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1 Introduction

1.1 Overview of Modelica

Modelicais alanguage for modeling of physical systems, designed to support effective library development and
model exchange. It is a modern language built on non-causal modeling with mathematical equations and object-
oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scopeof the specification

The Modelicalanguage is specified by means of a set of rules for translating a model described in Modelicato
the corresponding model described as aflat hybrid DAE. The key issues of the trandation (or instantiation in
obj ect-oriented terminology) are:

e Expansion of inherited base classes

e Parameterization of base classes, local classes and components

*  Generation of connection equations from connect statements
The flat hybrid DAE form consists of:

» Declarations of variables with the appropriate basic types, prefixes and attributes, such as " parameter
Real v=5".

Equations from equation sections.

»  Function invocations where an invocation is treated as a set of equations which are functions of all input
and of all result variables (number of equations = number of basic result variables).

Algorithm sections where every section is treated as a set of equations which are functions of the
variables occurring in the algorithm section (number of equations = number of different assigned
variables).

When clauses where every when clause is treated as a set of conditionally eval uated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number of
equations = number of different assigned variables).

Therefore, aflat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes
true).

The Modelica specification does not define the result of simulating a model or what constitutes a mathematically
well-defined model.

1.3 Definitionsand glossary

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in [ ], comments are set in italics.

Term Definition
Component An element defined by the production component-clause in the Modelica
grammar.
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Element Class definitions, extends-clauses and component-clauses declared in a class.

I nstantiation The tranglation of a model described in Modelica to the corresponding model
described as a hybrid DAE, involving expansion of inherited base classes,
parameterization of base classes, local classes and components, and generation of
connection equations from connect statements
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2 Modelica syntax

2.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[ 1] optional
{ } repeat zero or nore tines

The following lexical units are defined:
IDENT = NONDIG T { DIGT | NONDIGA T }

NONDIG T = "_" | letters "a" to "z" | letters "A" to "Z"
STRING = """ { S-CHAR | S-ESCAPE } """
S- CHAR = any member of the source character set except double-quote """, and backslash "\ "
S_ ESC:APE = Il\ T | Il\ nn I Il\ ?Il I n \ \ n I
Il\all | Il\ " | "\f" | Il\ r.1" | Il\ I'" | "\t" | II\VII

b
DGAT=0] 1] 2| 3| 4] 5] 6] 7| 8] 9
UNSI GNED INTEGER = DIG T { DIG T }
UNSI GNED_NUMBER = UNSI GNED_I NTEGER [ "." [ UNSI GNED_| NTEGER | ]
[ (e| E) [ "+ | "-" ] UNSIGNED | NTEGER ]

Note: string constant concatenation "a" "b" becoming "ab" (asin C) isreplaced by the "+" operator in Modelica.

Modelica uses the same comment syntax as C++ and Java. Inside acomment, the sequence <HTML> . . ..
</ HTML> indicates HTML code which may be used by tools to facilitate model documentation.

Keywords and built-in operators of the Modelica language are written in bold face. Keywords are reserved
words and may not be used as identifiers.

2.2 Grammar

2.2.1 Stored definition

stored_definition:
[ within [ name ] ";" ]
{ [ final ] class_definition ";" }

2.2.2 Classdefinition

class_definition :
[ encapsul ated ]
[ partial ]
( class | nodel | record | block | connector | type |
package | function )
| DENT cl ass_specifier

cl ass_specifier
string_coment conposition end | DENT
| "=" nane [ array_subscripts ] [ class_nodification ] comrent

composition
el enent _|i st
{ public element_Ilist |
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protected el ement _|ist |
equati on_cl ause
al gorithm cl ause

[ external [ | anguage_specification ]
[ external _function_call ] ";" [ annotation ";" ] ]

| anguage_specification :
STRI NG

external _function_cal
[ component _reference "=" ]
IDENT "(" [ expression { "," expression} ] ")"

el enent _|i st

{ element ";" | annotation ";" }

el enent
i mport _cl ause
ext ends_cl ause |
[ final ]
[ inner | outer ]
( ( class_definition | conponent_cl ause) |
repl aceable ( class_definition | component_cl ause)
[ constrai ni ng_cl ause] )

i mport_cl ause
import ( IDENT "=" name | nane ["." "*"] ) comment

2.2.3 Extends
ext ends_cl ause :
extends name [ class_nodification ]

constrai ni ng_cl ause
ext ends_cl ause

2.24 Component clause

conponent _cl ause:
type_prefix type_specifier [ array_subscripts ] conponent |i st

type_prefix :
[ flow ]
[ discrete | parameter | constant ] [ input | output ]

type_specifier
name

conponent _|i st
component _declaration { "," conponent_decl aration }

conponent _decl aration :
decl arati on comment

decl aration :
| DENT [ array_subscripts ] [ nodification ]

Modelical.4 9
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2.2.5 Modification

nodi fi cati on
class_nodification [ "=" expression ]
| "=" expression
| ":=" expression

class_nodification :
"(" { argunent list } ")"

argument _| i st
argunent { ",

argunent }

ar gument
el enent _nodi fication
| el ement_redecl aration

el ement _nodi fi cation
[ final ] component _reference nodification string_coment

el enent _redecl aration
redecl are
( ( class_definition | conponent_cl ausel) |
repl aceable ( class_definition | conponent_cl ausel)
[ constrai ni ng_cl ause] )

conponent _cl ausel :
type_prefix type_specifier conponent _decl aration

2.2.6 Equations

equati on_cl ause
equation { equation ";" | annotation ";" }

al gorithmcl ause :
algorithm{ algorithm";" | annotation ";" }

equation :
( sinple_expression expr essi on
| conditional _equation_e
| for_clause_e
| connect _cl ause
| when_cl ause_e
| assert_clause )

conmment
al gorithm:
( conponent _reference ( ":=" expression | function_call )
| "(" expression_list ")" ":=" conmponent_reference function_cal

| conditional _equation_a
| for_clause_a
| while_clause
| when_cl ause_a
| assert_clause )
coment

condi ti onal _equation_e :
i f expression then

Modelical.4
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{ equation ";" }

{ elseif expression then
{ equation ";" }

[ else
{ equation ";" }

end if

condi tional _equation_a :
i f expression then

{ algorithm™";" }

{ elseif expression then
{ algorithm™";" }

[ else
{ algorithm";" }

end if

for_clause_e :
for IDENT in expression |oop
{ equation ";" }
end for

for_clause_a :
for IDENT in expression |oop
{ algorithm";" }
end for

whi l e_cl ause :
whi | e expression | oop
{ algorithm";" }
end while

when_cl ause_e :
when expression then
{ equation ";" }
end when;

when_cl ause_a :
when expression then
{ algorithm";" }
{ el sewhen expression then
{ algorithm™";" } }
end when

connect _cl ause
connect "(" connector_ref "," connector_ref ")"

connector_ref :
| DENT [ array_subscripts ] [ "." IDENT [ array_subscripts ] ]

assert_cl ause :
assert "(" expression "," STRING{ "+" STRING} ")"
termnate "(" STRING { "+" STRING} ")"

Modelical.4 11
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2.2.7 Expressions

expression :
si npl e_expressi on
| if expression then expression else expression

si mpl e_expression :
| ogi cal _expression [ ":" logical _expression [

| ogi cal _expression ]| ]

| ogi cal _expression :
logical _term{ or logical _term}

| ogical _term:
| ogical _factor { and | ogical _factor }

| ogi cal _factor
[ not ] relation

relation :
arithnetic_expression [ rel _op arithmetic_expression ]

rel _op :
" <|l | " <:|l | " >|l | " >:|l | " ::H | " <>|l

arithnetic_expression :
[ add_op ] term{ add _op term}

add_op :

nogn | n_mn

term:
factor { mul _op factor }

mul _op :
"y n | u/u
factor

primary [ "~" primary ]

primary
UNSI GNED_NUVBER

| STRING

| false

| true

| component _reference [ function_call ]
| "(" expression_list ")"

| "[" expression_list { ";

| "{" expression_list "}"

expression_list } "]"
name :
IDENT [ "." nanme ]

conponent _reference
| DENT [ array_subscripts ] [ "." conponent_reference ]

function_cal
“(" function_argunents ")"

Modelical.4 12



function_argunents :
expression_list
| named_ar gunment s

nanmed_ar gunments: [nanmed_argunent { "
nanmed_argunent: | DENT "=" expression

expression_|ist

expression { "," expression }

array_subscripts :

"[" subscript { "," subscript } "]"

subscri pt
":" | expression

coment
string_coment [ annotation ]

string_conment :
[ STRRNG{ "+" STRING } ]

annot ation :
annotation class_nodification

Modelica Language Specification

nanmed_ar gument }]
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3 Modédica semantics

3.1 Fundamentals

Instantiation is made in a context which consists of an environment and an ordered set of parents.
3.1.1 Scoping and name lookup

3.1.1.1 Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside another class
definition (the parent) precedes its enclosing class definition in this set.

