in the above diagram are connected together in the HybridSUV block.

Figure B-17. Internal Structure of Hybrid SUV. (Internal Block Diagram)

B.4.5.4 Block Definition Diagram - Power Subsystem
Figure B-18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the of
white diamond (composition) on FrontWheel and BrakePedal denotes the same “use-not-composition” kind of relationship
previously shown in Figure B-16.

ibd [block] HybridSUV

p:PowerSubsystem

c:chassisSubsytem br:BrakeSubsystem

i: InteriorSubsystem

l:LightingSubsystem

b:BodySubsystem

c-bk:

b-c:

b-i:

i-l:
b-l:

bk-l:

p-c:

p-bk:
SysML Specification v1.0 Draft 185

Figure B-18. Defining Structure of Power Subsystem (Block Definition Diagram)

B.4.5.5 Internal Block Diagram for the “Power Subsystem”
Figure B-19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
«connectors» between parts, «clientServerPorts», «flowPorts», «atomicFlowPorts», and «itemFlows». The dashed borders on
FrontWheel and BrakePedal denote the “use-not-composition” relationship depicted elsewhere in Figure B-16 and Figure B-

bdd [block] HSUV [PowerSubsystem Breakdown]

PowerSubsystem

ElectricMotor
Generator

FrontWheel

accelerator FuelTankAssembly Differential

Transmission

InternalCombustionEngine

FuelInjector

lfw
1

0..1

dif

trsm

emiceftacl

fi4

BatteryPack ElectricalPowerController

bp

PowerControlUnit

FuelPump

epcpcu

BrakePedal

0..1

bkp
1

fp

WheelHubAssembly

rfw
1

0..1
186 SysML Specification v1.0 Draft

18.

Figure B-19.

bdd [block] PowerSubsystem [ICE Interface Definitions]

getRPM():integer
getTemperature():Real
isKnockSensor():Boolean

«interface»
I_ICEData

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

«interface»
I_ICECmds

Internal Structure of the Power Subsystem. (Internal Block Diagram)

Figure B-20. Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram)

Figure B-20 provides definition of the interfaces applied to Standard Ports associated with connector c1 in Figure B-19.

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor
Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower
Controllerbp:BatteryPack

bp-epc:

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

4
fdist:bkp:BrakeSubsystem

.BrakePedal

<>

<>

<><>

4

fuelReturn:Fuel

<>

<>

<>

<>

g1:Torque t2
:T

or
qu

e

t1:Torque

ice

ctrl
I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3:

c2:

c1:

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<>
<>

<>

rightHalfShaft

<>
<>

<>

leftHalfShaft

ac
l-e

cu
:

bk
p-

ec
u:
SysML Specification v1.0 Draft 187

B.4.6 Defining Ports and Flows

B.4.6.1 Block Definition Diagram - ICE Interface
For purposes of example, the StandardPorts and related point-to-point connectors in Figure B-19 are being refined into a
common bus architecture. For this example, FlowPorts have been used to model the bus architecture. Figure B-21 is and
incomplete first step in the refinement of this bus architecture, as it begins to identify the flow specification for the
InternalCombustionEngine, the Transmission, and the ElectricalPowerController..

Figure B-21. Initially Defining Flow Specifications for the CAN Bus. (Block Definition Diagram)

B.4.6.2 Internal Block Diagram - CANbus
Figure B-22 continues the refinement of this Controller Area Network (CAN) bus architecture using FlowPorts. The explicit
structural allocation between the original connectors of Figure B-19 and this new bus architecture is shown in Figure B-36.

Figure B-22. Consolidating Interfaces into the CAN Bus. (Internal Block Diagram)

bdd CAN Bus FlowSpecifications

«flowProperties»
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«flowSpecification»
FS_ICE

«flowProperties»

«flowSpecification»
FS_TRSM

«flowProperties»

«flowSpecification»
FS_EPC

rpm:Integer
temperature:Real
knockSensor:Boolean

«signal»
ICEData

To be specified - what
is being exchanged
over the bus from\to
the transmission?

To be specified - what is being
exchanged over the bus from\to
the electronic power controller?

ibd [block] PowerSubsystem [CAN Bus description]

trsm:Transmission ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

:CAN_Bus

fp:FS_EPC fp:FS_TRSM fp:FS_ICE

epc:IFS_EPC etrsm:IFS_TRSM ice:IFS_ICE

<> <> <>

<> <> <>
188 SysML Specification v1.0 Draft

B.4.6.3 Block Definition Diagram - Fuel Flow Properties
The FlowPorts on the FuelTankAssembly and InternalCombustionEngine (as shown on Figure B-19) are defined in Figure B-
23 below.

Figure B-23. Elaborating Definition of Fuel Flow. (Block Definition Diagram)

B.4.6.4 Parametric Diagram - Fuel Flow
Figure B-24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure value properties.

Figure B-24. Defining Fuel Flow Constraints. (Parametric Diagram)

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition]

temperature:Temp
pressure:Press

Fuel

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

«flowSpecification»
FuelFlow

PowerSubsystem

«flowProperties»
 in fuelSupply:Fuel
 out fuelReturn:Fuel

FuelTankAssembly

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

InternalCombustionEngine

iceft

FuelTankFitting:FuelFlow

ICEFuelFitting:FuelFlow
<>

<>

par [Block]PowerSubsystem

constraints
{flowrate=press/(4*injectorDemand)}

fuelflow:FuelFlow

press:Real

injectorDemand:Real

ice.fr.fuel.FuelPressure::Real

ice.fi.FuelDemand:Real

flowrate:Real

ice.ft.FuelFlowRate:Real
SysML Specification v1.0 Draft 189

B.4.6.5 Internal Block Diagram - Fuel Distribution
Figure B-25 shows how the connectors fuelDelivery and fdist on Figure B-19 have been expanded to include design detail.
The fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other carrying fuelReturn. The fdist
connector inside the InternalCombustionEngine block has been expanded into the fuel regulator and fuel rail parts. These more
detailed design elements are related to the original connectors using the allocation relationship.

Figure B-25. Detailed Internal Structure of Fuel Delivery Subsystem. (Internal Block Diagram)

ibd [block] PowerSubsystem [Fuel Distribution Detail]

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupplyLine:

fuelSupply:Fuel
fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fuelReturnLine:

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

allocatedFrom
«connector»fdist:

fuelFitting:Fuel

allocatedFrom
«connector»fuelDelivery:

<>
190 SysML Specification v1.0 Draft

B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

B.4.7.1 Block Definition Diagram - Analysis Context
Figure B-26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of the
constraint blocks/equations that will be used for the analysis, and key relationships between them.

Figure B-26. Defining Analyses for Hybrid SUV Engineering Development. (Block Definition Diagram)

B.4.7.2 Package Diagram - Performance View Definition
Figure B-27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain of a number of diagrams depicting the elements it contains.

bdd [package] HSUVAnalysis [Analysis Context]

«constraint»
RollingFriction

Equation

«constraint»
AeroDragEquation

adrag

rdrag dyn

«constraint»
StraightLine

VehicleDynamics

«testCase,Interaction»
MaxAcceleration

1

0..1

ex

«requirement»
Acceleration

«verify»

GlobalTime
delta-t0..1

1

t

0..1

1

UnitCostContext

«domain»
HSUVStructure::

AutomotiveDomain

ad

0..1

1ad

0..1

1ad
0..1

1

parameters
V1:Vol
V2:Vol
V3:Vol

constraints
{pcap = Sum(Vi)}

«constraint»
CapacityEquation

EconomyContextCapacityContext

cap

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
FuelEfficency

Equation

pl

fe

w

«constraint»
RegenBrake

EfficiencyEquation

rb
SysML Specification v1.0 Draft 191

Figure B-27. Establishing a Performance View of the User Model. (Package Diagram)

B.4.7.3 Parametric Diagram - Measures of Effectiveness
Measure of Effectiveness is a user defined stereotype. Figure B-28 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be
reused to evaluate other alternatives.

pkg [package] HSUVViews [Performance View]

«view»
{viewpoint=Performance Viewpoint}

PerformanceView

Driver

Drive Car «viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system."
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

id = 2
Text = The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy.

<<requirement>>
Performance

«moe»
HSUValt1.Cos
tEffectiveness

«moe»
HSUValt1.Fuel

Economy

«moe»
HSUValt1.Zero

60Time

«moe»
HSUValt1.Car
goCapacity

«moe»
HSUValt1.Quar

terMileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«conform»
192 SysML Specification v1.0 Draft

Figure B-28. Defining Measures of Effectiveness and Key Relationships. (Parametric Diagram)

B.4.7.4 Parametric Diagram - Economy
Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in assessing it.
Figure B-29 shows the constraint blocks and properties necessary to evaluate fuel economy.

par [block] MeasuresOfEffectiveness [HSUV MOEs]

«objectiveFunction»
:MyObjectiveFunction

{CE = Sum(Wi*Pi)}

«moe»
HSUValt1.CostEffectiveness

«moe»
HSUValt1.FuelEconomy

«moe»
HSUValt1.Zero60Time

«moe»
HSUValt1.CargoCapacity

«moe»
HSUValt1.QuarterMileTime

«moe»
HSUValt1.UnitCost

:EconomyEquation
f:

:MaxAcceleration
Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p4:

p1:

p2:

p3:

p5:

CE:
SysML Specification v1.0 Draft 193

Figure B-29. Establishing Mathematical Relationships for Fuel Economy Calculations. (Parametric Diagram)

B.4.7.5 Parametric Diagram - Dynamics
The StraigntLineVehicleDynamics constraint block from Figure B-29 has been expanded in Figure B-30 below.
ConstraintNotes are used, which identify each constraint using curly brackets {}. In addition, Rationale has been used to
explain the meaning of each constraint maintained

par [block] EconomyContext

dyn:StraightLine
VehicleDynamics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w:TotalWeight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw: fw:

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw:

tw:

tw:

Cf:

Cf:

fe:FuelEfficiency
Equationwhlpwr:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpwr:

ebpwr:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

whlpwr:

ad.HSUV.VehicleDryWeight

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

GeneratorEfficiency

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

MotorEfficiency

ad.HSUV.PowerSybsystem.
InternalCombustionEngine.

ICEEfficiency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
194 SysML Specification v1.0 Draft

.

Figure B-30. Straight Line Vehicle Dynamics Mathematical Model. (Parametric Diagram)

The constraints and parameters in Figure B-30 are detailed in Figure B-31 in Block Definition Diagram format.

par [constraintBlock] StraightLineVehicleDynamics

acc:Accelleration
Equation

vel:VelocityEquation

pos:PostionEquation

pwr:PowerEquation

whlpwr: tw:Cd: Cf:

tp:

tp:

delta-t:

delta-t:

delta-t:

tw:

tw:

a:

a:

v:

v:

acc:

vel:

Cf:

Cd:

whlpwr:

v:

x:

incline:

i:

{v(n+1) = v(n) + a(g)*32*3600/5280*delta-t}

{x(n+1) = x(n) + v(mph)*5280/3600*delta-t}

{tp = whlpwr - (Cd*v) - (Cf*tw*v)}

«rationale»
tp (hp) = wheel power - drag - friction

«rationale»
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

«rationale»
a(g) = F/m = P*t/m

{a = (550/32)*tp(hp)*delta-t*tw}

x:

dt
SysML Specification v1.0 Draft 195

Figure B-31. Defining Straight-Line Vehicle Dynamics Mathematical Constraints. (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure B-2.

B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration
Timing diagrams, while included in UML 2.0, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure B-32 was generated based on the constraints and parameters of the StraightLineVehicleDynamics
constraintBlock, as described in the Figure B-30. It assumes a constant 100hp at the drive wheels, 4000lb gross vehicle weight,
and constant values for Cd and Cf

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
tp:Horsepwr
v:Vel
i:Real

constraints
{tp = whlpowr - (Cd*v) -
(Cf*tw*v)}

«constraint»
PowerEquation

parameters
tw:Weight
delta-t:Time
tp:Horsepwr
a:Accel

constraints
{a = (550/32)*tp(hp)*dt*tw}

«constraint»
AccelerationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynamics

accvel
pwr

pos
196 SysML Specification v1.0 Draft

Figure B-32. Results of Maximum Acceleration Analysis. (Timing Diagram)

B.4.8 Defining, Decomposing, and Allocating Activities

B.4.8.1 Activity Diagram - Acceleration (top level)
Figure B-33 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the systems
engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however, that the
behavior as depicted cannot be allocated, and must be further decomposed.

tim MaxAcceleration [100 Wheel Horsepower]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Time (sec)

A
cc

el
le

ra
tio

n
(g

)

0

20

40

60

80

100

120

140

0 5 10 15 20

Time (sec)

Ve
lo

ci
ty

 (m
ph

)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Time (sec)

D
is

ta
nc

e
(f

t)
Satisfies
«requirement»Acceleration

«diagramDescription»
version=”0.1"
description=”Constant
100 wheel horsepower,
4000 lb vehicle weight,
simple drag"
reference=”Equations of
Motion”
completeness=”assumes
perfect tire traction”
SysML Specification v1.0 Draft 197

.

Figure B-33. Behavior Model for “Accelerate” Function. (Activity Diagram)

B.4.8.2 Block Definition Diagram - Acceleration
Figure B-34 defines a decomposition of the activities and objectFlows from the activity diagram in Figure B-33.

Figure B-34. Decomposition of “Accelerate” Function. (Block Definition diagram)

B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
Figure B-35 shows the ProvidePower activity, using the decomposed activities and objectFlows from Figure B-34 above. It
also uses AllocateActivityPartitions and an allocation callout to explicitly allocate activities and an object flow to parts in the
PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to

act Accelerate

PushAccelerator

MeasureVehicle
Conditions

ProvidePower

«continuous»
accelPosition

«continuous»
vehCond

Comment:
Can't allocate
these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd

bdd [activity] Accelerate [Activity and Object Flow Breakdown]

«activity»
MeasureVehicle

Conditions
«activity»

ProvidePower

«activity»
MeasureVehicle

Velocity

«activity»
MeasureBattery

Condition
«activity»

ProvideGasPower
«activity»

ControlElectricPower

«activity»
ProportionPower

«activity»
ProvideElectric

Power
mbatmvel

a4

a3a2

a1

drivePower

«block»
Power

«block»
GasPower

«block»
ElecPower

gasDrivePower elecDrivePower
198 SysML Specification v1.0 Draft

distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide further
insight into the specific vehicle conditions being monitored.

.

Figure B-35. Detailed Behavior Model for “Provide Power”. (Activity Diagram)
Note hierarchical consistency with Figure B-33 .

B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
Figure B-36 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure B-
35 above
SysML Specification v1.0 Draft 199

.

Figure B-36. Flow Allocation to Power Subsystem. (Internal Block Diagram)

B.4.8.5 Table - Acceleration Allocation
Figure B-37 shows the same allocation relationships shown in Figure B-36 above, but in a more compact tabular
representation

.