Enclosing all class definitionsis an unnamed parent that contains all top-level class definitions, and not-yet read
classes defined externally as described in section The order of top-level class definitionsin the unnamed
parent is undefined.

During instantiation, the parent of an element being instantiated is a partially instantiated class. [ For example,
this means that a declaration can refer to a name inherited through an extends clause.]

[Example:

class C1 ... end Ci1;
class C ... end C2;
class C3

Real x=3;

Cly;

class ¢4

Real z;

end C4;

end C3;

The unnamed parent of class definition C3 contains C1 and C2 in arbitrary order. When instantiating class
definition C3, the set of parents of the declaration of x isthe partially instantiated class C3 followed by the
unnamed parent with C1 and C2. The set of parents of z is C4, C3 and the unnamed parent in that order.]

3.1.1.2 Static name lookup

Names are looked up at class instantiation to find names of base classes, component types, etc.
For a simple name [ not composed using dot-notation] lookup is performed as follows:
»  Firstlook for implicitly declared iteration variables if inside the body of a for-loop, section

¢ When an element, equation or algorithm isinstantiated, any name islooked up sequentially in each member
of the ordered set of parents until amatch is found or a parent is encapsulated. In the latter case the lookup
stops except for the predefined types, functions and operators defined in this specification.

e Thislookup in each scopeis performed as follows

1. Among declared named elements (class_definition and component_declaration) of the class (including
elements inherited from base-classes).

2. Among the import names of qualified import statementsin the lexical scope. The import name of
i mport A. B. C, isCandtheimport nameof i nport D=A. B. C, isD.

Modelical.4 14
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3. Among the public members of packages imported via unqualified import-statementsin the lexical
scope. It isan error if this step produces matches from several unqualified imports.

[ Note, that import statements defined in inherited classes are ignored for the lookup, i.e. import statements are
not inherited.]

For a composite name of the form A.B [or A.B.C, etc.] lookup is performed as follows:
e Thefirstidentifier [A] islooked up as defined above.

e If thefirst identifier denotes a component, the rest of the name[e.g., B or B.C] islooked up among the
declared named component elements of the component.

» If theidentifier denotes a class, that classistemporarily instantiated with an empty environment and using
the parents of the denoted class. Therest of the name [e.g., B or B.C] islooked up among the declared
named elements of the temporary instantiated class. If the class does not satisfy the requirements for a
package, the lookup is restricted to encapsulated elements only.

[ The temporary class instantiation performed for composite names follow the same rules as class instantiation
of the base classin an extends clause, local classes and the type in a component clause, except that the
environment is empty.]

Lookup of the name of an imported package or class, e.g. A.B.C in the statementsimport A.B.C; import
D=A.B.C;import A.B.C.*, deviatesfrom the normal lexical lookup by starting the lexical lookup of the first
part of the name at the top-level.

Qualified import statements may only refer to packages or elements of packages, i.e. in "import A.B.C;" or
"import D=A.B.C" A.B must be a package. Unqualified import statements may only import from packages, i.e.
in"import A.B.*;" A.B must be apackage. [Note, "import A;" A can be any class as element of the unnamed
top-level package]

3.1.1.3 Dynamic name lookup

An element declared with the prefix outer references an element instance with the same name but using the
prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

There shall exist at least one corresponding inner element declaration for an outer element

reference.[ Inner/outer components may be used to model simple fields, where some physical quantities, such as
gravity vector, environment temperature or environment pressure, are accessible fromall componentsin a
specific model hierarchy. Inner components are accessible throughout the model, if they are not “ shadowed” by
a corresponding non-inner declaration in a nested level of the model hierarchy.]

[Smple Example:
class A
outer Real TO;

end A;
class B

i nner Real TO;

A al, a2; // B.TO, B.al.TO and B.a2.TO is the sane vari abl e
end B;

More complicated example:

class A
outer Real TI;
class B
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Real TI;
class C
Real TI;
class D
outer Real TI; [/
end D;
D d;
end C
Cc;
end B;
B b;
end A;

class E
i nner Real TI;
class F
i nner Real TI;
class G
Real TI;
class H
A a;
end H;
H h;
end G
G og;
end F;
F f;
end E;

class |
i nner Real TI;
E e;
/1l e.f.g.h.a.Tl, e.f.g.h.a.b.c.d. Tl, and e.f. Tl is the sane variable
// But e.f.Tl, e. Tl and Tl are different vari abl es
A a; I/l a.Tl, a.b.c.d. Tl, and Tl is the sane variable
end |;

]

Outer element declarations shall not have modifications. The inner component shall be a subtype of the
corresponding outer component. [ If the two types are not identical, the type of theinner component defines the
instance and the outer component references just part of the inner component] .

[Example:

class A
outer paranmeter Real p=2; [/ error, since nodification
end A

class A
i nner Real TI;
class B
outer Integer TI; [// error, since ATl is no subtype of A B.TI
end B;
end A;

Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:
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function A
i nput Real u;
out put Real v;
end A;

function B /1 Bis a subtype of A
ext ends A;
al gorithm

end B;
class C
i nner function fc = B; /1 define function to be actually used
class D
outer function fc = A

equati on

y = fc(u); [/ function B is used.
end D
end C

3.1.2 Environment and modification

3.1.2.1 Environment

The environment contains arguments which modify elements of the class (e.g., parameter changes). The
environment is built by merging class modifications, where outer modifications override inner modifications.

3.1.2.2 Merging of modifications

[The following larger example demonstrates several aspects:

class Cl1
class Cl1
par anet er Real x;
end C11;
end Ci;
class C2
class C21

end C21;
end C2;
class C3
ext ends Ci;
Cl1 t(x=3); /1 ok, Cl1l1 has been inherited fromCl
21 u; /1 ok, even though C21 is inherited bel ow
extends C2;
end C3;

The environment of the declaration of t is (x=3). The environment is built by merging class modifications, as
shown by:

class C1

par anet er Real a;
end Ci;
class C2

par anet er Real b, c;
end C2;
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class C3
par armet er Real x1; /1 No default val ue
paranmeter Real x2 = 2; /1 Default value 2
paranmeter Cl x3; /1 No default value for x3.a
paraneter Cl x4(a=4); /!l x4.a has default value 4
ext ends Ci; /1 No default value for inherited el enent a
extends C2(b=6, c=77); /1 Inherited b has default value 6
end C3;
class 4
extends C3(x2=22, x3(a=33), x4(a=44), a=55, b=66);
end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of
ext ends C2( b=6) . Thisisknown as merging of modifications. ner ge( (b=66), (b=6)) becomes
(b=66) .

An instantiation of class C4 will give an object with the following variables:

Variable Default value
x1 none

X2 22

x3.a 33

x4.a 44

a 55

b 66

c 77

]
3.1.2.3 Single modification

Two arguments of a modification shall not designate the same primitive attribute of an element. When using
qualified names the different qualified names starting with the same identifier are merged into one modifier.

[Example:

class C1

Real x[3];
end Ci;
class C2 = Cl(x=ones(3), x[2]=2); [/ Error: x[2] designated twi ce
cl ass C3

class 4

Real x;

end C4;

A a(x.unit ="V, x.displayUnit="mv", x=5.0);
/1 Ok, different attributes designated (unit, displayUnit and val ue)
/1 identical to:

A b(x(unit = "V', displayUnit="nmv") = 5.0));
end C3;

]
3.1.2.4 Instantiation order

The name of a declared element shall not have the same name as any other element in its partially instantiated
parent class. A component shall not have the same name as its type specifier.
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Variables and classes can be used before they are declared.

[Infact, declaration order is only significant for:

e For functions with more than one input variable called with positional arguments, section
*  For functions with more than one output variable, section

e Recordsthat are used as arguments to external functions, section

]

In order to guarantee that elements can be used before they are declared and that elements do not depend on the
order of their declaration in the parent class, the instantiation proceeds in the following steps:

Flattening

First the names of declared local classes and components are found. Here modifiers are merged to the local
elements and redeclarations take effect. Then base-classes are looked up, flattened and inserted into the class.
The lookup of the base-classes should be independent [ The lookup of the names of extended classes should give
the same result before and after flattening the extends clauses. One should not find any element used during this
flattening by lookup through the extends clauses. It should be possible to flatten all extends clausesin a class
before inserting the result of flattening. Local classes used for extends should be possible to flatten before
inserting the result of flattening the extends clauses.]

I nstantiation
Flatten the class, apply the modifiers and instantiate all local elements.
Check of flattening

Check that duplicate elements are identical after instantiation.
3.1.3 Subtyping and type equivalence

3.1.3.1 Subtyping of classes

For any classes Sand C, Sisa supertype of C and C isasubtype of Sif they are equivalent or if:
¢ every public declaration element of Salso existsin C (according to their names)
« those element typesin S are supertypes of the corresponding element typesin C.

A base classisthe classreferred to in an extends clause. The class containing the extends clauseis called the
derived class. [ Base classes of C are typically supertypes of C, but other classes not related by inheritance can
also be supertypes of C\]

3.1.3.2 Subtyping of components
Component B is subtype of A if:
¢ Both scalars or arrays with the same number of dimensions
« Thetype of B is subtype of the base type of A (base type for arrays)
e For every dimension of an array
e Thesizeof A isindefinite, or
e Thevalue of expression (size of B) - (size of A) is constant equal to O (in the environment of B)
3.1.3.3 Typeequivalence

Two types T and U are equivalent if:
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* T and U denote the same built-in type (one of Real Type, IntegerType, StringType or BooleanType), or

e TandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elements typesin T are equivalent to the corresponding element typesin U.

3.1.3.4 Typeidentity

Two elements T and U areidentical if:
e TandU areequivalent,
e they are either both declared as final or none is declared final,
» for acomponent their type prefixes are identical, and

e if TandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elementsin T areidentical to the corresponding element in U.

3.1.3.5 Ordered typeidentity

Two elements T and U are ordered type identical if and only if:
e TandU aretypeidentical
e IfTandU areclasses

e T and U have the same number of elements

e Thei:th declaration element of T and thei:th declaration element of U are ordered type identical

3.1.3.6 Function Type ldentity

Two functions T and U haveidentical type if and only if
¢ T and U have the same number of input and output elements
e For each input or output element

¢ The corresponding elements have the same name

¢ The corresponding elements are ordered type identical

3.1.4 External representation of classes

Classes may be represented in the hierarchical structure of the operating system [the file system or a database] .
The nature of such an external entity falls into one of the following two groups:

= Structured entities[e.g. a directory in the file system]

= Non-structured entities[e.g. afilein the file system]
3.1.4.1 Structured entities

A structured entity [e.g. the directory A] shall contain anode. In afile hierarchy, the node shall be stored in file
package. no. The node shall contain a stored-definition that defines aclass[A] with a name matching the
name of the structured entity. [ The node typically contains documentation and graphical information for a
package, but may also contain additional elements of the class A ]

A structured entity may also contain one or more sub-entities (structured or non-structured). The sub-entities are
mapped as elements of the class defined by their enclosing structured entity. [ For example, if directory A

contains the threefilespackage. no, B. np and C. no the classes defined are A, A. B, and A. C] Two sub-
entities shall not define classes with identical names [for example, a directory shall not contain both the sub-
directory A and the file A. no].

Modelical.4 20



Modelica Language Specification
3.1.4.2 Non-structured entities

A non-structured entity [e.g. the file A. o] shall contain only a model-definition that defines aclass[A] with a
name matching the name of the non-structured entity.

3.1.4.3 Within clause

A non-top level entity shall begin with awithin-clause which for the class defined in the entity specifies the
location in the Modelica class hierarchy. A top-level class may contain a within-clause with no name.

For a sub-entity of an enclosing structured entity, the within-clause shall designate the class of the enclosing
entity.

3.1.4.4 Useof MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If atop-level nameis not found at
global scope, a Modelicatrangator shall ook up additional classesin an ordered list of library roots, called
MODELICAPATH. [On atypical system, MODELICAPATH is an environment variable containing a
semicolon-separated list of directory names.]

[Thefirst part of the path A. B. C(i.e., A) islocated by searching the ordered list of rootsin MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path islocated in A;
if that fails, the entire lookup fails without searching for A in any of the remaining rootsin MODELICAPATH.]

3.2 Declarations

3.2.1 Component clause

If the type specifier of the component denotes a built-in type (Real Type, IntegerType, etc.), the instantiated
component has the same type.

If the type specifier of the component does not denote a built-in type, the name of the typeislooked up (.
The found type isinstantiated with a new environment and the partialy instantiated parent of the component.
The new environment is the result of merging

» the modification of parent element-modification with the same name as the component
» the modification of the component declaration
in that order.

An environment that defines the value of a component of built-in type is said to define a declaration equation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element. [ This makes it possible to override the declaration equation for a single element in
a parent modification, which would not be possible if the declaration equation is regarded as a single matrix
equation.]

Array dimensions shall be non-negative parameter expressions.
Variables declared with the flow type prefix shall be a subtype of Real.

Type prefixes (i.e., flow, discrete, parameter, constant, input, output) shall only be applied for type, record and
connector components. The type prefixes flow, input and output of a structured component are also applied to
the elements of the component. The type prefixes flow, input and output shall only be applied for a structured
component, if no element of the component has a corresponding type prefix of the same category. [For example,
input can only be used, if none of the elements has an input or output type prefix] . The corresponding rules for
the type prefixes discrete, parameter and constant are described in section

Components of function type may be instantiated. [ A modifier can be used to e.g. change parameters of the
function. It is also possible to do such a modification with a class specialization.] Components of afunction do
not have start-attributes, but a binding assignment (":=" expression) is an expression such that the component is
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initialized to this expression at the start of every function invocation (before executing the a gorithm section or
calling the external function). Binding assignments can only be used for components of afunction. If no binding
assignment is given for a non-input component its value at the start of the function invocation is undefined. It is
aquality of implementation issue to diagnose this for non-external functions. The size of each non-input array
component of afunction must be given by the inputs. Components of afunction will inside the function behave
as though they had discrete-time variability.

3.2.2 Variability prefix

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes and define
in which situation the variable values of a component areinitialized (see section and when they are changed
intransient analysis (= solution of initial value problem of the hybrid DAE):

e Variables vc declared with the parameter or constant prefixes remain constant during transient analysis
(ve=const.).

« Discrete-time variables vd have a vanishing time derivative (informally der (vd)=0, but it is not legal to
apply the der () operator to discrete-time variables) and can change their values only at event instants during
transient analysis (see section B.5).

e Continuous-time variables vnh may have a non-vanishing time derivative (der (vn)#0 possible) and may
change their values at any time during transient analysis (see section B.5).

If aReadl variable is declared with the prefix discrete it must be assigned in a when-clause.

A Rea variable assigned in awhen-clause is a discrete-time variable, even though it was not declared with the
prefix discrete. A Real variable not assigned in any when-clause and without any type prefix is a continuous-
time variable.