Figure B-37. Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem. (Table)

ibd [block] PowerSubsystem [Power Functional Allocation]

 allocatedFrom
«activity»Convert
ElectricToPower

emg:ElectricalMotor
Generator

trsm:Transmission

 allocatedFrom
«activity»ConvertGasToPower

ice:InternalCombustionEngine

 allocatedFrom
«activity»Proportion
PowerLoad

ecu:PowerControlUnit
epc:IFS_EPC

fp:FS_ICE

allocatedFrom
«activity»Control
ElectricPower

epc:ElectricalPower
Controller

i1:Electric
Current

i2:Electric
Current

fp:FS_EPC

fp:FS_TRSM

allocatedFrom
«objectNode»driveCurrent

allocatedFrom
«connector»c1:

 «connector»c2:
 «connector»c3:

can:CAN_Bus

ice:IFS_ICE

etrsm:IFS_TRSM

<>

<>

<>

<>

<>

<>

<>

<>

«diagramDescription»
version=”0.1"
description=”allocation of
behavior and connectors to
elements of power subsystem"
reference=”null”
completeness=”partial. Power
subsystem elements that have
no allocation yet have been
elided”

Table [activity] ProvidePower [Allocation Tree for Provide Power Activities]

type name end relation end type name
activity a1:ProportionPower from allocate to block PowerControlUnit
activity a2:ProvideGasPower from allocate to block InternalCombustionEngine
activity a3:ControlElectricPower from allocate to block ElectricalPowerController
activity a4:ProvideElectricPower from allocate to block ElectricalMotorGenerator
objectNode driveCurrent from allocate to itemFlow i1:ElectricCurrent
200 SysML Specification v1.0 Draft

B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test
Figure B-38 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of specific
relevant parts are indicated.

Figure B-38. Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

ib d [b lo c k] S U V _ E P A _ F u e l_ E c o n o m y _ T e s t [T e s t R e s u lts]

v a lu e s
V IN = G 1 2 3 4 5

T e s tV e h ic le 1 : [H y b r id S U V]

v a lu e s
s n : ID = p 6 7 8 9 0

p : [P o w e r S u b s y s te m]

c -b k :

b -c :

b - i:

b k - l :

c -p : b k -p :

S a t is f ie s
« re q u irm e n t» E m is s io n s

v a lu e s
s n :ID = b k 4 5 6 7 8

b k : [B r a k e S u b s y s te m]

v a lu e s
s n : ID = c 3 4 5 6 7

c : [C h a s s is S u b s y s te m]

v a lu e s
s n : ID = lt5 6 7 8 9

l : [L ig h t in g S u b s y s te m]

v a lu e s
s n :ID = b 1 2 3 4 5

b : [B o d y S u b s y s te m]

v a lu e s
s n : ID = i2 3 4 5 6

i : [In te r io r]

« te s tC a s e »
te s tR u n 0 6 0 4 0 1 :

E P A F u e lE c o n o m y T e s t

v a lu e s
s n : ID = s n 9 0 1 2 3

e m : [E le c t r ic a lM o to r] v a lu e s
s n :ID = s n 8 9 0 1 2

t : [T r a n s m is s io n]

v a lu e s
s n : ID = e id 7 8 9 0 1

ic e : [In te r n a lC o m b u s t i
o n E n g in e]

e m - t : ic e - t :

V e r if ie s
« re q u ire m e n t» E m is s io n s
SysML Specification v1.0 Draft 201

202 SysML Specification v1.0 Draft

Appendix C. Non-Normative Extensions
This appendix describes useful non-normative extensions to SysML that may be considered for standardization in future ver-
sions of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent with
how the main body of this specification is organized. Stereotypes in this section are specified using a tabular format, consistent
with how non-normative stereotypes are specified in the UML 2.0 Superstructure specification. Model libraries are specified
using the guidelines provided in the Profiles & Model Libraries chapter of this specification.

C.1 Activity diagram extensions

C.1.1 Overview

Two nonnormative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML 2.0
Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems Engineering,
2006].

C.1.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a behavior
diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be translated to activities using interruptible regions and join specifi-
cations.

When the «effbd» stereotype is applied to an activity, its contents must conform to the following constraints:

[1] (On Activity) Activities do not have partitions.

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are matched
one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input parameters and
control acting as a join.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

[4] (Execution constraint) All control is enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that has isControl = true.

[6] (On ObjectNode) Ordering is first-in first out, ordering = FIFO.

Table C-1. Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description
«effbd» UML4SysML::Ac

tivity (or subtype
of «nonStream-
ing» below)

N/A See below. Specifies that the activity
conforms to the constraints
necessary for EFFBD.
SysML Specification v1.0 Draft 203

[7] (On ObjectNode) Object flow is never used for control, isControlType = false, except for pins of parameters in parameter
sets.

[8] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotype cannot
be applied to parameters.

[10](On Parameter) Parameters cannot be streaming or exception.

[11] (On ParameterSet) Parameter sets only apply to output parameters.

[12](On ParameterSet) Parameter sets only apply to control. Parameters in parameter sets must have pins with isControlType
= true.

[13](On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.

[14](On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behaviour or operation
must be in parameter sets.

[15](On ActivityEdge) Edges cannot have time constraints.

[16]The following SysML stereotypes cannot be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished (nonstream-
ing). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while nonstreaming
activities usually terminate themselves.

Table C-2. Streaming options for activities

Stereotype Base Class Properties Constraints Description
«streaming» UML4SysML::Ac

tivity
N/A The activity has

at least one
streaming
parameter.

Used for activities that can
accept inputs or provide
outputs after they start and
before they finish.

«nonStreaming» UML4SysML::Ac
tivity

N/A The activity has
no streaming
parameters.

Used for activities that
accept inputs only when
they start, and provide out-
puts only when they finish.
204 SysML Specification v1.0 Draft

C.1.3 Stereotype Examples

Figure C-1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J., “Relationships
between common graphical representations in system engineering,” 2002]. The stereotype applies the constraints specified in
Section C.1.2, for example, that the data outputs on all functions are required and that queuing is FIFO.

Figure C-2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and outputs.

Figure C-1. Example activity with «effbd» stereotype applied

Figure C-2. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities.

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[before third time]

Item 2

«optional» [after
third
time]

2.6 Output
Function

«optional»

Item 3

Item 4

«optional»

«optional»

{cc#1}

{cc#2}

«effbd»
act

Generate
u(t)

Add

-2

Display
«streaming»

Integrate
Over Timeu

x’ x

Multiply
-2x

«nonStreaming» «streaming» «streaming»

«nonStreaming»

act
SysML Specification v1.0 Draft 205

C.2 Requirements diagram extensions

C.2.1 Overview

This section describe an example of a non-normative extension for a requirements profile.

C.2.2 Stereotypes

This section includes stereotypes for a simplified requirements taxonomy that is intended to be further adapted as required to
support the particular needs of the application or organization. The requirements categories in this example include functional,
interface, performance, physical requirements and design constraints as shown in Table C.3.1-1. As shown in the table, each
category is represented as a stereotype of the generic SysML «requirement». The table also includes a brief description of the
category. The table does not include any stereotype properties or constraints, although they can be added as deemed appropri-
ate for the application. For example, a constraint that could be applied to a functional requirement is that only SysML activi-
ties and operations can satisfy this category of requirement. Other examples of requirements categories may include
operational, specialized requirements for reliability and maintainability, store requirements, activation, deactivation, and a
high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories, and their associated descriptions, stereotype properties, and constraints. Additional catego-
ries can be added by further subclassing the categories in the table below, or adding additional categories at the pier level
of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design constraint) as
applicable and ensure consistency with the description, stereotype properties, and constraints.

• A specific text requirement can include the application of more than one requirement category, in which case, each stereo-
type should be shown in guillemets.

Table C-3. Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
«extendedRequirement» «requirement» source: String

risk: RiskKind
verifyMethod: Veri-
fyMethodKind

N/A A mix-in stereotype that
contains generally useful
attributes for requirements

«functionalRequirement» «extendedrequirement» N/A satisfied by an
operation or
behavior

Requirement that speci-
fies an operation or behav-
ior that a system, or part of
a system, must perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a
port, connector,
item flow, and/or
constraint prop-
erty

Requirement that speci-
fies the ports for connect-
ing systems and system
parts and the optionally
may include the item flows
across the connector and/
or Interface constraints.
206 SysML Specification v1.0 Draft

Table C-4 provides the definition of the non-normative enumerations that are used to type properties of "extendedRequire-
ment" stereotype of Table C-3, above.

«performanceRequire-
ment»

«extendedrequirement» N/A satisfied by a
value property

Requirement that quantita-
tively measures the extent
to which a system, or a
system part, satisfies a
required capability or con-
dition.

«physicalRequirement» «extendedrequirement» N/A satisfied by a
structural ele-
ment.

Requirement that speci-
fies physical characteris-
tics and/or physical
constraints of the system,
or a system part.

«designConstraint» «extendedrequirement» N/A satisfied by a
block or part

Requirement that speci-
fies a constraint on the
implementation of the sys-
tem or system part, such
as the system must use a
commercial off the shelf
component.

Table C-4. Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

Table C-3. Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
SysML Specification v1.0 Draft 207

C.2.3 Stereotype Examples

Figure C-3 shows the use of several sub-types of requirements extended to include the properties risk:RiskKind, veri-
fyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the requirement.

VerificationMethodKind Analysis Analysis indicates that verification will be performed by
technical evaluation using mathematical representations,
charts, graphs, circuit diagrams, data reduction, or repre-
sentative data. Analysis also includes the verification of
requirements under conditions, which are simulated or
modeled; where the results are derived from the analysis of
the results produced by the model.

Demonstration Demonstration indicates that verification will be performed
by operation, movement or adjustment of the item under
specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically
considered the least restrictive of the verification types.

Inspection Inspection indicates that verification will be performed by
examination of the item, reviewing descriptive documenta-
tion, and comparing the appropriate characteristics with a
predetermined standard to determine conformance to
requirements without the use of special laboratory equip-
ment or procedures.

Test Test indicates that verification will be performed through
systematic exercising of the applicable item under appropri-
ate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of
quantitative data to show that measured parameters equal
or exceed specified requirements.

Table C-4. Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description
208 SysML Specification v1.0 Draft

Figure C-3. Example extensions to Requirement

C.3 Parametric diagram extensions for Trade Studies

C.3.1 Overview

This section describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks chapter) to support
trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a trade study is used to
evaluate a set of alternatives based on a defined set of criteria. The criteria may have a weighting to reflect their relative impor-
tance. An objective function (aka optimization or cost function) can be used to represent the weighted criteria and determine
the overall value of each alternative. The objective function can be more complex than a simple linear weighting of the criteria
and can include probability distribution functions and utility functions associated with each criteria. However, for this exam-
ple, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost effec-
tiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an objective func-
tion to a set of criteria, each of which is represented by a measures of effectiveness.

This section includes stereotypes for an objective function and a measure of effectiveness. The objective function is a stereo-
type of a ConstraintBlock and the measure of effectiveness is a stereotype of a block property.

 Requirement Diagram: Top-Level User Requirements

«requirement»
HybridSUV

«functinalRequirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
verifyMethod =”Test”
risk =”Low”

«functionalRequirement»
Load

«performanceRequirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
verifyMethod = ”Analysis”
risk = ”High”

«performanceRequirement»
Eco-Friendliness

«performanceRequirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«performanceRequirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards .”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Emissions

«performanceRequirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
verifyMethod = “Test”
risk = “High”

«performanceRequirement»
FuelEconomy «requirement»

Range

«requirement»
Braking

«requirement»
Power

«requirement»
Acceleration
SysML Specification v1.0 Draft 209

C.3.2 Stereotypes.

N/A N/A An objective function (aka
optimization or cost func-
tion) is used to determine
the overall value of an
alternative in terms of
weighted criteria and/or
moe’s.

N/A N/A A measure of effectiveness
(moe) represents a param-
eter whose value is critical
for achieving the desired
mission cost effectiveness.

C.3.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moe’s along with life
cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents a
weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of operational avi-
alability, mission response time, security effectiveness and life cycle cost to determine an overall cost effectiveness for each
alternative. It is assumed that the moe’s refer to the values for system alternative j (sj).

Table C-5. Stereotypes for Measures of Effectiveness

Stereotype Base Class Properties Constraints Description

«objectiveFunction» «Constraint-
Block» or «Con-
straintProperty»

«moe» «blockProperty»

«moe»
sj.costEffectiveness

par Effectiveness Model [System Alternative J]

:SecurityModel

«objectiveFunction»
:MyObjectiveFunction

{CE = Sum Wi*Pi}

:ResponseTimeModel

:AvailabilityModel
CE:P3:

P2:

P1:

s:

r:

a:

:CostModel
c:

P4:

«moe»
sj.responseTime

«moe»
sj.security

«moe»
sj.cost

«moe»
sj.availability
210 SysML Specification v1.0 Draft

C.4 Model Library for Dimensions and Units
The dimensions and units in this section are a subset of units defined by the International System of Units (SI) as defined in
NIST Special Publication 330 (available from the NIST Reference on Constants, Units and Uncertainty at
http://physics.nist.gov/cuu/Units/units.html).

.

Figure C-4. SI Definitions model library.

Figure C-5. SI Base Units.

pkg

«modelLibrary»
SI Definitions

pkg SI Definitions [SI Base Units]

«dimension»
Length

«dimension»
Mass

«dimension»
Time

«dimension»
ElectricCurrent

«dimension»
ThermodynamicTemperature

«dimension»
AmountOfSubstance

«dimension»
LuminousIntensity

«unit»
dimension = Length

Meter

«unit»
dimension = Mass

Kilogram

«unit»
dimension = Time

Second

«unit»
dimension = ElectricCurrent

Ampere

«unit»
dimension = ThermodynamicTemperature

Kelvin

«unit»
dimension = AmountOfSubstance

Mole

«unit»
dimension = LuminousIntensity

Candela
SysML Specification v1.0 Draft 211

Figure C-6. SI Derived Units Expressed In Base Units.

pkg SI Definitions [SI Derived Units Expressed In Base Units]

«dimension»
Area

«dimension»
WaveNumber

«dimension»
Volume

«dimension»
Acceleration

«dimension»
CurrentDensity

«dimension»
MassDensity

«dimension»
SpecificVolume

«dimension»
MagneticFieldStrength

«dimension»
AmountOfSubstanceConcentration

«dimension»
Velocity

«dimension»
Luminance

«unit»
dimension = Area

SquareMeter

«unit»
dimension = Acceleration

MeterPerSecondSquared

«unit»
dimension = Volume

CubicMeter

«unit»
dimension = WaveNumber

ReciprocalMeter

«unit»
dimension = MagneticFieldStrength

AmperePerMeter

«unit»
dimension = Velocity

MeterPerSecond

«unit»
dimension = AmountOfSubstanceConcentration

MolePerCubicMeter

«unit»
dimension = MassDensity

KilogramPerCubicMeter

«unit»
dimension = SpecificVolume

CubicMeterPerKilogram

«unit»
dimension = CurrentDensity

AmperePerSquareMeter

«unit»
dimension = Luminance

CandelaPerSquareMeter
212 SysML Specification v1.0 Draft

C.5 Distribution Extensions

C.5.1 Overview

This section describes a non-normative extension to provide a candidate set of distributions (see Section 8.3.2.3 (“Distributed-
Property”)). It consists of a profile containing stereotypes that can be used to specify distributions for properties of blocks.