The default variability for Integer, String, or Boolean variablesis discrete-time, and it is not possible to declare
continuous-time Integer, String, or Boolean variables. [ A Modelica trandator is able to guarantee this property
due to restrictions imposed on discrete expressions, see section

The variability of expressions and restrictions on variability for definition equations is given in section

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants during
simulation. Such types of variables are needed in order that special algorithms, such as the algorithm of
Pantelides for index reduction, can be applied (it must be known that the time derivative of these variablesis
identical to zero). Furthermore, memory requirements can be reduced in the simulation environment, if it is
known that a component can only change at event instants.

A parameter variableis constant during simulation. This prefix gives the library designer the possibility to
express that the physical equationsin a library are only valid if some of the used components are constant
during simulation. The same also holds for discrete-time and constant variables. Additionally, the parameter
prefix allows a convenient graphical user interface in an experiment environment, to support quick changes of
the most important constants of a compiled model. In combination with an if-clause, a parameter prefix allows
to remove parts of a model before the symbolic processing of a model takes place in order to avoid variable
causalities in the model (similar to #ifdef in C). Class parameters can be sometimes used as an alternative.
Example:

nodel Inertia
par anet er Bool ean state = true;

equati on
J*¥a = tl - t2;
if state then /1 code which is renoved during synbolic
der(v) = a; /1l processing, if state=fal se
der(r) = v;
end if
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end | nerti a;

A constant variable is similar to a parameter with the difference that constants cannot be changed after they
have been declared. It can be used to represent mathematical constants, e.g.

constant Real Pl=4*arctan(1l);

There are no continuous-time Boolean, Integer or Sring variables. In the rare cases they are needed they can be
faked by using Real variables, e.g.:

Bool ean of f1, offla;

Real off2;
equati on
off1 =s1 < 0;
of f la = noEvent (sl < 0); /1 error, since offla is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; /1 possible
ul = if offl then sl else O; /] state events
u2 = if nokEvent(off2 > 0.5) then s2 else O; /1l no state events

Snce offl isa discretetime variable, state events are generated such that off1 is only changed at event instants.
Variable off2 may change its value during continuous integration. Therefore, ul is guaranteed to be continuous
during continuous integration whereas no such guarantee exists for u2.

]
3.2.2.1 Variability of structured entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix and the
variability of the component wins (using the default variability for the component if there is no variability prefix
on the component).

[Example:

record A
constant Real pi=3.14;
Real v;
I nteger i;
end A
paraneter A a;
/1 a.pi is a constant
/!l a.y and a.i are paraneters
A b;
/1l b.pi is a constant
/1 b.y is a continuous-tinme variable
/1 b.i is a dicrete-time variable

]
3.2.3 Parameter bindings

The declaration equations for parameters and constants in the translated model must be acyclical after
instantiation. Thusit is not possible to introduce equations for parameters by cyclic dependencies.

[ Example:

constant Real p=2*q;

constant Real q=sin(p); // lllegal since p=2*q, g=sin(p) are cyclical
nodel ABCD

paraneter Real A[n,n];
parameter | nteger n=size(A 1);
end ABCD,
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final
/1 111 egal

ABCD b(redecl are Real

/1 Legal

ABCD c(n=2);

]

ABCD a;
since cyclic dependenci es between size(a.A 1) and a.n

/1 Legal

3.2.4 Protected elements

Al 2, 2]
since size of Ais

=[1,2;3,4]);

no | onger
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dependent on n.

since nis no |onger dependent on the size of A

All elements defined under the heading protected are regarded as protected. All other
elements[i.e., defined under the heading public, without headings or in a separate
file] are public [i.e. not protected] .

If an extends clause is used under the protected heading, all elements of the base class
become protected elements of the current class. |f an extends clauseisapublic
element, all elements of the base class are inherited with their own protection. The
eventual headings protected and public from the base class do not affect the
consequent elements of the current class (i.e. headings protected and public are not

inherited).

The protected element cannot be accessed via dot notation. They may not be modified
or redeclared in class modification.

3.25 Array declarations

The Modelicatype system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays
of more than two dimensions. [ There is no distinguishing between a row and column vector .]

The following table shows the two possible forms of declarations and defines the terminology. C is a placeholder
for any class, including the builtin type classes Real, Integer, Boolean and String:

Modelicaform1l |Modelicaform 2 # dimensions |Designation  [Explanation

CX; Cx; 0 Scalar Scalar

C[n] x; C x[n]; 1 'V ector n - Vector

C[n, m] x; C x[n, m]; 2 Matrix nx m Matrix

Cln,m,p,..]X; [Cxmn,p,..]; k Array Array with k dimensions (k>=0).

[ The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 isthe
traditional way of array declarationsin languages such as Fortran, C, C.

Real [ :]

It is possible to mix the two declaration forms, but it is not recommended

Real [ 3,2] x[4,5]; /I x hastype Red[4,5,3,2];

]

vl,

v2 /I vectors vl and v2 have unknown sizes. The actual sizes may be different.

Zero-valued dimensions are allowed, so C x[ 0] ; declares an empty vector and C x[ 0, 3] ; an empty matrix.

[ Special cases:

Modelicaform 1

Modelicaform 2

# dimensions

Designation

Explanation

C[1] x;

Cx[1];

1

\V ector

1 —Vector, representing a scalar
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C[1,1] x; Cx[1, 1]; 2 Matrix 1 x 1 — Matrix, representing a scalar
C[n,1] x; C x[n, 1]; 2 Matrix nx 1 —Matrix, representing a column
C[1,n] x; Cx[1, n]; 2 Matrix 1 x n—Matrix, representing arow

]

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expanded component type. A
type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String) or itisnot a
type class. Before operator overloading is applied, atype class of avariableis maximally expanded.

[ Example:

type Voltage = Real (unit = "V");

type Current = Real (unit =" A™");

connector Pin
Vol t age v; /I type class of v = Voltage, type of v = Rea
flow Current i; Il type class of i = Current, type of i = Real

end Pin;

type MultiPin = Pin[5];

Multi Pin[4] p; I/ type class of p is MultiPin, type of pisPin[4,5];

type Point = Real [3];
Poi nt pi1[10];
Real p2[10, 3];
The components p1 and p2 have identical types.
p2[ 5] = pl[2]+ p2[4]; /I equivaentto p2[5,:] = pl[2,:] + p2[4,:]
Real r[3] = pl[2]; /I equivalentto r[3] = pl[2,:]

]

[ Automatic assertions at simulation time:

Let A be adeclared array and i be the declared maximum dimension size of the di-dimension, then an assert
statement “ assert(i >= 0, ...)" isgenerated provided this assertion cannot be checked at compiletime. Itisa
quality of implementation issue to generate a good error message if the assertion fails.

Let A be adeclared array and i be an index accessing an index of the d;-dimension. Then for every such index-
access an assert statement “ assert(i >= 1 andi <= size(A,d),, ... )" isgenerated, provided this assertion
cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]
3.2.6 Final element modification

An element defined as final in an element modification or declaration cannot be modified by a modification or
by aredeclaration. All elements of afinal element are aso final. [ Setting the value of a parameter in an
experiment environment is conceptually treated as a modification. Thisimplies that a final modification equation
of a parameter cannot be changed in a simulation environment] .

[ Examples:
type Angle = Real (final quantity="Angle”, final unit ="rad”,
di spl ayUni t="deg”);
Angl e al(unit="deg”); /1 error, since unit declared as final!
Angl e a2(di splayUnit="rad"); /1 fine

nodel Transfer Functi on
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paraneter Real b[:]
paraneter Real a[:]

{1} "numer at or coefficient vector”;
{1, 1} "denomi nator coefficient vector”;

end Transfer Functi on;

nodel PI "Pl controller”;
paranmeter Real k=1 "gain”;
paranmeter Real T=1 "tinme constant”;
TransferFunction tf(final b=k*{T, 1}, final a={T,0});

end PI;
nodel Test

Pl cl(k=2, T=3); /1 fine

Pl c2(b={1}); /1 error, b is declared as final
end Test;

]

Note: In the previous versions of Modelica (Modelica 1.0 and 1.1), the final keyword had three different
meanings depending on the situation where it was used. To simplify the semantics, in Modelica 1.4, final isonly
used in modifications and declarations to prevent further modifications and redeclarations. As a consequence,
components have to be explicitly defined asreplaceable, if they shall be redeclared except for restricting prefix
and/or array dimensions (previously, this was the default and final was used to prevent redeclarations).

3.2.7 Short classdefinition

A class definition of the form
class I DENT,; = I DENT, cl ass_nodi fication ;
isidentical to the longer form

cl ass | DENT,
ext ends | DENT, cl ass_nodification ;
end | DENT;

A short class definition of the form
type TN = T[N] (optional nodifier) ;
where N represents arbitrary array dimensions, conceptually yields an array class

array TN
T[n] _ (optional nodifiers);
end TN;

Such an array class has exactly one anonymous component (). When a component of such an array classtypeis
instantiated, the resulting instantiated component type is an array type with the same dimensionsas _ and with
the optional modifier applied.

[Example:

type Force = Real [ 3] (unit={"Nm", "N, "Nm"}) ;
Force f1;
Real f2[ 3] (unit={"Nnf, "N, "Nm"});

thetypesof f 1 and f 2 areidentical.]
3.2.8 Local classdefinition

Thelocal class should be statically instantiable with the partially instantiated parent of the local class apart from
local class components that are partial or outer. The environment is the modification of any parent class element
modification with the same name as the local class, or an empty environment.
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The uninstantiated local class together with its environment becomes an element of the instantiated parent class.

[ The following example demonstrates parameterization of a local class:
class Cl1
class Voltage = Real (unit="V");
Vol tage v1, v2;
end Ci;
class C2
extends C1(Vol tage(unit="kV"));
end C2;

Instantiation of class C2 yieldsa local class Voltage with unit-modifier "kV". The variables vl and v2
instantiate thislocal class and thus have unit "kV".]

3.29 Extendsclause

The name of the base class islooked up in the partially instantiated parent of the extends clause. The found base
classisinstantiated with a new environment and the partially instantiated parent of the extends clause. The new
environment is the result of merging

1. arguments of all parent environments that match names in the instantiated base class
2. theoptiona class modification of the extends clause
in that order.

[ Examples of the three rules are given in the following example:
class A
paranmeter Real a, b;
end A;
class B
ext ends A(b=3); /1l Rule #2
end B;
class C
extends B(a=1); /'l Rule #1
end C

]
The elements of the instantiated base class become elements of the instantiated parent class.

[ From the example above we get the following instantiated class:
cl ass Cinstance
par anmet er Real a=1;
par amet er Real b=2;
end G nstance;
The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bconp(b=1, A(b=2));
end C2;

yields an instance with bconp. b=1, which overridesb=2.]
The declaration elements of the instantiated base class shall either
¢ Not aready exist in the partially instantiated parent class[i.e., have different namesg) .

* Beexactly identical to any element of the instantiated parent class with the same name and the same
level of protection (public or protected) and same contents. In this case, one of the elementsisignored
(since they areidentical it does not matter which one).

Otherwise the mode! isincorrect.
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Equations of the instantiated base class that are syntactically equivalent to equationsin the instantiated parent
class are discarded. [ Note: equations that are mathematically equivalent but not syntactically equivalent are not
discarded, hence yield an overdetermined system of equations)

3.2.10 Redeclaration

A redeclare construct replaces the declaration of alocal class or component in the modified element with
another declaration.

[ Example:
class A
par anet er Real x;
end A
class B
par anmeter Real x=3.14, vy; /1 Bis a subtype of A
end B;
class C
repl aceabl e A a(x=1);
end C
class D
extends C(redeclare B a(y=2));
end D

which effectively yields a class D2 with the contents

class D2
B a(x=1, y=2);
end D2;

]
3.2.10.1 Constraining type

In an replaceabl e declaration the optional constraining_clause define a constraining type. [It is recommended to
not have modifiersin the constraining_clause.] If the constraining_clause is not present the type of the
declaration is also used as a constraining type.

The class or type of component shall be a subtype of the constraining type. In aredeclaration of areplaceable
element the class or type of a component must be a subtype of the constraining type. The constraining type of a
replaceable redeclaration must be a subtype of the constraining type of the declaration it redeclares.

In an element modification of a replaceable element the modifications are applied both to the actual type and to
the constraining type.

In an element redeclaration of a replaceable element the modifiers of the replaced constraining type is merged to
both the new declaration and to the new constraining type, using the normal rules where outer modifiers override
inner modifiers.

3.2.10.2 Restrictions on redeclar ations

The following additional constraints apply to redeclarations:

¢ only classes and components declared as replaceable can be redeclared with a new type, which must be
a subtype of the constraining type of the original declaration, and to allow further redeclarations one
must use “redeclarereplaceable”

» areplaceable class used in an extends clause shall only contain public components [ otherwise, it
cannot be guaranteed that a redeclaration keeps the protected variables of the replaceable default
class|

* anelement declared as constant cannot be redeclared

* anelement declared as parameter can only be redeclared with parameter or constant
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» anelement declared as discrete can only be redeclared with discrete, parameter or constant
¢ afunction can only be redeclared as function

¢ anelement declared as flow can only be redeclared with flow

¢ anelement declared as not flow can only be redeclared without flow

Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared as
protected.

Array dimensions may be redeclared.
3.2.10.3 Suggested redeclar ations and modifications

A declaration can have an annotation "choices" containing modifiers on choice, where each of them indicates a
suitable redeclaration or modifications of the element.

Thisisahint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations of the
choices. The annotation is not restricted to replaceable elements but can also be applied to non-replaceable
elements, enumerated types, and simple variables.

[Example:

repl aceabl e nodel MyResi st or =Resi st or
annot at i on(choi ces(
choi ce(redecl are MyResi stor=lib2. Resistor(a={2}) "."),
choi ce(redecl are MyResistor=lib2. Resistor2 ".m)));

repl aceabl e Resi stor Load(R=2) extends TwoPin
annot ati on(choi ces(
choi ce(redecl are |ib2. Resistor Load(a={2}) ".."),
choi ce(redecl are Capacitor Load(L=3) "..")));

repl aceabl e FrictionFunction a(func=exp) extends Friction
annot ati on(choi ces(

choi ce(redecl are ConstantFriction a(c=1) "..),
choi ce(redecl are Tabl eFriction a(table=".") "."),
choi ce(redecl are FunctionFriction a(func=exp) "."))));

It can also be applied to non-replaceabl e declarations, e.g. to describe enumerations.
type Ki ndOf Controll er=Integer(m n=1, max=3)
annot ati on(choi ces(
choi ce=1 "P",
choice=2 "PI ",
choice=3 "PID"));

nodel A
Ki ndOf Control |l er x;
end A;
A a(x=3 "PID");
]

3.2.11 Derivatives of functions

A function declaration can have an annotation derivative specifying the derivative function with an optional
order-attribute indicating the order of the derivative (default 1). This can influence simulation time and accuracy
and can be applied to both functions written in Modelica and to external functions.
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[ Example;

function fooO annotation(derivative=fool);end foo0;
function fool annotation(derivative(order=2)=fo002); end fool;
function foo2 end foo2;

]

The inputs to the derivative function of order 1 are constructed as follows:

First are all inputsto the original function, and after all them we will in order append one derivative for each
input containing reals.

The outputs are constructed by starting with an empty list and then in order appending one derivative for each
output containing reals.

If the Modelicafunction is a nth derivative (n>=1) the derivative annotation indicates the (n+1)th derivative, and
order=n+1.

The input arguments amended by the (n+1)th derivative, which are constructed in order from the nth order
derivatives.

The output arguments are similar to the output argument for the nth derivative, but each output is one higher in
derivative order.