Figure C-7. SI Derived Units With Special Names.

pkg SI Definitions [SI Derived Units With Special Names]

«dimension»
PlaneAngle

«dimension»
SolidAngle

«dimension»
Pressure

«dimension»
Energy

«dimension»
Power

«dimension»
Force

«dimension»
Frequency

«dimension»
ElectricCharge

«dimension»
ElectricPotentialDifference

«dimension»
Capacitance

«dimension»
ElectricResistance

«dimension»
ElectricConductance

«dimension»
MagneticFlux

«dimension»
MagneticFluxDensity

«dimension»
CelsiusTemperature

«dimension»
LuminousFlux

«dimension»
Inductance

«dimension»
Illuminance

«dimension»
CatalyticActivity

«dimension»
DoseEquivalent

«dimension»
AbsorbedDose

«dimension»
ActivityOfRadionuclide

«unit»
dimension = ElectricConductance

Siemens

«unit»
dimension = PlaneAngle

Radian

«unit»
dimension = SolidAngle

Steradian

«unit»
dimension = Frequency

Hertz

«unit»
dimension = Force

Newton

«unit»
dimension = Pressure

Pascal

«unit»
dimension = Energy

Joule

«unit»
dimension = Power

Watt

«unit»
dimension = ElectricCharge

Coulomb

«unit»
dimension = ElectricPotentialDifference

Volt

«unit»
dimension = Capacitance

Farad

«unit»
dimension = ElectricResistance

Ohm

«unit»
dimension = MagneticFlux

Weber

«unit»
dimension = MagneticFluxDensity

Tesla

«unit»
dimension = Inductance

Henry

«unit»
dimension = CelsiusTemperature

Degree Celsius

«unit»
dimension = LuminousFlux

Lumen

«unit»
dimension = Illuminance

Lux

«unit»
dimension = ActivityOfRadionuclide

Bequerel

«unit»
dimension = AbsorbedDose

Gray

«unit»
dimension = DoseEquivalent

Sievert

«unit»
dimension = CatalyticActivity

Katal
SysML Specification v1.0 Draft 213

C.5.2 Stereotypes

Package Distributions

«stereotype»
Uniform

«stereotype»
Interval

min: Real
max: Real

«stereotype»
BasicInterval

mean: Real
standardDeviation: Real

«stereotype»
Normal

«stereotype»
SysML::Blocks::

DistributedProperty

Figure C-8. Basic distribution stereotypes

min:Real
max:Real

N/A Basic Interval distribution - value
between min and max inclusive

N/A N/A Interval distribution - unknown proba-
bility between min and max

N/A N/A Uniform distribution - constant proba-
bility between min and max

mean:Real
standardDeviation:Real

N/A Normal distribution - constant proba-
bility between min and max

C.5.3 Usage Example

Figure C-9 shows a simple example of using distributions; the force of the Cannon is specified using a Normal distribution
with parameters mean and standard Deviation. Whereas the use of a Normal distribution can be inferred from the names of its
parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype keyword «interval» is
used to distinguish it.

Table C-6. Distribution Stereotypes

Stereotype Base Class Properties Constraints Description

«BasicInterval» «DistributedProperty»

«Interval» «BasicInterval»

«Uniform» «BasicInterval»

«Normal» «DistributedProperty»
214 SysML Specification v1.0 Draft

Figure C-9. Distribution Example

bdd [block] FiringRange

{mean=100.0,standardDeviation=1.0}force: Newton

«block»
Cannon

«interval»{min=101.0,max=105.0}volume: CubicMeter
density:KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

«block»
Shot
SysML Specification v1.0 Draft 215

Appendix D. Model Interchange

D.1 Overview
This appendix describes several methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The second
approach describes the use of ISO 10303-AP233 Application Protocol: Systems engineering and design (AP233), which is one
of the series of STEP (Standard for the Exchange of Product Model Data) neutral data schemas for representing engineering
data. Other model interchange approaches are possible, but the ones described in this appendix are expected to be the primary
ones supported by SysML.

D.2 Context for Model Interchange
Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that are
often composed of many companies, each with their own culture, methods and tools. Effective collaboration requires agree-
ment on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models, verifi-
cation & validation) that transcend the entire life cycle of the system of interest and are the basis for important systems engi-
neering considerations and decisions. So it is critical that the system information contained in these artifacts and information
models be accurately captured and ‘readable’ by all appropriate team members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems engineering data
and can’t share its data with other tools because they only understand their own native schema. To mitigate this situation, col-
laborating organizations are usually forced to either adopt a common set of tools or develop a unique, bi-directional interface
between many of the tools that each organization uses. This can be an expensive and untimely approach to data exchange
between team members. So there is a need to define standardized approaches for model interchange between the different data
schemas in use.

D.3 XMI Serialization of SysML
UML 2.0 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for specifying
modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XML-based interchange format
for any language modeled using MOF. This results in a standard, convenient format for serializing UML user models as XMI
files for interchange between UML tools. The XMI specification also includes rules for generating an XML Schema that can
be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the same
way one could extend the UML language by adding to the MOF definition of UML. As UML Profiles are valid UML models,
XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they are extensions to
concepts defined in the UML language itself, the definition of a UML Profile refers to the UML language definitions. An XMI
2.1 representation of the SysML profile (i.e. the UML Profile for SysML) is provided as a support document to this specifica-
tion (refer to ad/2006-03-02). As with UML, XMI provides a convenient serialized format for model interchange between
SysML tools and basic validation of those files using an XML Schema as well.

D.4 Overview of AP233
AP233 is not finalized at this time, so this section reflects the background and current status of the AP233 work.
216 SysML Specification v1.0 Draft

AP233 is a neutral data schema for representing systems engineering data. AP233 is being standardized under the ISO TC-184
(Technical Committee on Industrial Automation Systems and Integration), SC4 (Subcommittee on Industrial Data Standards),
and is part of the larger STEP effort, which provides standardized models and infrastructure for the exchange of product model
data.

D.4.1 Scope of AP233

AP233 will include support for describing:

• requirement

• functional

• structure

• physical structure & allocation

• configuration & traceability

• project & data management

An IDEF activity that shows the scope of AP233 information requirements is available at http://public.ap233.org/AAM/
AAM_AP233-Issue-1.pdf. Additional details on AP233 can be found at http://public.ap233.org/.

D.4.2 AP233 Development Approach & Status

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same infor-
mation model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable informa-
tion models are called application modules, or more informally simply modules. AP233 will consist of a number of modules
that together will satisfy the scope of the requirements stated above. Support for several of systems engineering viewpoints
within the scope of AP233 already exist as the result of the development of other application protocols and will simply be
reused in AP233. When existing STEP modules do not provide needed capabilities, new modules are being defined as part of
AP233 development. Since AP233 is part of STEP, it is easy to relate systems engineering data to that of other engineering
disciplines over the lifecycle of a system and to related product models.

Figure D-1 provides an overview of the modules planned to satisfy the scope of AP233 requirements and also shows the cur-
rent status of each.
SysML Specification v1.0 Draft 217

Figure D-1. AP233 Modules

D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms

A good understanding of the STEP architecture and its components are required to understand how SysML models will be
interchanged using AP233. This section provides an overview of the key elements of STEP that pertain to model interchange.

4.4.3.1 Modular Architecture

The scope of STEP is very large. While a number of STEP modules and application protocols have been developed (e.g.,
product data management, geometry, structural, electrical, and other engineering analysis support) and in use for several years,
other area such as AP233 are still being defined and developed.

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same infor-
mation model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable informa-
tion models are called application modules, or more informally simply modules.

For more detail on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at http://
www.tc184-sc4.org/: and for a more detailed view of where specific STEP parts fit into the architecture is available at http://
www.mel.nist.gov/sc5/soap/soapgrf030407.pdf

requirements

text-based

property-based

breakdowns
static

structure

PDM

analysis rulesbehaviour

product
structure

system
sub-system

functional
breakdown WBS

verification &
validation

state-based

function-based
model presentation

config
control

security

riskrisk measurement

person &
org

completed in-progressStatus Legend future
218 SysML Specification v1.0 Draft

4.4.3.2 The Modeling Language for AP233

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language (see ISO 10303-11 Description
method: The EXPRESS language reference manual). EXPRESS is a precise text-based information modeling language with
a related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA people;
TYPE year = integer;
END_TYPE;
TYPE person_or_organization = SELECT (person, organization);
END_TYPE;
ENTITY organization;
name : STRING;
END_ENTITY;
ENTITY building;
address : STRING;
owner : person_or_organization;
END_ENTITY;
ENTITY person
ABSTRACT SUPERTYPE;
spouse : OPTIONAL person;
name : STRING;
birthyear : year;
biological_parents : SET[2:2] of person;
parents : SET[2:?] of person;
END_ENTITY;
ENTITY man
SUBTYPE OF (person);
sister : SET[0:?] of woman;
END_ENTITY;
ENTITY woman
SUBTYPE OF (person);
brother : SET[0:?] of man;
END_ENTITY;
END_SCHEMA;

An overview of an XML Document Type Definition for the EXPRESS language is available at http://stepmod.sourceforge.net/
express_model_spec/. Note however, that the powerful expression language for constraint writing is not addressed by that
DTD. EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.

Work is underway to produce and standardize a MOF-based EXPRESS metamodel and EXPRESS/UML mappings. Docu-
mentation related to those efforts is available at the exff (Engineering eXchange For Free) web site (http://www.exff.org/
express_uml/index.html). Eventually these efforts should allow a formal SysML/AP233 relationship to be standardized within
the OMG.

An early draft of one mapping of ISO EXPRESS to UML/XMI is available as an OMG document at http://www.omg.org/cgi-
bin/doc?liaison/2003-07-01. Please note that this specification is based on EXPRESS Edition 1, UML 1.4, MOF 1.4 and XMI
1.2.
SysML Specification v1.0 Draft 219

4.4.3.3 Model Interchange Mechanisms

As part of the STEP series of EXPRESS-based information model, a series of implementation methods are also standardized:

• ISO 10303-21 (Part 21), clear text encoding of the exchange structure

• ISO 10303-22 (Part 22), standard data access interface (SDAI) specification

• ISO 10303-25 (Part 25), EXPRESS to OMG XMI binding

• ISO 10303-28 (Part 28), XML representation of EXPRESS schemas and data

A conforming STEP implementation is the combination of a STEP application protocol and one or more of the implementa-
tion methods.

SDAI specifies a standard programming interface for access to EXPRESS-based data. SDAI allows the implementors to refer
to product data in terms of its conceptual EXPRESS definitions, regardless of the underlying data structure or storage technol-
ogy. Bindings of the SDAI to C++ (ISO 10303-23), C (ISO 10303-24), Java (ISO 10303-27) provide standardized APIs for
accessing EXPRESS-based data.

D.4.4 AP233 - SysML Alignment & Mapping Model

The requirements for AP233 and SysML have been largely aligned by the OMG and the ISO teams working together and in
close cooperation with the INCOSE Model Driven System Design working group. However there might be differences in
breath and scope of AP233 and SysML resulting from the different development life cycles of both activities and the different
nature of the modeling frameworks used to define SysML and AP233. To avoid semantical issues in exchanging data between
SysML and AP233, a neutral or mapping model of systems engineering concepts will be defined. Thus the mappings between
the mapping model and SysML metamodel and the mapping model and AP233 metamodel can be maintained independently.
The neutral mapping model will also help to clarify the semantics of the data elements. This approach is illustrated in Figure
D-2.

As AP233 and SysML are defined in different modeling frameworks, the AP233 metamodel will be converted to UML to ease
the mapping. OMG has started a standardization activity has been started to capture EXPRESS semantics in UML, but a cus-
tom mapping will be used until the UML profile for EXPRESS has been adopted. The mapping model will be expressed as a
plain MOF model. The mapping model will be defined based on the concepts used and implemented for AP233 and SysML.
Another important input is the conceptual systems engineering model maintained by the INCOSE Model Driven System
Design Working group. Since development of the mapping model and SysML and AP233 mappings to it is an ongoing main-
tenance activity, these specifications will be maintained separately and updates will be posted on the SE DSIG web site.

The mapping model can be used as the basis for the models exchange methods discussed in the next section and also for the
development of conceptual level API’s, which should ease the usage of AP233 and generation of common test cases for
SysML and AP233.
220 SysML Specification v1.0 Draft

Figure D-2. Mapping Model

D.4.5 Generic Procedures for SysML and AP233 Model Interchange

4.4.5.1 File-based Exchange

Industrial-strength STEP implementations are typically file exchange-based systems integration processes. As OMG has stan-
dardized XMI as its model serialization format, one obvious approach is to use the STEP XML-based file exchange capability
(Part 28) by simply translating the model contained in an XMI file into a model based on the AP233 XML Schema. This
approach encourages systems integrators and SysML tool vendors to develop interoperable SysML-AP233 exchange capabili-
ties. It is also provides SysML tool vendors with a means to directly export AP233 XML files.

4.4.5.2 API-Driven Model Interchange

Model interchange can be simplified by the use of high-level application program interfaces (APIs) . At the moment, standard-
ized APIs for SysML- or AP233-specific models are not available, but work is underway in the industry to provide implemen-
tations of such APIs. Ideally, application level developers can use the same APIs to access backend XML models serialized in
either SysML XMI or AP233 XML format, depending on customer needs. When combined, standardized XML serialization
formats and high-level APIs will provide a very convenient and interoperable way for SysML tool vendors and systems inte-
grators to exchange SysML and AP233 models. These standardized capabilities will also provide the foundation needed for
building a set of Systems Engineering Web Services.

<<MetaModel>>
UML 2

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<Profile>>
Express

<<MetaModel>>
UML 2

<<MetaModel>>
AP233 (UML)

<<extends>>

<<extends>>

<<mapping>>
<<mapping>>
SysML Specification v1.0 Draft 221

Appendix E. Requirements Traceability
This appendix describes the requirements tracability matrix (RTM) that shows how SysML satisfies the requirements in Sec-
tions 6.5 (Mandatory) and 6.6 (Optional) of the UML for SE RFP. The matrix includes columns that correspond to those iden-
tified in the first paragraph of Section 6.5 of the RFP and are restated here. The text requirement statement is included in the
RFP and was excluded from this appendix due to space limitations.

a) The UML for SE requirement number.

b) The UML for SE requirement name (or other letter designator). Note: The reader should refer to the UML for SE RFP for
the specific text of the requirement, since there was inadequate room in the table to repeat it here.

c) Describes whether the proposed solution is a full or partial satisfaction of the requirement, or whether there is no solution
provided. The section header rows that do not have a text requirement are marked N/A.

d) A description of how SysML addresses the requirement. Note: In some cases, there may be other SysML solutions to satisfy
the requirement, but the intent was to describe at least one solution.

e) The specific UML and SysML metaclasses that address the requirement.

f) Reference to the applicable chapter in the SysML specification which addresses e) above. This diagram element tables in the
chapter describe the concrete syntax (symbols) that show how the solution to the requirement is represented in diagrams. The
usage examples in the chapters along with sample problem in Appendix B describe how the solution to the requirement is used
in representative examples. Note: The reference to a chapter may require reference to a corresponding chapter in the UML
specification. For example, when the blocks chapter is referenced, this may include a combination of the SysML blocks chap-
ter and the UML classes and composite structure chapters.
222 SysML Specification v1.0 Draft

Table 1 Requirement Traceability matrix

UML for
SE Req't

#

Requirement
name

Compl
(Y/N,

Partial)

Requirement Satisfaction Metaclass Exten-
sion

SysML
Diagram
Chapter

Ver-
sion

6.5 Mandatory
Requirements

6.5.1 Structure N/A Structure diagrams include block
definition, internal block, and
package diagrams

Structural
Constructs

6.5.1.1 System hierar-
chy

Y Block composition (black or white
diamond) in a block definition
diagram and parts in internal
block diagrams are the primary
mechanisms for representing
system hierarchy.