[Example: Given the declarations
function fooO

i nput Real x;

i nput Bool ean linear;
i nput ...;

out put Real vy;

annot ati on(derivative=fool);
end foo0;

function fool
i nput Real x;
i nput Bool ean |inear;
i nput ...;
i nput Real der_x;
out put Real der_y;

annot ati on(derivati ve(order=2)=fo002);
end fool;

function foo2
i nput Real x;
i nput Bool ean |i near
i nput ...;
i nput Real der_x;
i nput Real der_2 x;

out put Real der_2 y;

the equation
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(s y(t),...)=f000(...,x(t),b,...);
implies that:

(....dy(®)/dt,...)=fool(...,x(1),b,..., ...,d x(t)/dt,...);

(-..,d2 y(t)/dt"2,...)=fo02(....x(t),b,....d x(t)/dt,..., ...,d*2 x(t)/dt2,...)
]

Aninput or output to the function may be any predefined type (Real ,Boolean,Integer and String) or arecord,
provided the record does not contain both reals and non-reals predefined types. The function must have at least
one input containing reals. The output list of the derivative function may not be empty.

3.2.12 Restricted classes

The keyword class can be replaced by one of the following keywords: record, type, connector, model, block,
package or function. Certain restrictions will then be imposed on the content of such a definition. The following
table summarizes the restrictions. The predefined types are described in section

record No equations are allowed in the definition or in any of its components. May not be used in
connections.

type May only be extension to the predefined types, records or array of type.

connector No equations are allowed in the definition or in any of its components.

model May not be used in connections.

block Fixed causality, input-output block. Each component of an interface must either have
Causality equal to Input or Output. May not be used in connections.

package May only contain declarations of classes and constants.
Same restrictions as for block. Additional restrictions: no equations, at most one algorithm

function section. Calling a function requires either an algorithm section or an external function
interface. A function can not contain calls to the Modelica built-in operators der, initial,
terminal, sample, pre, edge, change, reinit, delay and cardinality.

3.3 Egquationsand Algorithms

3.3.1 Equation and Algorithm clauses

The instantiated egquation or algorithm isidentical to the non-instantiated equation or algorithm.

Names in an equation or algorithm shall be found by looking up in the partially instantiated parent of the
equation or algorithm.

Equation equality = shall not be used in an algorithm clause. The assignment operator : = shall not be used in an
equation clause.

3.3.2 If clause

If clausesin equation sections which do not have exclusively parameter expressions as switching conditions
shall have an else clause and each branch shall have the same number of equations. [If this condition is violated,
the single assignment rule would not hold, because the number of equations may change during simulation
although the number of unknowns remains the same] .

3.3.3 For clause

The expression of afor clause shall be a vector expression. It is evaluated once for each for clause, and is
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evaluated in the scope immediately enclosing the for clause. In an equation section, the expression of afor clause
shall be a parameter expression. The loop-variable isin scope inside the loop-construct and shall not be assigned
to.

[Example:
for i in 1:10 | oop /i takesthevalues 1,2,3,...,10
for r in1.0: 1.5 : 5.5 |oop //rtakesthevaluesl.0,25,4.0,55
for i in {1,3,6,7} loop /l'i takesthevalues 1, 3, 6, 7

The loop-variable may hide other variables asin the following example. Using another name for the loop-
variableis, however, strongly recommended.

constant Integer j=4;

Real x[j];
equation
for j in 1:j loop // The |oop-variable j takes the values 1,2,3,4
x[j1=j; Il Uses the | oop-variable j
end for;

]
3.34 When clause

The expression of awhen clause shall be a discrete-time Boolean scalar or vector expression. The equations and
algorithm statements within a when clause are activated when the scalar or any one of the elements of the vector
expression becomes true. When-clauses in equation sections are allowed, provided the equations within the
when-clause have one of the following forms:

" v=expr
= (outl, out2, out3, ...) = function _call(inl, in2, ...);
= operatorsassert(), terminate(), reinit()
= For and if-clause if the equations within the for and if-clauses satisfy these requirements.
A when clause shall not be used within afunction class.
[Example:
Algorithms are activated when x becomes > 2:
when x > 2 then

yl := sin(x);
y3 1= 2*X + yl+y?2,
end when;

Algorithms are activated when either x becomes > 2 or sample(0,2) becomes true or x becomes less than 5:
when {x > 2, sample(0,2), x < 5} then

yl := sin(x);
y3 1= 2*X + yl+y?2,
end when;

For when in equation sections the order between the equations does not matter, e.g.

equation
when x > 2 then
y3 = 2*x +yl+y2; // Order of yl and y3 equations does not matter

yl = sin(x);
end when;
y2 = sin(yl);
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The needed restrictions on equations within a when-clause becomes apparent with the following example:

Real x, v;
equati on
X +y =5;
when condition then
2*X +y =7, /1 error: not valid Mdelica
end when;

When the equations of the when-clause are not activated it is not clear which variable to hold constant, either x
or y. A corrected version of this exampleis:

Real x,vy;
equation
X +y =5;
when condition then
y =7 - 2*x; /1l fine
end when;

Here, variabley is held constant when the when-clause is de-activated and x is computed from the first equation
using the value of y from the previous event instant.

For when in algorithm sections the order is significant and it is advisable to have only one assignment within the
when-clause and instead use several algorithms having when-clauses with identical conditions, e.g..

al gorithm
when x > 2 then
yl := sin(x);
end when;
equation
y2 = sin(yl);
al gorithm

when x > 2 then
y3 1= 2*x +yl+y2;
end when;

Merging the when-clauses can lead to less efficient code and different models with different behaviour
depending on the order of the assignment to y1 and y3 in the algorithm,]

A when clause
al gorithm

when {x>1, ..., y>p} then
el sewhen x > y.start then

end. Wﬁen;
is equivalent to the following special if-clause, where Boolean b1[N]; and Boolean b2 are necessary because the
edge() operator can only be applied to variables

Bool ean b1[ N (start={x.start>1, ..., y.start>p});

Bool ean b2(start=x.start>y.start);

al gorithm
bl:={x>1, ..., y>p};
b2: =x>y.start;

if edge(bl[1]) or edge(bl[2]) or ... edge(bl[N]) then
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el sei f edge(b2) then

en.d. | f
with“edge(A) = A and not pre(A)” andtheadditional guarantee, that the algorithms within this special
if clause are only evaluated at event instants.

A when-clause

equati on
when x>2 then
vl = exprl;
V2 = expr2;
end when;

is equivalent to the following special if-expressions

Bool ean b(start=x.start>2);

equati on
b = x>2;
vl = if edge(b) then exprl else pre(vl);

v2 i f edge(b) then expr2 else pre(v2);

The start-values of the introduced boolean variables are defined by the taking the start-value of the when-
condition, as above where p is a parameter variable. The start-values of the specia functionsinitial, terminal,
and sampleisfase.

When clauses cannot be nested.
[Example:
The following when clauseisinvalid:

when x > 2 then
when y1 > 3 then
y2 := sin(x);
end when;
end when;

]
3.35 Assert

The expression of an assert clause shall evaluate to true. [ The intent is to perform a test of model validity and to
report the failed assertion to the user if the expression evaluates to false. The means of reporting a failed
assertion are dependent on the simulation environment. The intention is that the current evaluation of the model
should stop when an assert with a false condition is encountered, but the tool should continue the current
analysis (e.g. by using a shorter stepsize).]

3.36 Terminate

The terminate function successfully terminates the analysis which was carried out. The function has a string
argument indicating the reason for the success. [ The intention is to give more complex stopping criteria than a
fixed point in time. Example:

nodel Thr ow ngBal |
Real x(start=0);
Real y(start=1);
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equation
der (x) =...
der(y)=...
al gorithm
when y<0 then
term nate("The ball touches the ground");
end when;

end Throw ngBal | ;
]
3.3.7 Connections

Connections between objects are introduced by the connect statement in the equation part of aclass. The
connect construct takes two references to connectors, each of which is either an element of the same class asthe
connect statement or an element of one of its components. The two main tasks are to:

»  Build connection sets from connect statements.
¢ Generate equations for the complete model.
Definitions:
Connection sets

A connection set is a set of variables connected by means of connect clauses. A connection set shall
contain either only flow variables or only non-flow variables.