SysML::Block,
UML::Association,
SysML::BlockProp-
erty

Blocks 1.0

a. Subsystem
(logical or
physical)

 Y Typically represented by a set of
logical or physical parts in an
internal block diagram that real-
ize one or more system opera-
tions. The corresponding
sequence diagram and activity
diagram with swim lanes can
represent a hybrid of structure
and behavior.

SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

b. Hardware
(i.e. electrical,
mechanical,
optical)

 Y Represented by a block or part. SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

c. Software Y Represented by a block or part or
a UML component.

SysML::Block,
SysML::BlockProp-
erty,
UML::Component

Blocks 1.0

d. Data Y Represented by a block or part.
Refer to input/output require-
ments in 6.5.2.1.1 and 6.5.2.5 for
data flows.

SysML::Block,
SysML::BlockProp-
erty, SysML::Value-
Type,
UML::DataType

Blocks 1.0

e. Manual pro-
cedure

 Y Represented by a block or part.
Can also be represented by the
standard UML stereotype <<doc-
ument>>.

SysML::Block,
SysML::BlockProp-
erty,
UML::Document

Blocks 1.0
SysML Specification v1.0 Draft 223

f. User/person Y Represented by a block or part.
External users are also repre-
sented as actors in a use case
diagram.

SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

g. Facility Y Represented by a block or part. SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

h. Natural
object

 Y Represented by a block or part. SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

i. Node Y Represented by a block or part. SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

6.5.1.2 Environment Y Environment is one or more enti-
ties that are external to the sys-
tem of interest and can be
represented as a block or part of
a broader context. Also, repre-
sented as actors in use cases.

SysML::Block,
SysML::BlockProp-
erty

Blocks,
Use Case

1.0

6.5.1.3 System inter-
connection

Internal block diagram shows
connections using parts, ports,
and connectors.

SysML::Block,
SysML::BlockProp-
erty, UML Associa-
tion,
UML::Connec-
tor:SysML::Nested-
ConnectorEnd

Blocks 1.0

6.5.1.3.1 Port Y A port defines an interaction
point on a block or part that
enables the user to specify what
can flow in/out of the block/part
(flow port) or what services the
block/part requires or provides
(Standard Port). Ports are con-
nected using connectors.

SysML::Standard-
Port,
UML::Interface,
SysML::FlowPort,
SysML::FlowSpecifi-
cation,
SysML::FlowProp-
erty

Ports and
Flows

1.0

6.5.1.3.2 System bound-
ary

Y The enclosing block for an inter-
nal block diagram and its ports.

SysML::Block
SysML::Standard-
Port,
SysML::FlowPort

Blocks,
Ports and
Flows

1.0
224 SysML Specification v1.0 Draft

6.5.1.3.3 Connection Y A connector binds two ports to
support interconnection. A con-
nector can be typed by an asso-
ciation. A logical connector can
be allocated to a more complex
physical path depicting a set of
parts, ports, and connectors
(refer to allocation). Note: A con-
nector has limited decomposi-
tion capability at this time.

UML::Association,
UML::Connector,
SysML::NestedCon-
nectorEnd

Blocks 1.0

6.5.1.4 Deployment of
components to
nodes

Y A structural allocation relation-
ship enables the allocation
(deployment) of one structural
element to another.

SysML::Allocation,
SysML::Allocated,
UML::NamedEle-
ment

Allocations 1.0

a. Y Software part, block or compo-
nent deployed to a hardware part
or block (processor or storage
device) .

SysML::Allocation,
SysML::Allocated,
SysML::Block,
SysML::BlockProp-
erty,
UML::Component

Allocations 1.0

b. Y Generalized deployment relation-
ship between a deployed ele-
ment and its host.

SysML::Allocation,
SysML::Allocated,
SysML::Block,
SysML::BlockProp-
erty

Allocations 1.0

c Y Deployed element and host can
be decomposed using blocks
and parts.

SysML::Block,
SysML::BlockProp-
erty

Allocations 1.0

 6.5.2 Behavior N/A Behavior diagrams include activ-
ity, sequence, and state machine
diagrams. Communication dia-
grams, interaction overview dia-
grams, and timing diagrams are
interaction diagrams that are not
included in SysML. Use case dia-
grams are also viewed as a
behavior diagram in that they
represent the functionality in
terms of the usages of the sys-
tem, but do not depict temporal
relationships and associated
control flow or input/output flow.

Behavioral
Constructs

6.5.2.1 Functional
Transforma-
tion of Inputs to
Outputs

 A behavior is the generalized
form of a function with inputs and
output parameters. Activity is a
subclass of behavior.

UML::Behavior Activities
SysML Specification v1.0 Draft 225

6.5.2.1.1 Input/Output Y Inputs and outputs can be repre-
sented as parameters of activi-
ties, object nodes flowing
between action nodes, and as
item flows between parts in an
internal block diagram. Note:
Object nodes are more precisely
represented by pins on action
nodes.

UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

a Y Parameters, object nodes, and
item properties are typed by clas-
sifiers (blocks or value types)
that can have properties.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

b Y The classifiers that represent the
things that flow (type of parame-
ter, object node, and item prop-
erty) can be decomposed and
specialized.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows,
Blocks

1.0

c Y "ItemFlows" associate the things
that flow with the connectors that
bind the ports. The parameters
and object nodes are bound to
the corresponding activities and
actions.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

6.5.2.1.2 System store Partial Stored items can be represented
as parts of a block, and also rep-
resented in an activity diagram
as object nodes or central buffer
nodes.

SysML::Block,
SysML::BlockProp-
erty,
UML::ObjectNode
UML::CentralBuffer-
Node

Blocks,
Activities

1.0

a Partial Object nodes in an activity dia-
gram can represent depletable
stores, and a data store node
can represent non-depletable
stores.

UML::ObjectNode,
UML::DataStoreN-
ode

Activities 1.0

b Y A stored item can be the same
type of classifier as an input or
output in both an internal block
diagram and an activity diagram.
The classifier supports different
roles (store vs. flow).

SysML::Block,
SysML::BlockProp-
erty, UML::Object-
Node,
UML::DataStoreN-
ode

Blocks,
Activities

1.0
226 SysML Specification v1.0 Draft

6.5.2.1.3 Function Y Activity specifies a generic sub-
class of behavior that is used to
represent a function definition in
activity diagrams, sequence dia-
grams, and state-machine dia-
grams. Activities contain
CallBehaviorActions that call
(invoke) other activities to sup-
port execution of the generic
behaviors.

UML::Activity Activities,
Interac-
tions,
State
Machines

1.0

a Y Behaviors and the associated
parameters are named (i.e.
name of activity and activity
parameter node).

UML::Behavior Activities,
Interac-
tions,
State
Machines

1.0

b Y The action semantics define dif-
ferent types of actions that
include CreateObject, Destroy-
Object, ReadStructuralFeature
(monitor), and WriteStructureal-
Feature (update). A CallBehavior
action is a generalized action
that can call any behavior (activ-
ity, interaction, state).

UML::CreateObjec-
tAction, UML::Dele-
teObjectAction, the
various object modi-
fication actions in
UML, monitoring
with UML::Accept-
EventAction

Activities,
Interac-
tions,
State
Machines

1.0

c Y The object nodes (pins) bind
input and output parameters to
actions.

UML::ObjectNode,
UML::Pin

Activities 1.0

d Y The queuing semantics for object
nodes are specified. The default
queuing is FIFO, but other forms
of queuing including LIFO,
ordered, and unordered as
defined by the enumeration for
ObjectNodeKind.

UML::Behavior,
SysML::InputPin,
SysML::ObjectNode

Activities 1.0

e Partial Resource constraints to support
an execution can be specified by
Preconditions and PostCondi-
tions. The constraints can apply
to resources that are generated,
consumed, produced, and
released, such as inputs and out-
puts, or the availability of mem-
ory or CPU. The constraints
imposed on the resources can be
further modeled using parametric
diagrams.

UML::Constraint,
SysML::Constraint-
Block

Activities,
Constraint
Blocks

1.0
SysML Specification v1.0 Draft 227

f Y Refer to c UML::ObjectFlow,
UML::Pin

Activities 1.0

g. Y An activity can be decomposed
into lower level actions that
invoke other activities.

UML::Activity,
UML::CallBehavior-
Action, UML::Activi-
tyParameterNode,
UML::ObjectFlow,
UML:: Pin

Activities 1.0

h. Y An action has control inputs that
can enable the execution of a
function, and a control value
input from a control operator that
can both enable or disable an
execution of a function. An exe-
cution of a function can also be
terminated when it is enclosed in
an interruptible region. Alterna-
tively, state machine diagrams
can be used to enable or disable
execution upon transition events.

UML::Action,
UML::Interrupt-
ibleActivityRegion,
SysML::Con-
trolValue,
UML::State

Activities,
State
Machines

1.0

i Y A computational expression can
be used to specify the behavior
(i.e. activity) that is invoked by an
action or an action that repre-
sents a primitive function such as
an arithmetic expression. Spe-
cific math expressions may be
included in a math model library.
The expressions should be rep-
resented in a formal mathemati-
cal language and specify the
language if they are to be inter-
preted by a computational
engine.

UML::Activity,
UML::Action

Activities,
Interac-
tions,
State
Machines

1.0
228 SysML Specification v1.0 Draft

j Y A continuous or discrete rate ste-
reotype can be applied to inputs
and outputs. Inputs and outputs
are discrete by default. A time
continuous input or output is an
input or output whose value can
change in infinitely small incre-
ments of time. An activity can
accept the continuous inputs and
provide continuous outputs while
executing if the inputs and out-
puts are also streaming. An
alternative approach is to contin-
uously invoke an activity that
does not have streaming inputs
or outputs, in which case each
execution of an activity accepts
the inputs at the start of execu-
tion and produces the output at
the completion of execution.

SysML::Rate
SysML::Continous,
SysML::Discrete
UML::Parameter
(isStream=Value)

Activities,
State
Machines

1.0

k Partial Different actions can invoke con-
current executions of the same
generalized behavior. Actions
can have multiplicity.

UML::Behavior,
UML::Action

Activities 1.0

6.5.2.2 Function acti-
vation/deacti-
vation

 N/A Actions can be activated and
deactivated using multiple mech-
anisms within SysML as
described below including control
flows, control operators, and
interruptible regions.

Activities,
Interac-
tions,
State
Machines

1.0

6.5.2.2.1 Control input Y Control flows in activity dia-
grams provide the control input.
Control flow is represented in
state machine diagrams by a
transitions which activate states
and in sequence diagrams by the
passing of messages.

UML::ActivityEdge,
UML::ControlFlow,
UML::Transition,
UML::Message,
SysML::Con-
trolValue

Activities,
Interac-
tions,
State
Machines

1.0

a Y Multiple control flows in an activ-
ity diagram that are input to a sin-
gle activity node (i.e. action) are
assumed to be "anded" together.

SysML::Con-
trolValue,
SysML::Input-
Pin.isControl=true
for control queuing

Activities 1.0

b Y Control inputs are discrete val-
ued inputs that can enable or dis-
able an activity node.

SysML::Con-
trolValue

Activities 1.0
SysML Specification v1.0 Draft 229

c Y In activity diagrams, the activity
is invoked (enabled) when a
token is received by the calling
action. This includes tokens from
all mandatory inputs and control
inputs.

UML::Action,
UML::ControlFlow,
UML::ActivityEdge

Activities 1.0

d Y In activity diagrams, a control
operator can produce an output
control value to disable the exe-
cution of an activity. An action
enclosed within an interruptible
region also can disable the exe-
cution of an activity. In state
machine diagrams, transition
events can disable the actions in
a state.

UML::Action,
UML::Interrupt-
ibleActivityRegion,
SysML::Con-
trolValue,
UML::State

Activities,
State
Machines

1.0

e Y An executing activity with non-
streaming inputs and outputs ter-
minates when it completes its
transformation and produces an
output value. An executing activ-
ity with continuous streaming
inputs will terminate when it
receives a disable from a control
value and/or a signal that termi-
nates the actions within an inter-
ruptible region. A
TimeExpression can be specified
in a control operator or can signal
a termination in an interruptible
region. An activity can also be
terminated based on events,
including timeout events, on a
transition in a state machine dia-
gram. In state machine dia-
grams, completion events occur
upon completion of an activity.

UML::Activity,
UML::Interrupt-
ibleActivityRegion,
SysML Con-
trolValue,
UML::TimeExpres-
sion, UML::State

Activities,
State
Machines

1.0

f Y The enabling of actions without
explicit control flows as inputs
are enabled based on the control
associated with its inputs.

UML::Action,
UML::ObjectNode

Activities 1.0

g Y A control flow connects the con-
trol inputs from one activity node
to another. The control input can
also be the output control value
of a control operator.

SysML::Con-
trolValue,
UML::Parameter,
UML::ControlFlow

Activities 1.0
230 SysML Specification v1.0 Draft

6.5.2.2.2 Control opera-
tor

 Y A control operator provides the
mechanism apply control logic to
enable and disable activity
nodes.

SysML::ControlOp-
erator, SysML::Con-
trolValue

Activities 1.0

a Y Control Nodes such as joins,
forks, etc. provide capability to
activate activity nodes based on
"and" and "or" logic. A SysML
Control Operator provides the
additional capability to disable an
activity node.

UML::ControlNode,
SysML::ControlOp-
erator, SysML::Con-
trolValue,
UML::Parameter

Activities 1.0

b Y A join specification can be used
to specify arbitrarily complex
logic for enabling an activity
node. A control operator can also
be used to specify complex logic
for enabling and disabling an
activity node.

 UML::JoinNode
with join specifica-
tion, UML::Parame-
ter,
SysML::ControlOp-
erator, SysML::Con-
trolValue

Activities 1.0

c Y The control nodes identified
below provide the basic control
logic for enabling activity nodes.
Note: multi exit functions are
supported by parameter sets.
Also, Interaction Operators pro-
vide similar logic in Sequence
Diagrams.

UML::ControlNode,
UML::InteractionOp-
erator

Activities,
Interac-
tions

1.0

c1 Y Decision nodes in activity dia-
grams support selection. The
"alt" Interaction Operator sup-
ports selection in sequence dia-
grams.

UML::Decision-
Node, UML::Interac-
tionOperator.Alt

Activities,
Interac-
tions

1.0

c2 Y Forks in activity diagrams sup-
port a single input flow generat-
ing multiple concurrent output
flows. The “par” Interaction Oper-
ator supports concurrent mes-
sage flow in Sequence
Diagrams.

UML::Fork,
UML::InteractionOp-
erator.par

Activities,
Interac-
tions

1.0

c3 Y A join “and's” multiple input flows
together resulting in a single out-
put flow.

UML::Join Activities 1.0

c4 Y A merge results a single output
flow upon arrival of the first of
multiple input flows.

UML::Merge Activities 1.0
SysML Specification v1.0 Draft 231

c5 Y Decision and loop nodes sup-
port iteration and looping. The
“loop” Interaction Operator sup-
ports loops in sequence dia-
grams.

UML::Decision-
Node, UML::LoopN-
ode,
InteractionOpera-
tor.loop

Activities,
Interac-
tions

1.0

c6 N

6.5.2.2.3 Events and
conditions

Partial Triggers and constraints as
guards provide the mechanism
for modeling events and condi-
tions.

Activities,
Interac-
tions,
State
Machines

1.0

a Partial A trigger can be used to specify
an event. Events can be associ-
ated with control flows in activity
diagrams, transitions in state
machine diagrams, and sending
and receiving of messages in
sequence diagrams.

UML:: Trigger,
UML::AcceptEven-
tAction including
UML::TimeTrigger,
UML::EventOc-
curence in Interac-
tions,Note: Failure
event can be result
in various types of
actions that termi-
nate an Interrupt-
ible Region in
Activities, etc.

Activity,
Interac-
tions, State
Machines

1.0

b Y Refer to a) above UML::ActivityEdge,
UML::Trigger

Activity,
Interac-
tions, State
Machines

1.0

c Y Conditions can be specified as
constraints that define guards to
control execution of behaviors.

UML::Constraint
(guard)

Activity,
Interac-
tions, State
Machines

1.0

6.5.2.3 Function-
based behav-
ior

Y Activity diagrams provide the
capability to model function
based behavior.

UML:: Activity Activities 1.0
232 SysML Specification v1.0 Draft

6.5.2.4 State-based
behavior

State machine diagrams provide
the capability to model state
based behavior with the specific
modeling constructs indicated.
Note 2 response: Activities are
common to each type of behavior
including both function based
and state based. Note 3
response: A state is defined
based on some invariant being
true. The invariant can include
reference to certain property val-
ues.

UML::StateMachine State
Machines

1.0

a Y State UML::State State
Machines

1.0

b Y Simple state UML::State,
isSimple=True

State
Machines

1.0

c Y Composite states can contain
one region or two or more
orthogonal (concurrent) regions,
each with one or more mutually
exclusive disjoint states

UML::State
isComposite=True

State
Machines

1.0

d Y Transitions between states which
are triggered by events with
guard conditions.

UML::Transition,
UML::Trigger

State
Machines

1.0

e Y Transition within a composite
state

UML::Transition
(TransitionK-
ind=Internal)

State
Machines

1.0

f Y Pseudo states include joins,
forks and choice

UML::PseudoState State
Machines

1.0

g Y Transitions between states which
are triggered by events with
guard conditions.

UML::Activity State
Machines

1.0

h Y Entry, exit, doActivities are per-
formed upon entry or exit from a
state or while in a state.

UML::Activity State
Machines

1.0
SysML Specification v1.0 Draft 233

i Y State machine semantics define
the ordering of actions that are
completed when exiting a com-
posite state (refer to UML transi-
tion semantics). When a
composite state is exited, the exit
actions are executed beginning
with the most nested state.

UML::State (Note:
refer to semantics)

State
Machines

1.0

j Y Entry and exit actions must be
completed prior to exiting a state.
A doActivity does not need to be
completed to execute.

UML::State (Note:
refer to semantics)

State
Machines

1.0

k Y Send and receive signals can be
sent via actions to interact with
other objects.

UML::SendSigna-
lAction

State
Machines

1.0

l Partial The failure and/or exception
states are user defined and have
no uniquely defined representa-
tion. The use of exit points on
states can be used to exit the
state when a failure event
occurs.

UML::State State
Machines

1.0

6.5.2.4.1 Activation time Y The interval of time that an activ-
ity or state is active can be mod-
eled by a UML Time Trigger or
Time Interval and corresponding
Time Expression (refer to UML
trigger and interval notation).
Note: A UML timing diagram is
not included in SysML at this
time, but could be used to model
the time associated with the
occurrence of events, such as
state changes, or changes in
property values.

UML::SimpleTime Activities,
Interac-
tions, State
Machines

1.0

6.5.2.5 Allocation of
behavior to
systems

Y An allocation relationship pro-
vides a generalized capability to
allocate one model element to
another.

SysML::Allocation,
SysML::Allocated,
UML::NamedEle-
ment

Allocations 1.0
234 SysML Specification v1.0 Draft

a Y In general, behaviors such as
activities, interactions, and state
machines are owned by a
Behaviored Classifier which can
correspond to an block. The
SysML Allocation relationship
can be used to explicitly allocate
behaviors to blocks. Alternatively,
activity partitions (swim lanes)
can be used to allocate the
action and/or activity to a part
and/or block.

UML::Behaviored-
Classifier and
UML::Behavior
(owned behavior) -
Refer to UML Com-
mon Behaviors,
SysML::Allocate,
SysML::AllocateAci-
tivtyPartition

Alloca-
tions,
Activities

1.0

b Partial An object node in an activity dia-
gram can be allocated to an item
that flows in an internal block dia-
gram using an allocation relation-
ship. Note: the object node is
typed by the same classifier as
the item that flows. See req't
6.5.2.1.1.

SysML::Block (type
of ObjectNode to
type of ItemProp-
erty), UML::Object-
Node,
UML::Property

Alloca-
tions,
Activities,
Ports and
Flows

1.0

 6.5.3 Property N/A Properties and their relation-
ships are represented in SysML
using properties of blocks in con-
junction with constraint blocks to
capture the relationships
between them.

Blocks,
Constraint
Blocks

6.5.3.1 Property type Y Primitive types, data types, and
value types provide the capability
to model the different types of
quantitative properties.

UML:: Primitive-
Type,
UML::DataType,
SysML::Value Type

Blocks 1.0

a Y Primitive type. UML::Integer

b Y Primitive type. UML::Boolean

c Y Primitive type. UML::Enumeration

d Y Primitive type. UML::String

e Y Primitive type. SysML::Real

f Y Data type. SysML::Complex

g Y Composite data type made up of
primitive types.

Refer to a-f

h Y Composite data type made up of
primitive types.

Refer to a-f

6.5.3.2 Property value Y Auxiliary 1.0
SysML Specification v1.0 Draft 235

a Y Value properties are typed by a
value type or data type and have
an associated value.

SysML::BlockProp-
erty,
SysML::ValueType,
UML::DataType,

Blocks 1.0

b Y A value type can include a
dimension and units such as
length and feet or meters.

SysML::ValueType
(unit and dimension
are defined as
blocks in a model
library)

Blocks 1.0

c Y A value property is a block prop-
erty that is typed by a value type
that can have an associated
probability distribution on its val-
ues.

SysML::ValueType,
SysML::Distribution-
Definition

Blocks 1.0

d Y Source data can be included in a
comment attached to the prop-
erty or a user defined stereotype
could be applied.

UML::Comment Model Ele-
ments

1.0

e Y Reference data can be included
in a comment attached to the
property or a user defined ste-
reotype could be applied.

UML::Comment Model Ele-
ments

1.0

6.5.3.3 Property asso-
ciation

A value property can be a feature
of any classifier (.i.e. block)

SysML::Block,
SysML::BlockProp
erty

Blocks 1.0

a Y Blocks, parts, or items that flow
can have (or reference) proper-
ties.

SysML::Block,
SysML::BlockProp-
erty

Blocks 1.0

b Y A function (activity) can have
properties since it is a class

UML::Activity Activities 1.0

c Partial An event is specified by a trigger
which is an element. The ele-
ment does not have properties.A
signal which is sent upon the
occurrence of the event can have
properties.

UML::Signal 1.0

d Y A property can be related to
other properties through a con-
straint property

SysML::Constraint-
Block,
SysML::Constraint-
Property

Constraint
Blocks

1.0
236 SysML Specification v1.0 Draft

6.5.3.4 Time property Y Time can be treated as a prop-
erty, typed by a Real that can
represent either continuous or
discrete time. Time ultimately
derives from clocks which can be
continuous or discrete. Clocks
can be modeled as blocks which
have a time property that can be
bound to a parameter of a con-
straint property (e.g. equation).
Time durations, start and stop
times, etc. can be modeled using
the UML time model for time trig-
gers, time expressions, inter-
vals, and durations. Note: More
elaborate models of time and
clocks can be found in the UML
schedulability, performance, and
time profile.

SysML::Block,
SysML::BlockProp-
erty,
SysML::ValueType,
SysML::Constraint-
Property,
SysML::Constraint-
Parameter,
UML::SimpleTime-
Package

Blocks,
Constraint
Blocks,
Interac-
tions

1.0

6.5.3.5 Parametric
model

 Y The parametric diagram supports
modeling of constraints which
bind parameters of the con-
straints to value properties.

SysML::Constraint-
Block,
SysML::Constraint-
Property
SysML::Constraint-
Parameter,
SysML::BlockProp-
erty,
UML::Connector,
SysML::NestedCon-
nectorEnd

Constraint
Blocks

1.0

a Y Constraints blocks and their
usages (constraint properties)
specify the mathematical rela-
tionships/constraints between
constraint parameters.

SysML::Constraint-
Block,
SysML::Constraint-
Parameter

Constraint
Blocks

1.0

b Partial Mathematical and logical expres-
sions can be defined in SysML in
a reference language, but there
is no interpreter built into SysML.
The range of values can be spec-
ified via value properties and
probability distributions per
6.5.3.2a-c.

SysML::BlockProp-
erty,
SysML::Distribution-
Definition

Blocks 1.0

c Y The reference language for inter-
preting the constraint can be
included as part of the Con-
straintBlock along with the com-
partment for the expression.

SysML::Constraint-
Block

Constraint
Blocks

1.0
SysML Specification v1.0 Draft 237

6.5.3.6 Probe N No specific mechanization has
been provided. In the testing pro-
file, there is a mechanism to cap-
ture data and create actions in
response to the data. This will be
investigated in a future version of
SysML.

N

 6.5.4 Requirement N/A The requirements diagram pro-
vides the basic capability for
relating text based requirements
to other SysML models.

Requireme
nts

1.0

6.5.4.1 Requirement
specification

Y A requirement is a stereotype of
a class in SysML. The various
subtypes of requirement are
specified as subclasses of the
the requirement stereotype and
can include specific properties
and constraints on what model
elements can satisfy the sub-
class of requirement. A sample
set of subclasses of require-
ments are included in the Non-
Normative Extensions Appendix
C.

SysML::Require-
ment

Require-
ments,
NonNor-
mative
Exten-
sions, Pro-
files &
Model
Libraries

1.0

Note 1 Y Values and tolerances can be
specified as part of the text prop-
erty or via property values and
distributions per 6.5.3.2a-c.

Requirement.text,
SysML::ValueProp-
erty

Require-
ments,
Blocks

1.0

Note 2 Y There is no explicit subclass of
requirement as a stakeholder
need, but a requirement can be
named or subclassed as “stake-
holderNeed”.

SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0

Note 3 Y User defined requirements can
be added via subclasses to spec-
ify any type of life cycle require-
ment of interest to the modeler.

SysML::Require-
ment

Require-
ments,
NonNor-
mative
Exten-
sions,
Profiles &
Model
Libraries

1.0

a Y Operational requirement SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0
238 SysML Specification v1.0 Draft

b Y Functional requirement SysML::functional-
Requirement

Require-
ments,
NonNor-
mative
Extensions

1.0

c Y Interface requirement SysML::interfaceRe-
quirement

Require-
ments,
NonNor-
mative
Extensions

1.0

d Y Performance requirement SysML::perfor-
manceRequirement

Require-
ments,
NonNor-
mative
Extensions

1.0

e Y Activation/Deactivation (Control)
requirement

SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0

f Y Storage requirement SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0

g Y Physical requirement SysML::physicalRe-
quirement

Require-
ments,
NonNor-
mative
Extensions

1.0

h Y Design constraint SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0

i Y Specialized requirement SysML::Require-
ment

Require-
ments,
NonNor-
mative
Extensions

1.0
SysML Specification v1.0 Draft 239

j Y Measure of effectiveness SysML::moe Require-
ments,
NonNor-
mative
Extensions

1.0

6.5.4.2 Requirement
properties

Y A requirement includes default
properties for id and text. Other
properties can be added via ste-
reotype properties.

SysML::Require-
ment

Require-
ments,
NonNor-
mative
Exten-
sions, Pro-
files &
Model
Libraries

1.0

6.5.4.3 Requirement
relationships

 Y The requirement relationships
include the relationships contain-
ment, trace, deriveReqt, satisfy,
verify and refine relationships.

Require-
ments

1.0

a Y A derive relationship relates a
derived (target) requirement to a
source requirement.

SysML::deriveReqt Require-
ments

1.0

b Y A satisfy relationship relates the
model elements (i.e. the design)
to the requirements that are sat-
isfied.

SysML::satisfy Require-
ments

1.0

c Y Goals, capabilities, or usages of
systems are often expressed
using use cases. Subgoals can
be represented using the include
and extend relationships
between use cases. Require-
ments can be related to use
cases using the refine relation-
ship. Requirements use the con-
tainment relationship to
breakdown an existing require-
ment into its containing require-
ments.

UML:UseCase,
UML::Include,
SysML::Require-
ment, UML:refine

Require-
ments, Use
Case

1.0

6.5.4.4 Problem Y A problem is an extension of a
comment that can be attached to
any model element. Note: This
could also be used to represent
issues.

SysML::Problem Model Ele-
ments

 2.0

6.5.4.5 Problem asso-
ciation

Y Refer to 6.5.4.4 SysML::Problem Model Ele-
ments

2.0

6.5.4.6 Problem cause N 2.0
240 SysML Specification v1.0 Draft

6.5.5 Verification N/A The following responses to the
Verification requirements will
include references to the Testing
Profile [OMG Adopted Specifica-
tion
ptc/03-08-03] which is not cur-
rently part of SysML but is
intended to be evaluated for inte-
gration with version 1.1 of SysML
[refer to white paper on integrat-
ing SysML with Testing Profile]

Require-
ments

6.5.5.1 Verification
Process

a Y The SysML verify relationship
between one or more system
requirements and one or more
test cases represents the method
for verifying that a system design
satisfies its requirements. A veri-
fied system design implies that
the system will satisfy its require-
ments if the component parts sat-
isfy their allocated requirements.
An alternative approach to cap-
ture the verify relationship is to
associate a test case with a sat-
isfy relationship using the ratio-
nale.

SysML::Verify,
SysML::Rationale

Require-
ments,
Model Ele-
ments

1.0

b Y The SysML verify relationship
between one or more require-
ment(s) and one or more test
case(s) is used to verify that the
implemented system design
instances satisfy their require-
ments. Alternatively, a reference
to a TestCase using
SysML:Rationale may be
attached to a satisfy relationship.