Inside and outside connectors

In an element instance M, each connector element of M is called an outside connector with respect to
M. All other connector elements that are hierarchically inside M, but not in one of the outer connectors
of M, iscalled an inside connector with respect to M.

[Example: in connect(a,b.c) ‘a’ isan outside connector and ‘b.c’ is an inside connector, unless ‘b’ isa
connector ]

3.3.7.1 Generation of connection equations

Before generating connection equations outer elements are resolved to the corresponding inner elementsin the

instance hierarchy (see Dynamic name lookup|B.1.1.3). The arguments to each connect-statement are resolved to
two connector elements, and the connection is moved up zero or more times in the instance hierarchy to the first
element instance that both the connectors are hierarchically contained in it.

For every use of the connect statement

connect (a, b);
the primitive components of a and b form a connection set. If any of them already occur in a connection set
from previous connections with matching inside/outside, these sets are merged to form one connection set.
Composite connector types are broken down into primitive components. Each connection set is used to generate
equations for across and through (zero-sum) variables of the form

al = a2 = ... = an;

zl + z2 + (-2z3) + ... + zn = 0O;
In order to generate equations for through variables [using the f | ow prefiX] , the sign used for the connector
variable z; aboveis +1 for inside connectors and -1 for outside connectors [z 3 in the example above] .
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For each flow (zero-sum) variable in a connector that is not connected as an inside connector in any element
instance the following equation isimplicitly generated:
z=0;
The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

3.3.7.2 Restrictions

A component of a connector declared with the input type prefix shall not occur as inside connector in more than
one connect statement. A component of a connector declared with the output type prefix shall not occur as
outside connector in more than one connect statement. If two components declared with the input type prefix
are connected in a connect statement one must be an inside connector and the other an outside connector. If two
components declared with the output type prefix are connected in a connect statement one must be an inside
connector and the other an outside connector.

Subscripts in a connector reference shall be constant expressions.

If the array sizes do not match, the original variables are filled with one-sized dimensions from the left until the
number of dimensions match before the connection set equations are generated.

Constants or parametersin connected components yield the appropriate assert statements; connections are not
generated.

34 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, *, etc. with normal precedence as defined in the grammar in
section The semantics of the operations is defined for both scalar and array arguments in section

It is also possible to define functions and call them in a normal fashion. The function call syntax for both normal
and named arguments is described in section B.4.7]and for vectorized callsin section B.4.6.10] The buiilt-in array
functions are given in section B.4.3]and other built-in operatorsin section B.4.2}

3.4.1 Evaluation

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not
influence the result (e.g. short-circuit evaluation of boolean expressions). If-statements and if-expressions
guarantee that their clauses are only eva uated if the appropriate condition is true, but relational operators
generating state or time events will during continuous integration have the value from the most recent event.

[ Example. If one wants to guard an expression against evaluation it should be guarded by an if
Bool ean v[n];
Bool ean b;
I nteger 1;
equation
x=v[I] and (I>=1 and I<=n); // Invalid
x=if (1>=1 and I<=n) then v[I|] else false; // Correct
To guard square against square root of hegative number use noEvent:
der(h)=if h>0 then —c*sqrt(h) else 0; // Incorrect
der(h)=if noEvent(h>0) then -c*sqrt(h) else 0; // Correct
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3.4.2 Modelicabuilt-in operators

Built-in operators of Modelica have the same syntax as a function call. However, they do not behave asa
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation. The following operators are supported (see also the list of array function in section :

der (X)

The time derivative of x. Variable x need to be a subtype of Real, and may not
be a discrete-time variable. If x isan array, the operator is applied to all elements
of the array. For Real parameters and constants the result is a zero scalar or array
of the same size as the variable.

analysisType()

Returns the most appropriate analysis type for the context in which the model is
used. The analysistypeis returned as a string. The following return values are
predefined:

"dynamic": Solveinitial value problem

"static": Solve “static” problem where al derivatives are constant and time
isfixed (e.g. trimming, equilibrium analysis)

"linear": Transform continuous part of model in alinear system.

initial ()

Returns true at the beginning of analysis (where time is equal to time.start).

terminal()

Returns true at the end of a successful analysis.

noEvent(expr)

Real elementary relations within expr are taken literally, i.e., no state or time
event istriggered.

sample(start,interval)

Returns true and triggerstime events at timeinstants" st art  +

i *interval" (i=0,1,...).Duringcontinuous integration the operator
returns always false. The starting time “start” and the sample interval “interval”
need to be parameter expressions and need to be a subtype of Real or Integer.

pre(y)

Returns the “left limit” y(t*®) of variable y(t) at atimeinstant t. At an event
instant, y(t”®) isthe value of y after the last event iteration at time instant t (see
comment below). The pre operator can be applied if the following three
conditions are fulfilled simultaneously: () variabley is a subtype of Boolean,
Integer or Real, (b) y is adiscrete-time expression (c) the operator is not applied
inafunction class. At theinitial time pre(y) = y.start, i.e, the left limit of y is
identical to the start value. For parameter and constant variables pre(p)=p.

edge(b)

Is expanded into “(b and not pre(b))” for Boolean variable b. The same
restrictions as for the pre operator apply (e.g. not to be used in function classes).

change(v)

Is expanded into “(v<>pre(v))”. The same restrictions as for the pre() operator
apply.

reinit(x, expr)

Reinitializes state variable x with expr at an event instant. Argument x need to be
(a) asubtype of Real and (b) the der-operator need to be applied to it. expr need
to be an Integer or Real expression. The reinit operator can only be applied once
for the same variable x.

Isexpanded into “(if v >= 0 then v else—v)”. Argument v needs to be an Integer

abs(v) or Real expression. [ Note, outside of a when clause state events are triggered] .
Isexpanded into “(if v > 0then 1 elseif v < 0then -1 else 0)". Argument v

sign(v) needs to be an Integer or Real expression. [ Note, outside of a when clause state
events are triggered)]

Srt(v) Returns the square root of v if v>=0, otherwise an error occurs. Argument v

needs to be an Integer or Real expression.
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Returns the algebraic quotient x/ y with any fractional part discarded (also
known as truncation toward zero). [Note: thisis defined for / in C99; in C89 the
result for negative numbers is implementation-defined, so the standard function
di v() must be used.]. Result and arguments shall have type Real or Integer If
either of the argumentsis Real the result is Real otherwise Integer.

mod(X,y)

Returns the integer modulus of x/ vy, i.e. mod(x,y)=x-floor(x/y)*y. Result and
arguments shall have type Real or Integer. If either of the argumentsis Real the
result is Real otherwise Integer. [ Note, outside of a when clause state events are
triggered when the return value changes discontinuously. Examples
mod(3,1.4)=0.2, mod(-3,1.4)=1.2, mod(3,-1.4)=-1.2]

rem(x,y)

Returnsthe integer remainder of x/ y, suchthatdi v(x,y) * y + ren(x,
y) = X.Result and arguments shall have type Real or Integer. If either of the
arguments is Real the result is Real otherwise Integer. [ Note, outside of a when
clause state events are triggered when the return value changes discontinuously.
Examples rem(3,1.4)=0.2, rem(-3,1.4)=-0.2]

ceil (x)

Returns the smallest integer not less than x. Result and argument shall have type
Readl. [ Note, outside of a when clause state events are triggered when the return
value changes discontinuously.]

floor (x)

Returns the largest integer not greater than x. Result and argument shall have
type Real. [ Note, outside of a when clause state events are triggered when the
return value changes discontinuously.] .

integer (x)

Returns the largest integer not greater than x. The argument shall have type Real.
The result has type Integer.