SysML::Verify
SysML::Rationale

Require-
ments,
Model Ele-
ments

1.0

c Y A derive relationship between the
requirement being validated and
the higher level requirement or
need may have a Rationale
attached that references the vali-
dation method(s).

SysML:deriveReqt
SysML::Rationale

Require-
ments,
Model Ele-
ments

1.0
SysML Specification v1.0 Draft 241

Note 1 Y Verification methods of analysis
and similarity may be modeled
as a Rationale with reference to
the specific analysis report or
other reference data. Verification
methods including Test, Inspec-
tion, and Demonstration may be
modeled as a TestCase.

SysML::Rationale,
SysML::TestCase

Require-
ments

1.0

Note 2 Partial Validation methods are user
defined. A rationale can refer-
ence the user defined methods.

SysML::Rationale Model Ele-
ments

1.0

6.5.5.2 Test case Partial A test case refers to the method
for verifying a requirement.
Note: The testing profile associ-
ates a test case with a behavior
that can include the specific
method and associated input
stimulus and response.

SysML::TestCase Require-
ments

1.0

Note 1 Partial Refer to above note on the test-
ing profile.

1.x

Note 2 Partial The test criteria can be estab-
lished via the requirement

1.x

Note 3 Partial Test cases can contain other test
cases, like any other named ele-
ment.

SysML::TestCase Require-
ments

1.0

6.5.5.3 Verification
result

Partial The result of a SysML:TestCase
may be expressed through its
verdict attribute (Testing Profile)

SysML::TestCase,
SysML::Verdict

Require-
ments

1.0

6.5.5.4 Requirement
verification

Partial A constraint may be used to
relate the required value to the
verification result.

SysML::Constraint-
Property;
SysML::TestCase,
SysML::Rationale

Require-
ments,
Constraint
Blocks

1.0

6.5.5.5 Verification
procedure

Partial A rationale can be associated
with the test case or the satisfy
relationship between a require-
ment and a design, and refer-
ence a verification procedure.
Note: The testing profile will
associate a behavior with a test
case which can be implemented
by a specific procedure.

SysML::TestCase,
SysML::Rationale

Require-
ments,
Model Ele-
ments

1.x

Note
242 SysML Specification v1.0 Draft

6.5.5.6 Verification
system

Partial A verification system can be
modeled as any other system
(block) or it can be modeled as
the system environment. How-
ever, the future integration with
the testing profile is intended to
provide explicit modeling of the
verification system.

SysML::Block Blocks 2.0

 6.5.6 Other N/A

6.5.6.1 General rela-
tionships

 Y SysML includes several standard
UML relationships as described
below.

a Y An association relationship. UML::Association Blocks 1.0

b Y A package contains packageable
elements and can represent col-
lections of elements.

UML::Package,
UML::Package-
ableElement;
UML::ownedMem-
ber

Class 1.0

c Partial Blocks can be decomposed into
parts that are typed by other
blocks using composition (refer
to Reqt 6.5.1.1). The complete-
ness of the decomposition is not
explicitly represented.

SysML::Block,
SysML::BlockProp-
erty, UML::Associa-
tion (composition)

Blocks 1.0

d Y A dependency relationship. UML::Dependency Model Ele-
ments

1.0

e Y Generalization/specialization
relationship. Generalization sets
provide the means to partition
specializations to support further
categorization.

UML::Generaliza-
tion, UML::Generali-
zationSet

Blocks 1.0

f Y Instantiation is modeled using
Instance Specifications to
uniquely identify a classifier.
Instances are represented as a
property specific value with a
unique set of values.

UML::Instanc-
eSpecification,
UML::InstanceValue

Blocks 1.0
SysML Specification v1.0 Draft 243

6.5.6.2 Model views Partial A view represents the model
from a particular viewpoint. Both
the view and the viewpoint are
represented in SysML. The view
is a stereotype of package that
identifies the set of model ele-
ments that conform to the view-
point, and the viewpoint specifies
the stakeholders, their purpose,
concerns and the construction
rules (language and methods) to
specify the view. Note: The
model elements that depict the
view are visually represented in
diagrams, tables, and other nota-
tion. Integrity between model
views is accomplished by creat-
ing a well formed model. This in
part results from the constraints
imposed by the language, and in
part is defined by the specific
methodology and tools that are
employed. Navigation among
views results from a tool vendor
implementation.

SysML::View,
SysML::Viewpoint
SysML::Conform

Model Ele-
ments

1.0

6.5.6.3 Diagram types Diagram
Appendix

1.0

a The standard UML diagram
types that are needed to support
the requirements have been
included in SysML. Some addi-
tional diagram types provide
some redundant capabilities, but
have been preserved to allow
flexibility in representations and
methodologies. For example, the
sequence diagrams along with
activity and state diagrams pro-
vide overlapping capability for
representing behavior. A few dia-
gram types have not been
included explicitly in SysML,
although they are not precluded
from use along with SysML.

N/A Diagram
Appendix

1.0
244 SysML Specification v1.0 Draft

b The requirements diagram and
parametric diagram have been
added to address the require-
ments of this RFP. In addition, an
informal mechanism has been
added to represent diagram
usages. This enables renaming
and constraining the usage of a
particular diagram type for a par-
ticular usage.

SysML::Diagra-
mUsage

Diagram
Appendix

1.0

6.5.6.4 System role Partial A part in a block represents the
role for a classifier in the context
of the enclosing block. It defines
the relationship between an
instance of the classifier that
types the part and an instance of
the block that encloses the part.
This is a primary mechanism for
providing a unique context for a
part of a whole (enclosing block).
The part may use only a subset
of the behavior and properties of
the class that types the part.
However, the specific mecha-
nism for containing the subset
has not been explicitly defined.

SysM::Block,
SysML:BlockProp-
erty

Blocks 1.0

6.6 Optional
Requirements

 N/A

 6.6.1 Topology N

a N 2.0

b N 2.0

 6.6.2 Documenta-
tion

Y A document (stereotype of arti-
fact).

UML::Document Diagram
Appendix

1.0

a Y The document stereotype can
include stereotype properties to
represent information about the
document.

UML::Document Profiles &
Model
Libraries

1.0

b Y The trace relationship relates a
document to other model ele-
ments.

UML::Trace Diagram
Appendix

1.0

c N The ability to represent the text of
the document in terms of the
descriptions provided by the
related (traced) model elements
is accomplished by a tool imple-
mentation.
SysML Specification v1.0 Draft 245

 6.6.3 Trade-off stud-
ies and analy-
sis

Partial Parametric diagrams can depict
the relationship between mea-
sures of effectiveness and vari-
ous system properties (including
probability distributions on their
values) to evaluate the effective-
ness of a particular system
model. Specific constructs for cri-
teria, weighting, and alternatives
are planned for a future version
of SysML to support modeling of
trade studies.

SysML::moe,
SysML::objective-
Function,
SysML::Constraint-
Property

Constraint
Blocks,
NonNor-
mative
Extensions

1.0

a Y Alternative models can be speci-
fied via organization of models/
packages. Model libraries can be
used to establish reusable por-
tions of the model.

UML::Model,
UML::Package

Model Ele-
ments,
Profiles &
Model
Libraries

1.0

b Partial Criteria can be modeled as prop-
erties typed by value types or as
Requirements

SysML::BlockProp-
erty,
SysML::ValueType,
SysML::Require-
ment

Blocks,
Require-
ments

1.0,
2.0

c Y Measures of effectiveness are
modeled as a subclass of block
property that represents a value
property. A constraint can repre-
sent the objective function.

SysML::moe,
SysML::Constraint-
Property

NonNor-
mative
Exten-
sions, Con-
straint
Blocks

1.0

6.6.4 Spatial repre-
sentation

 N

6.6.4.1 Spatial refer-
ence

 N

6.6.4.2 Geometric
relationships

 N

6.6.5 Dynamic struc-
ture

 Partial

a Y The action semantics provide the
capability for creating and
destroying objects.

UML::CreateObjec-
tAction,
UML::DestroyObjec-
tAction

Action
(UML
Spec)

1.0

b Partial The capability is partially pro-
vided by 6.6.5a.

2.0

c N 2.0

d N 2.0
246 SysML Specification v1.0 Draft

 6.6.6 Executable
semantics

Partial The action semantics are
intended to provide execution
semantics. There is no formal
graphical syntax for this.

UML::Action Action in
UML Spec

1.0

 6.6.7 Other behav-
ior modeling
paradigms

 Y A UML behavior is a generalized
behavior that can accommodate
a wide range of behavior model-
ing paradigms. This include func-
tion based, state based, and
message based behavior
(sequence diagrams).

UML::Behavior Activities,
Interac-
tions,
State
Machines

1.0

 6.6.8 Integration with
domain-spe-
cific models

Partial SysML is a general purpose lan-
guage that will integrate with
other types of domain specific
models. This is accomplished in
part by mapping SysML via XMI
to the AP233 data interchange
standard. In addition, the para-
metric diagram is intended to
provide a capability to integrate
with domain specific engineering
analysis models.

Model
Inter-
change

1.x,
2.0

 6.6.9 Testing Model Partial SysML is intended to be inte-
grated with the UML Testing Pro-
file. Refer to Response to Reqt
6.5.5 above.

SysML::TestCase Require-
ment

2.0

 6.6.10 Management
Model

 N
SysML Specification v1.0 Draft 247

248 SysML Specification v1.0 Draft

SysML Specification v1.0 Draft 249

Appendix F. Terms and Definitions
The SysML glossary is included as a support document ad/2006-03-04 to this specification. The terms and definitions are
referred to in the SysML specification and are derived from multiple sources including the UML Superstructure (formal/05-
07-04) and the UML for Systems Engineering RFP (ad/03-03-41).

Appendix G. BNF Diagram Syntax Definitions
Editorial Comment: This appendix has not been updated since an earlier draft version of the SysML specification. BNF pro-
ductions below include notations that are no longer included by the current SysML specification and leave out other notations
that are included. Only selected diagram types of SysML are currently included. Detailed productions for specific diagram
types will be updated during the finalization phase of the SysML specification. In the meantime, these productions show the
approach to specification of language syntax that a hybrid graphical-textual form of BNF can support. This appendix is for
illustration only. The diagram elements tables in each SysML chapter, along with descriptions of diagram extensions, provide
the current normative specification of SysML notations.

G.1 Overview
This appendix provides detailed definition of the graphical and textual elements that may appear in SysML diagrams. It speci-
fies the structure of these diagrams using an extension of Backus-Naur Form (BNF) to define both textual and graphical syn-
tax. BNF is a widely used notation for defining a language grammar.

The BNF definition of diagram elements in this appendix is more complete, both in identifying the diagram elements that may
be present and the combinations in which they may appear, than the diagram summary tables contained in the preceding chap-
ters of the SysML specification. Tool implementors may use the BNF definition to make sure the diagram elements they sup-
port are well-formed according to the grammar of the SysML language. Users of the SysML language may use the BNF
definition as a comprehensive guide to the permitted forms of diagrams and diagram elements, including optional elements
and notational variants, even though the BNF formalism may be less familiar or convenient to a user than examples of syntax
produced according to the grammar. For both tool implementors and users, the grammar of diagram elements is only an partial
definition of valid diagram structures. Diagrams also impose additional constraints on how diagram elements may be used, for
example to interpret the diagrams in consistent ways according to the meaning of a model, above the level of the context-free
language grammar defined by BNF.

G.2 Summary of BNF syntax definition conventions
Backus-Naur Form (BNF) is a notation to specify the grammar of a context-free language. A context-free language is defined
by a set of production rules, which specify the permitted expansions of symbols that group lower-level elements of the lan-
guage. A terminal symbol is a symbol that has no further expansion. BNF defines a notation for the specifying production
rules containing terminal and non-terminal symbols of a language grammar.

The BNF notation used in this appendix is based on the variant of the BNF notation used by UML to specify selected elements
of textual syntax. It has been extended to support the semi-formal definition of the hybrid graphical and textual syntax of
SysML diagrams. Following is a summary of the conventions of the BNF used in this Appendix:

• Symbols not defined by literal graphics or text are enclosed in angle brackets (e.g., <symbol>).

• Production rules for non-terminal symbols are expressed by the ‘::=’ operator followed by an expression specifying the
permitted symbols of the expansion.

• An expression may be either a sequence of subexpressions and operators, or a two-dimensional rendering of a grammati-
cal element containing subexpressions.

• Terminal symbols consisting of literal text strings are enclosed in single quotes (e.g., ‘=’).

• Symbols represented by graphical elements are represented by an informal rendering of the graphical element within the
expansion, possibly augmented by informal comments enclosed in parentheses.

• An optional element of an expression is specified by enclosing it in square brackets (e.g., [<symbol>])

• Zero or more repetitions of an expression is specified by an asterisk following the expression: (e.g., <symbol>*).
250 SysML Specification v1.0 Draft

• One or more repetitions of an expression is specified by a plus-sign following the expression: (e.g., <symbol>+).

• Alternative choices within an expression are separated by the ‘|’ symbol (e.g., <alternative-A> | <alternative-B>).

• A sequence of subexpressions and operators to be grouped as a single expression is enclosed in parentheses
(e.g. ([<symbol-1>] <symbol-2>*)

• A comment is specified by a text string enclosed in parentheses, either within a graphical expansion of a symbol, or fol-
lowing a production and starting on a new line.

• Alternative productions for a symbol may be specified by multiple productions in which the symbol appears to the left of
the ‘::=’ operator. This extension to standard BNF permits the grammar of multiple diagrams to be distributed across mul-
tiple subsections of the total definition.

• A connection to a symbol defined in another production is specified by preceding the referenced symbol with an amper-
sand (e.g., &<symbol>). This extension to standard BNF assists in the definition of two-dimensional connection topolo-
gies, in which the ends of graphical path elements are connected to graphical node elements already defined in other
productions.

Symbols in this appendix which have graphical productions follow a naming convention of having capitalized names without
internal hyphens, while those with textual productions have lower-case names with internal hyphens as needed.

G.3 BNF definition of SysML diagrams

G.3.1 Top-level productions

<SysMLDiagram> ::=
<PackageDiagram> |<BlockDefinitionDiagram> | <InternalBlockDiagram> | <InstanceDiagram> |
<ParametricDiagram>

(additional productions for this symbol can appear in subsections below)

G.3.2 General-purpose symbols

<name-elements> ::= [<name>] <stereotype-icon>*
(icons located in upper-right-hand corner of containing node)

<name> ::= [<keywords>] [<namespace-visibility>] <name-string>

<keywords> :: <stereotype-icon>* [(‘«’ <name-string> ‘»’)+ | ‘«’ <name-string> (‘,’ <name-string>)+ ‘»’]
(no whitespace may appear immediately inside the ‘«’ ‘»’ characters)

<namespace-visibility> ::= ‘+’ | ‘-’

<name-string> ::=
(terminal symbol consisting of string of characters in some character set encoding)

<body-text> ::=
(terminal symbol consisting of string of characters in some character set encoding,
which may include various forms of text formatting)

<digit-string> ::=
(terminal symbol consisting of string of digit characters in some character set encoding)

<stereotype-icon> ::=
(terminal symbol consisting of a graphical icon which may be shown instead of a stereotype keyword)

<custom-notation> ::=
(terminal symbol consisting of any graphical notation for an element to which a stereotype has been applied)
SysML Specification v1.0 Draft 251

G.3.3 Diagram elements defined in Model Elements chapter

<PackageDiagram> ::=
package [<name-string>]

<DiagramElement>*

<DiagramElement> ::=
<Package> | <PublicPackageImport> | <PrivatePackageImport> | <PackageContainment> |
<CrossCuttingElement> |
<custom-notation>

(additional productions for this symbol appear in other subsections below)

<Package> ::= <PackageWithNameInTab> | <PackageWithNameInside>

<PackageWithNameInTab> ::=

<DiagramElement>*

[<package-name>]

<PackageWithNameInside> ::=

[<package-name>]

<package-name> ::= <name-elements> <element-import>*

<element-import> ::= ‘{‘ ‘element’ (‘import’ | ‘access’) [‘as’ <name-string>‘ <qualified-name>}’

<qualified-name> ::= <name-string> [‘::’ <name-string>]*

<PublicPackageImport> ::= ('«import»' | '«element import»')
[<name-string>]

&<Package> &<Package>

<PrivatePackageImport> ::= ('«access»' | '«element access»')
[<name-string>]

&<Package> &<Package>

<PackageContainment> ::= &<Package>

&<Package> &<Package>

(one or more
branches)

<CrossCuttingElement> ::= <Comment> | <Constraint> | <Dependency>

<Comment> ::=
[&<ModelElement> <dashed-line-connection>] * <CommentNoteBox>

<dashed-line-connection> ::=
252 SysML Specification v1.0 Draft

<CommentNoteBox> ::=

[<keywords>]
<body-text>

<stereotype-icon>*

<Constraint> ::= <ConstraintNote> | <ConstraintTextNote> |
<ConstraintAsDashedLine> | <ConstraintAsDashedLineCrossingPaths>

<ConstraintNote> ::=
[&<ModelElement> <dashed-line-connection>]+ <ConstraintNoteBox>

<ConstraintNoteBox> ::=

<constraint-string>

<stereotype-icon>*

<ConstraintTextNote> ::= &<ModelElement> <constraint-string>
(constraint string located near element)

<ConstraintAsDashedLine> ::= <constraint-string>
&<DiagramElement> &<DiagramElement><stereotype-icon>*

(located anywhere near path)

<ConstraintAsDashedLine> ::= <constraint-string>
&<DiagramElement> &<DiagramElement><stereotype-icon>*

(located anywhere near path)

<ConstraintAsDashedLineCrossingPaths> ::=

(line crosses one or more
graphical paths)

<constraint-string>

&<DiagramElement >+

<stereotype-icon>*
(located anywhere near path)

<constraint-string> ::= ‘{‘ [<name> ‘:’] <value-specification> ‘}’’

<Dependency> ::= [<name>]
&<Diagram-Element> &<DiagramElement>

<stereotype-icon>*
(located anywhere near path)

<Dependency> ::=
[<name>]

(one or more
branches)

(one or more
branches)

&<Diagram Element>

<stereotype-icon>*
(located anywhere near path)

&<Diagram Element>

&<Diagram Element>

&<Diagram Element>

<Dependency> ::=
[<name>]

(one or more
branches)

(one or more
branches)

&<Diagram Element>

<stereotype-icon>*
(located anywhere near path)

&<Diagram Element>

&<Diagram Element>

&<Diagram Element>

<value-specification> ::=
<expression> | <opaque-expression> |
<literal-boolean> | <literal-integer> | <literal-unlimited> | <literal-null> | <literal-string>

<expression> ::=
<name-string> [‘(‘ [<value-specification>] (‘,’ [<value-specification>]] ‘)’)* |
<body-text>
SysML Specification v1.0 Draft 253

<opaque-expression> ::=
[‘{‘ <language-identifier> ‘}’] <body-text>

<language-identifier> ::= <name-string>

<literal-boolean> ::= ‘true’ | ‘false’
<literal-integer> ::= <digit-string>
<literal-unlimited> :: <literal-integer> | ‘*’
<literal-null> ::= ‘null’
<literal-string> ::= ‘”’ <body-text> ’”’

G.3.4 Diagram elements defined in Blocks chapter

G.3.4.1 Diagram elements defined in Block Definition diagrams

<DiagramElement> ::= <BlockDefinitionElement>
(additional production for previously defined symbol)

<BlockDefinitionDiagram> ::=
block definition <name-string>

<BlockDefinitionElement>*

<BlockDefinitionElement> ::= <Package> | <CrossCuttingElement> | <BlockDefinitionNode> | <BlockDefinitionPath>

<BlockDefinitionNode> ::= <BlockOrValueType>

<BlockDefinitionPath> ::= <Association> | <Generalization> | <BlockNamespaceContainment>

<BlockOrValueType> ::=
<definition-name-elements>

<Compartment>*

<definition-name-elements> ::= [<definition-name>] <stereotype-icon>*
(icons located in upper-right-hand corner of containing node)

<definition-name> ::= [<definition-keywords>] [<namespace-visibility>] <name-string>

<definition-keywords> :: <stereotype-icon>* [(‘«’ <definition-keyword> ‘»’)+ |
‘«’ <definition-keyword> (‘,’ <definition-keyword>)+ ‘»’]

(no whitespace may appear immediately inside the ‘«’ ‘»’ characters)

<definition-keyword> ::= ‘block’ | ‘value’ | <name-string>
(additional productions for this symbol appear in subsections below)

<Compartment> ::= <StereotypePropertyCompartment> | <NamespaceCompartment> | <StructureCompartment> |
<FeatureCompartment>
254 SysML Specification v1.0 Draft

<StereotypePropertyCompartment> ::=

<property-value>*

'«'<name-string'»'

(no whitespace may appear immediately inside the ‘«’ ‘»’ characters)

<property-value> ::= <name-string> ‘=’ <value-specification> (, <value-specification>)*

<NamespaceCompartment> ::=

<DiagramElement>*

'namespace'

<StructureCompartment> ::=

<CrossCuttingElement>*
<InternalProperty>*

<Connector>*

'structure'

<FeatureCompartment> ::=
<CompartmentLabel>

<compartment-element-list>*

<CompartmentLabel> ::= ‘operations’ | ‘properties’ | ‘parts’ | ‘references’ | ‘values’ | ‘constraints’ | ‘<name-string-in-italics>
(additional productions for this symbol appear in subsections below)

 <name-string-in-italics> ::=
(terminal symbol consisting of string of characters in some character set encoding, shown in italic font)

<compartment-element-list> ::=
<block-constraint>* |
(<static-operation> | <operation>)* |
(<static-property> | <property>)*

<block-constraint> ::= ‘{‘ <constraint-text> ‘}’ | <property>

<static-operation> ::= <operation>

<operation> ::= [<block-visibility>] [<keywords>] <name-string> ‘(‘ [<parameter-list>] ‘)’ [‘:’ [<return-type>]]
‘{‘ <oper-modifier> [‘,’ <oper-modifier>]* ‘}’]

<parameter-list> ::= <parameter> [‘,’<parameter>]*

<parameter> ::= [<direction>] <parameter-name> ‘:’ <type-expression> [‘[‘<multiplicity>’]’] [‘=’ <value-specification>]
[‘{‘ <param-modifier> [‘,’ <param-modifier>]* ‘}’]

<direction> ::= ‘in’ | ‘out’ | ‘inout’

<param-modifier> ::= ‘ordered’ | ‘unique’ | <constraint-string>

<oper-modifier> ::= ‘query’ | ‘ordered’ | ‘unique’ | ‘redefines’ <oper-name> | <constraint-string>

<static-property> ::= <property>

<property> ::= [<block-visibility>] [‘/’] [<property-type-keywords>] <name-string> <property-declaration>
SysML Specification v1.0 Draft 255

<property-keywords> ::= <stereotype-icon>* [(‘«’ <property-keyword> ‘»’)+ |
‘«’ <property-keyword> (‘,’ <property-keyword>)+ ‘»’]

(no whitespace may appear immediately inside the ‘«’ ‘»’ characters)

<property-keyword> ::= ‘part’ | ‘reference’ | ‘value’ | <name-string>
(additional productions for this symbol can appear in subsections below)

<property-declaration> ::= [‘:’ <property-type>] [‘[‘ <multiplicity> ‘]’] [‘=’ <value-specification>]
 [‘{‘ <prop-modifier > [‘,’ <prop-modifier>]* ’}’]

<prop-modifier> ::= ‘constant’ | ‘readOnly’ | ‘ordered’ | ‘unique’ | ‘bag’ | ‘sequence’ | ‘seq’ | ‘union’ |
‘subsets‘ <property-name> | ‘redefines’ <property-name> |
‘unit’ = <unit-name> | ‘dimension’ = <dimension-name> | ‘distribution’ ‘=’ <distribution-spec> |
‘<prop-constraint>

<distribution-spec> ::= <distribution-name> ‘(‘ <distribution-param-spec>* ‘)’

<distribution-param-spec> ::= param-name ‘=’ <value-specification> ‘{‘ ‘unit’ ‘=’ <unit-name> ‘}’]

<block-visibility> ::=<namespace-visibility> | ‘#’ | ‘~’

<multiplicity> ::= <lower-bound> ‘..’ <upper-bound>

<Association> ::= <ReferenceAssociation> | <PartAssocation>

<ReferenceAssociation> ::= <BidirectionalReferenceAssociation> | <UnidirectionalReferenceAssocation>

<PartAssociation> ::= <BidirectionalPartAssociation> | <UnidirectionalPartAssocation>

<BidirectionalReferenceAssociation> ::=
[<association-label>]
(near middle of path)

&<end> &<end>
[<end-label>]
(anywhere near end)

[<end-label>]
(anywhere near end)

<UnidirectionalReferenceAssociation> ::=
[<association-label>]
(near middle of path)

&<end> &<end>
[<multiplicity>]
(anywhere near end)

[<end-label>]
(anywhere near end)

<BidirectionalPartAssociation> ::= [<association-label>]
(near middle of path)

&<end> &<end>
[<end-label>]
(anywhere near end)

[<end-label>]
(anywhere near end)

<BidirectionalPartAssociation> ::= [<association-label>]
(near middle of path)

&<end> &<end>

(two or more branches)

[<end-label>]
(anywhere near end)

[<end-label>]
(anywhere near end)

&<end>

<UnidirectionalPartAssociation> ::= [<association-label>]
(near middle of path)

&<end> &<end>
[<multiplicity>]
(anywhere near end)

[<end-label>]
(anywhere near end)

<UnidirectionalPartAssociation> ::= [<association-label>]
(near middle of path)

&<end> &<end>

(two or more branches)

[<multiplicity>]
(anywhere near end)

[<end-label>]
(anywhere near end)

&<end>

<end> ::= <BlockOrValueType>
256 SysML Specification v1.0 Draft

<association-label> ::= <association-name-and-modifiers> |
<reading-direction> <association-name-and-modifiers> |
<association-name-and-modifiers> <reading-direction>

<association-name-and-modifiers> ::= <name-string> [‘{‘ <assoc-modifier> [‘,’ <assoc-modifier>]* ‘}’]

<reading-direction> ::=

<reading-direction> ::=

<end-label> ::= <end-label-element>*
(end label elements may appear in any relative position as long as all elements are near the end)

<end-label-element> ::= <end-name> | <prop-modifier> | <multiplicity>

<end-name> ::= [<block-visibility>] [‘/’] [<keywords>] <name-string>

<Generalization> ::=
&<BlockOrValueType>&<BlockOrValueType>

<generalization-node> ::= <BlockOrValueType>

<Generalization> ::= &<BlockOrValueType>

&<BlockOrValueType> &<BlockOrValueType>

< generalization-set-constraint>

(two or more branches)

<GeneralizationSet> ::=

<generalization-set-constraint>

&<Generalization >+

(line crosses one or more
generalization branches)

<generalization-set-constraint> ::= ‘{‘ <set-constraint> [‘,’ <set-constraint>] ‘}’

<set-constraint> ::= ‘complete’ | ‘incomplete’ | ‘disjoint’ | ‘overlapping’

<BlockNamespaceContainment> ::=

(one or more branches)

&<BlockOrValueType> &<BlockOrValueType>

&<BlockOrValueType>

G.3.4.2 Diagram elements defined in Internal Block diagrams

<InternalBlockDiagram> ::=
internal block <name-string>

<CrossCuttingElement>*
<InternalProperty>*
<Connector>*
SysML Specification v1.0 Draft 257

<InternalProperty> ::=

<property-path-name >

<InternalProperty>*
<Connector>*

<Compartment>*

[<multiplicity>]

<InternalProperty> ::= <internal-property-label>

(additional productions for this symbol appear in subsections below)

<property-path-name> ::= [<property-keywords>] [<block-visibility>] <name-string> [‘.’ <name-string>]* [‘:’ [<type-name>]

<type-name> ::= <name-string> | ‘[‘ [<name-string>] ‘]’

<internal-property-label> ::= <property-path-name> [‘[‘ <multiplicity> ‘]’]

<Connector> ::= <BidirectionalConnector> | <UnidirectionalConnector>

<BidirectionalConnector> ::=
[<connector-label>]

(near middle of path)
&<InternalProperty>

[<end-label>]
(anywhere near end)

[<end-label>]
(anywhere near end)

&<InternalProperty>

<UnidirectionalConnector> ::=
[<connector-label>]

(near middle of path)
&<InternalProperty>

[<multiplicity>]
(anywhere near end)

[<end-label>]
(anywhere near end)

&<InternalProperty>

<connector-label> ::= [<name-string> ‘:’] [<name-string>]

G.3.4.3 Diagram elements defined in Instance diagrams

<InstanceDiagram> ::=
instance <name-string>

<Package>*
<CrossCuttingElement>*
<InstanceSpecification>*
<InstanceLink>*

<InstanceSpecification> ::=

<instance-label>

 <InstanceSpecification> ::=
<instance-label>

<value-specification>

<InstanceSpecification> ::=

<property-value>*

<instance-label>

258 SysML Specification v1.0 Draft

<InstanceSpecification> ::=

<PropertyInstance>*
<ConnectorInstance>*

<instance-label>

<PropertyInstance> ::=
<property-instance-label>

<value-specification>

<PropertyInstance> ::=

<property-value>*

<property-instance-label>

<PropertyInstance> ::=

<PropertyInstance>*
<ConnectorInstance>*

<property-instance-label>

<instance-label> ::= [<name-string>] ‘:’ [[<type-name> [‘,’ <type-name>]*]

<property-instance-label> ::= [<name-string>] ‘/’ [<name-string>] ‘:’ [[<type-name> [‘,’ <type-name>]*]

<InstanceLink> ::= <BidirectionalLink> | <UnidirectionalLink> | <BidirectionalPartLink> | <UnidirectionalPartLink>

<BidirectionalReferenceLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]
(anywhere near end)

[<name-string>]
(anywhere near end)

&<InstanceSpecification>

<UnidirectionalReferenceLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]

(anywhere near end)

&<InstanceSpecification>

<BidirectionalPartLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]
(anywhere near end)

[<name-string>]
(anywhere near end)

&<InstanceSpecification>

<BidirectionalPartLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]
(anywhere near end)

[<name-string>]
(anywhere near end)

&<InstanceSpecification>

(two or more branches)
&<InstanceSpecification>

<UnidirectionalPartLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]

(anywhere near end)

&<InstanceSpecification>

SysML Specification v1.0 Draft 259

<UnidirectionalPartLink> ::= [<name-string>]
(near middle of path)

&<InstanceSpecification>
[<name-string>]

(anywhere near end)

&<InstanceSpecification>

(two or more branches)
&<InstanceSpecification>

<ConnectorInstance> ::= <BidirectionaConnectorInstance> | <UnidirectionalConnectorInstance>

<BidirectionalConnectorInstance> ::=

[[<name-string>] ':' [<name-string>]]
(near middle of path)

&<PropertyInstance>
[<name-string>]
(anywhere near end)

[<name-string>]
(anywhere near end)

&<PropertyInstance>

<UnidirectionalConnectorInstance> ::=
[[<name-string>] ':' [<name-string>]]

(near middle of path)
&<PropertyInstance>

[<name-string>]
(anywhere near end)

&<PropertyInstance>

G.3.5 Diagram elements defined in Constraint Blocks chapter

G.3.5.1 Diagram elements defined in Block Definition diagrams

<definition-keyword> ::= ‘constraint’
(additional production for previously defined symbol)

<CompartmentLabel> ::= ‘parameters’

G.3.5.2 Diagram elements defined in Internal Block diagrams

<InternalProperty> ::= <InternalConstraintProperty>
(additional production for existing symbol)

<InternalConstraintProperty> ::=

<property-path-name >

<InternalProperty>*
<Connector>*

<Compartment>*

[<multiplicity>]

<property-keyword> ::= ‘constraint’
(additional production for existing symbol)
260 SysML Specification v1.0 Draft

G.3.5.3 Diagram elements defined in Parametric diagrams

<InternalBlockDiagram> ::=
parametric <name-string>

<CrossCuttingElement>*
<InternalProperty>*
<Connector>*
SysML Specification v1.0 Draft 261

	Table of Contents
	Table of Figures
	Table of Tables
	0 Preface for OMG submission
	0.1 Copyright waiver and trademark usage
	0.2 Submission contact point
	0.3 Guide to material in the submission
	0.4 Overall design rationale
	0.5 Statement of proof of concept
	0.6 Resolution of RFP requirements and requests
	0.7 Response to RFP issues to be discussed.
	0.8 Proposed specification
	0.9 Proposed compliance points
	0.10 Summary of requests versus requirements
	0.11 Changes or extensions required to adopted OMG specifications

	Part I - Introduction
	1 Scope
	2 Normative references
	3 Additional information
	3.1 Relationships to other standards
	3.2 How to read this specification
	3.3 Acknowledgements

	4 Language Architecture
	4.1 Design principles
	4.2 Architecture
	4.3 Extension mechanisms
	4.4 SysML diagrams

	5 Compliance
	5.1 Compliance with UML subset (UML4SysML)
	5.1.1 Compliance level contents

	5.2 Compliance with SysML extensions
	5.3 Meaning of compliance

	6 Language Formalism
	6.1 Levels of formalism
	6.2 Chapter specification structure
	6.3 Conventions and typography

	Part II - Structural Constructs
	7 Model Elements
	7.1 Overview
	7.2 Diagram elements
	7.2.1 Graphical nodes and paths

	7.3 UML extensions
	7.3.1 Diagram extensions
	7.3.1.1 Stereotype keywords or icons inside a comment note box
	Description

	7.3.1.2 UML diagram elements not included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	Description
	Constraints

	7.3.2.2 Problem
	Description

	7.3.2.3 Rationale
	Description

	7.3.2.4 View
	Description
	Attributes
	Constraints

	7.3.2.5 Viewpoint
	Description
	Attributes
	Constraints

	7.4 Usage examples

	8 Blocks
	8.1 Overview
	8.2 Diagram elements
	8.2.1 Block Definition Diagram
	8.2.1.1 Graphical nodes and paths

	8.2.2 Internal Block Diagram
	8.2.2.1 Graphical nodes and paths

	8.3 UML extensions
	8.3.1 Diagram extensions
	8.3.1.1 Block Definition Diagram
	Block and ValueType definitions
	Default «block» stereotype on unlabeled box
	Labeled compartments
	Constraints compartment
	Namespace compartment
	Structure compartment
	Unit and Dimension declarations
	Default multiplicities

	8.3.1.2 Internal Block Diagram
	Property types
	Block reference in diagram frame
	Compartments on internal properties
	Compartments on a diagram frame
	Property path name
	Nested connector end
	Property-specific type
	Default value compartment
	Default multiplicities

	8.3.1.3 UML diagram elements not included in SysML Block Definition Diagrams
	8.3.1.4 UML diagram elements not included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Block
	Description
	Attributes
	Constraints

	8.3.2.2 BlockProperty
	Description
	Constraints

	8.3.2.3 DistributedProperty
	8.3.2.4 Dimension
	Constraints

	8.3.2.5 NestedConnectorEnd
	Description
	Attributes
	Constraints

	8.3.2.6 Unit
	Constraints

	8.3.2.7 ValueType
	Description
	Attributes
	Constraints

	8.3.3 Model Libraries
	8.3.3.1 Complex
	Description
	Attributes

	8.3.3.2 Real

	8.4 Usage examples
	8.4.1 Wheel hub assembly
	8.4.2 SI Value Types
	8.4.3 Design configuration for SUV EPA fuel economy test

	9 Ports and Flows
	9.1 Overview
	Standard Ports
	Flow Ports
	Item Flows

	9.2 Diagram elements
	9.2.1 Extensions to Block Definition Diagram.
	9.2.2 Extensions to Internal Block Diagram

	9.3 UML extensions
	9.3.1 Diagram Extensions
	9.3.1.1 FlowPort
	9.3.1.2 FlowProperty
	9.3.1.3 FlowSpecification
	9.3.1.4 ItemFlow

	9.3.2 Stereotypes
	9.3.2.1 Block
	Description

	9.3.2.2 Standard Port
	Description

	9.3.2.3 FlowDirection
	Description

	9.3.2.4 FlowPort
	Description
	Attributes
	Constraints

	9.3.2.5 FlowProperty
	Description
	Constraints

	9.3.2.6 FlowSpecification
	Description
	Constraints

	9.3.2.7 ItemFlow
	Description
	Attributes
	Constraints

	9.4 Usage examples
	9.4.1 Standard Ports
	9.4.2 Atomic Flow Ports and Item Flows
	9.4.3 Non-Atomic Flow Ports and Flow Specification

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram elements
	10.2.1 Block Definition Diagram
	10.2.1.1 Graphical nodes

	10.2.2 Parametric Diagram
	10.2.2.1 Graphical nodes

	10.3 UML extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	Constraint block definition
	Parameters compartment

	10.3.1.2 Parametric diagram
	Round-cornered rectangle notation for constraint property
	«constraint» keyword notation for constraint property
	Small square box notation for an internal property

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock
	Description

	10.3.2.2 ConstraintProperty
	Description
	Constraints

	10.4 Usage examples
	10.4.1 Definition of constraint blocks on a block definition diagram
	10.4.2 Usage of constraint blocks on a parametric diagram

	Part III - Behavioral Constructs
	11 Activities
	11.1 Overview
	Control as data
	Continuous systems
	Probability
	Activities as classes
	Timelines

	11.2 Diagram elements
	11.3 UML extensions
	11.3.1 Diagram extensions
	11.3.1.1 Activity
	Notation
	Constraints

	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	Presentation Option

	11.3.1.4 ObjectNode
	Notation
	Constraints

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	Description
	Constraints

	11.3.2.3 Discrete
	Constraints

	11.3.2.4 NoBuffer
	Description
	Constraints

	11.3.2.5 Overwrite
	Description
	Constraints

	11.3.2.6 Optional
	Description
	Constraints

	11.3.2.7 Probability
	Description
	Constraints

	11.3.2.8 Rate
	Description
	Constraints

	11.3.3 Model library
	11.3.3.1 ControlValue
	Description
	Constraints

	11.4 Usage examples

	12 Interactions
	12.1 Overview
	12.2 Diagram elements
	12.2.1 Sequence Diagram

	12.3 UML extensions
	12.3.1 Diagram extensions
	12.3.1.1 Exclusion of communication diagram, interaction overview diagram and timing diagram

	12.4 Usage examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram elements
	13.2.1 State Machine Diagram

	13.3 UML extensions
	13.4 Usage examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram elements
	14.2.1 Use Case Diagram

	14.3 UML extensions
	14.4 Usage examples

	Part IV - Crosscutting Constructs
	15 Allocations
	15.1 Overview
	15.2 Diagram elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML extensions
	15.3.1 Diagram extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate relationship rendering
	15.3.1.3 Allocated property compartment format
	15.3.1.4 Allocated property callout format
	15.3.1.5 AllocatedActivityPartition label

	15.3.2 Stereotypes
	15.3.2.1 Allocate(from Allocations)
	Description
	Constraints

	15.3.2.2 Allocated(from Allocations)
	Description
	Attributes

	15.3.2.3 AllocateActivityPartition(from Allocations)
	Description
	Constraints

	15.4 Usage examples
	15.4.1 Behavior Allocation of Actions to Parts, and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram elements
	16.2.1 Requirements Diagrams

	16.3 UML extensions
	16.3.1 Diagram extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement notation
	16.3.1.3 Requirement property callout format
	16.3.1.4 Requirements on other diagrams
	16.3.1.5 Requirements table

	16.3.2 Steretoypes
	16.3.2.1 Copy (from Requirements)
	Description
	Constraints

	16.3.2.2 DeriveReqt (from Requirements)
	Description
	Constraints

	16.3.2.3 Requirement (from Requirements)
	Description
	Attributes
	Constraints

	16.3.2.4 RequirementRelated (from Requirements)
	Description
	Attributes

	16.3.2.5 TestCase (from Requirements)
	Description
	Constraints

	16.3.2.6 Satisfy (from Requirements)
	Description
	Constraints

	16.3.2.7 Verify (from Requirements)
	Description
	Constraints

	16.4 Usage examples
	16.4.1 Requirement decomposition and traceability
	16.4.2 Requirements and design elements
	16.4.3 Requirements Reuse
	16.4.4 Verification procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram elements
	17.2.1 Profile Definition in Class Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML extensions
	17.4 Usage examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that uses a Profile
	17.4.4 Guidance on whether to use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Part V - Appendices
	Appendix A. Diagrams
	A.1 Overview
	A.2 Guidelines

	Appendix B. Sample Problem
	B.1 Purpose
	B.2 Scope
	B.3 Problem Summary
	B.4 Diagrams
	B.4.1 Package Overview (Structure of the Sample Model)
	B.4.1.1 Package Diagram - applying the SysML Profile
	B.4.1.2 Package Diagram - showing package structure of the model

	B.4.2 Setting the Context (Boundaries and Use Cases)
	B.4.2.1 Internal Block Diagram - Setting Context
	B.4.2.2 Use Case Diagram - Top Level Use Cases
	B.4.2.3 Use Case Diagram - Operational Use Cases

	B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	B.4.3.1 Sequence Diagram - Drive Black Box
	B.4.3.2 State Machine Diagram - HSUV Operational States
	B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	B.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	B.4.4.2 Requirement Diagram - Derived Requirements
	B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	B.4.4.4 Table - Requirements Table

	B.4.5 Breaking down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	B.4.5.1 Block Definition Diagram - Automotive Domain
	B.4.5.2 Block Definition Diagram - Hybrid SUV
	B.4.5.3 Internal Block Diagram - Hybrid SUV
	B.4.5.4 Block Definition Diagram - Power Subsystem
	B.4.5.5 Internal Block Diagram for the “Power Subsystem”

	B.4.6 Defining Ports and Flows
	B.4.6.1 Block Definition Diagram - ICE Interface
	B.4.6.2 Internal Block Diagram - CANbus
	B.4.6.3 Block Definition Diagram - Fuel Flow Properties
	B.4.6.4 Parametric Diagram - Fuel Flow
	B.4.6.5 Internal Block Diagram - Fuel Distribution

	B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	B.4.7.1 Block Definition Diagram - Analysis Context
	B.4.7.2 Package Diagram - Performance View Definition
	B.4.7.3 Parametric Diagram - Measures of Effectiveness
	B.4.7.4 Parametric Diagram - Economy
	B.4.7.5 Parametric Diagram - Dynamics
	B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

	B.4.8 Defining, Decomposing, and Allocating Activities
	B.4.8.1 Activity Diagram - Acceleration (top level)
	B.4.8.2 Block Definition Diagram - Acceleration
	B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	B.4.8.5 Table - Acceleration Allocation
	B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Appendix C. Non-Normative Extensions
	C.1 Activity diagram extensions
	C.1.1 Overview
	C.1.2 Stereotypes
	C.1.3 Stereotype Examples

	C.2 Requirements diagram extensions
	C.2.1 Overview
	C.2.2 Stereotypes
	C.2.3 Stereotype Examples

	C.3 Parametric diagram extensions for Trade Studies
	C.3.1 Overview
	C.3.2 Stereotypes.
	C.3.3 Stereotype Examples

	C.4 Model Library for Dimensions and Units
	C.5 Distribution Extensions
	C.5.1 Overview
	C.5.2 Stereotypes
	C.5.3 Usage Example

	Appendix D. Model Interchange
	D.1 Overview
	D.2 Context for Model Interchange
	D.3 XMI Serialization of SysML
	D.4 Overview of AP233
	D.4.1 Scope of AP233
	D.4.2 AP233 Development Approach & Status
	D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms
	4.4.3.1 Modular Architecture
	4.4.3.2 The Modeling Language for AP233
	4.4.3.3 Model Interchange Mechanisms

	D.4.4 AP233 - SysML Alignment & Mapping Model
	D.4.5 Generic Procedures for SysML and AP233 Model Interchange
	4.4.5.1 File-based Exchange
	4.4.5.2 API-Driven Model Interchange

	Appendix E. Requirements Traceability
	Appendix F. Terms and Definitions
	Appendix G. BNF Diagram Syntax Definitions
	G.1 Overview
	G.2 Summary of BNF syntax definition conventions
	G.3 BNF definition of SysML diagrams
	G.3.1 Top-level productions
	G.3.2 General-purpose symbols
	G.3.3 Diagram elements defined in Model Elements chapter
	G.3.4 Diagram elements defined in Blocks chapter
	G.3.4.1 Diagram elements defined in Block Definition diagrams
	G.3.4.2 Diagram elements defined in Internal Block diagrams
	G.3.4.3 Diagram elements defined in Instance diagrams

	G.3.5 Diagram elements defined in Constraint Blocks chapter
	G.3.5.1 Diagram elements defined in Block Definition diagrams
	G.3.5.2 Diagram elements defined in Internal Block diagrams
	G.3.5.3 Diagram elements defined in Parametric diagrams

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