[ Note, outside of a when clause state events are triggered when the return value
changes discontinuousdly.] .

delay(expr,delayTime,delayMax)
delay(expr,delay Time)

Returns” expr (ti me — del ayTi ne) " for

time > tinme.start + delayTinmeand"expr(tinme.start)" for
time <= tine.start + del ayTi me. The arguments, i.e., expr,
delayTime and delayMax, need to be subtypes of Real. Del ay Max needsto be
additionally a parameter expression. The following relation shall hold: 0 <=
del ayTi me <= del ayMax, otherwise an error occurs. If del ayMax is
not supplied in the argument list, del ayTi me need to be a parameter
expression.

cardinality(c)

Returns the number of (internal and external) occurrences of connector instance
C in a connect statement as an I nteger number.

A new event istriggered if at least for one variable v “pre(v) <> v” after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequenceis called
“event iteration”. The integration is restarted, if for all v used in pre-operators the following condition holds:

“pre(v) ==v".

[1f vand pre(v) are only used in when clauses, the translator might mask event iteration for variable v since v
cannot change during event iteration. It isa “ quality of implementation” to find the minimal loops for event
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of type Real,
Integer or Boolean. These systems of equations can be solved by a global fix point iteration scheme, similarly to
the event iteration, by fixing the Boolean and Integer unknowns during one iteration. Again, it isa quality of
implementation to solve these systems more efficiently, e.g., by applying the fix point iteration scheme to a subset

of the model equations]
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Thereinit operator does not break the single assignment rule, because reinit(x,expr) makes the previously
known state variable x unknown and introduces the equation “x = expr”.

[If a higher index systemis present, i.e. constraints between state variables, some state variables need to be
redefined to non-state variables. If possible, non-state variables should be chosen in such a way that states with
an applied reinit operator are not utilized. If thisis not possible, an error occurs, because the reinit operator is
applied on a non-state variable.

Examples for the usage of the reinit operator:

Bouncing ball:
der (h)
der (v)

al gorithm
when h < 0 then
reinit(v, -e*v);
end when;

Sdlf-initializing block:

bl ock PT1 " first order filter”
paranmeter Real T "tine constant ";
paraneter Real k "gain";
i nput Real u;
out put Real v;

prot ect ed
Real x;

equati on
der (x)

y

al gorithm
when initial () then
reinit(x, u); [l initialize, such that der(x) = 0.
end when
end PT1;

nodel Test
PT1 bl, b2, b3;
i nput u;
equati on
bl.u = u;
connect (bl.y, b2.u);
connect (b2.y, b3.u);
end Test;

A
-0

(u-x) 1/ T,
k*X;

Given the input signal u, all 3 blocks b1, b2, b3 areinitialized at their stationary value]

[The div, rem, mod, ceil, floor, integer, abs and sign operator trigger state events if used outside of a when
clause. If thisis not desired, the noEvent function can be applied to them. E.g. noEvent(abs(V)) is|v|

The delay operator allows a numerical sound implementation by interpolating in the (internal) integrator
polynomials, aswell as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr . Without further information, the complete time history of the delayed signals need to be
stored, because the delay time may change during simulation. To avoid excessive storage requirements and to
enhance efficiency, the maximum allowed delay time hasto be given via del ayMax. This gives an upper bound
on the values of the delayed signals which have to be stored. For realtime simulation where fixed step size
integrators are used, this information is sufficient to allocate the necessary storage for the internal buffer before
the simulation starts. For variable step size integrators, the buffer size is dynamic during integration. In
principal, a delay operator could break algebraic loops. For simplicity, thisis not supported because the
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minimum delay time has to be give as additional argument to be fixed at compile time. Furthermore, the
maximum step size of the integrator is limited by this minimum delay time in order to avoid extrapolation in the
delay buffer.

The cardinality operator allows the definition of connection dependent equationsin a model, for example:
connector Pin

Real v;
flow Real i;
end Pin;
nodel Resi stor
Pin p, n;
equati on
/! Handl e cases if pins are not connected
if cardinality(p) == and cardinality(n) == 0 then
p.v =0; n.v = 0;
else if cardinality(p) == 0 then
p.i = 0;
else if cardinality(n) == 0 then
n.i = 0;
end if

/1 Equations of resistor
end Reéi étor;
]
3.4.3 Vectors, Matrices, and Arrays Built-in Functionsfor Array Expressions

The following function cannot be used in Modelica, but is utilized below to define other operators

promote(A,n) Fills dimensions of size 1 from the right to array A upto dimension n, where "n
>= ndims(A)" isrequired. Let C = promote(A,n), with nA=ndims(A), then
ndims(C) = n, size(C,j) =size(Aj) for 1 <=j <=nA, size(C,j) = 1 for nA+1 <=
<=n,C[i_1,..,inA 1l ., 1 =A[i_1,..i nA]

[ Function promote could not be used in Modelica, because the number of dimensions of the return array cannot
be determined at compiletime if nis a variable. Below, promoteis only used for constant n] .

The following built-in functions for array expressions are provided:

Modelica Explanation

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,i) Returns the size of dimension i of array expression A wherei shall be> 0 and <=
ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar (A) Returns the single element of array A. size(A,i) = 1isrequired for 1 <=i <= ndims(A).

vector (A) Returns a 1-vector, if A isascalar and otherwise returns a vector containing all the
elements of the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A isascalar or vector and otherwise returns the elements of the
first two dimensions as a matrix. size(A,i) = 1isrequired for 2 <i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It isan error, if array A does not have at
least 2 dimensions.

outer Product(v1,v2) | Returns the outer product of vectors v1 and v2 ( = matrix(v)*transpose( matrix(v) ) ).
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identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other
elements zero.

Zer os(Ny, Ny, N, ) Returnsthe ny X Ny X ng X ... Integer array with all elements equal to zero (n; >= 0).

ones(ny,nz,N,...) Return the ny X np X Nz X ... Integer array with all elements equal to one (n; >=0).

fill(snw,nzng, ...) Returnsthe n; X n, X Ng X ... array with all elements equal to scalar expression s which

has to be a subtype of Real, Integer, Boolean or String (n; >= 0). The returned array has
the sametypeass.

linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that v=linspace(x1,x2,n),

V[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1L <=i <=n. Itisrequired that n >= 2.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.

product(A) Returns the product of all the elements of array expression A.

symmetric(A) Returns a matrix where the diagonal elements and the elements above the diagonal are

identical to the corresponding elements of matrix A and where the elements below the
diagonal are set equal to the elements above the diagonal of A, i.e., B := symmetric(A) -
> B[i,j] ;= A[ij], if i <=j, B[i,j] := A[L.i], if i >].

cross(x,y) Returns the cross product of the 3-vectorsx and y, i.e.

cross(x,y) = vector( [ x[2]*y[3]-x[3]*y[2]; x[3]*Y[1]-x[1]*Y[3]; X[1]*V[2]-x[2]*y[1]]);

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,

Cr0$(X,y) = Ske'W(X)*y, SkeVV(X) = [01 'X[3], X[Z], X[3]! 01 'X[l], 'X[2], X[l]! 0];

[Example:

]

Real x[4,1,6];

size(x,1) = 4;

si ze(Xx); /I vector with elements 4, 1, 6
size(2*x+x ) = size(x);

Real [3] vl = fill (1.0, 3);
Real [3,1] m= matrix(vl);
Real [3] v2 = vector(m;

Bool ean check[3,4] = fill(true, 3, 4);

3.4.4 Vector, Matrix and Array Constructors

3.4.4.1 Array Construction

The constructor function array(A,B,C,...) constructs an array from its arguments according to the following
rules:

Size matching: All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = ...

All arguments must be type equivalent. The datatype of the result array is the maximally expanded type of
the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

Each application of this constructor function adds a one-sized dimension to the left in the result compared to
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the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndimes(A) + 1 =ndims(B) + 1, ...
« {A,B,C,..} isashorthand notation for array(A, B, C, ...).
e There must be at least one argument [i.e., array() or {} is not defined].
[ Examples:
{1,2,3} isa 3 vector of type Integer.

{{11,12,13}, {21,22,23} } isa 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} isa 1x1x3 array of type Real.

Real[3] v = array(1, 2, 3.0);
type Angle = Real(unit="rad");
parameter Anglealpha = 2.0; // type of alphais Real.
array(alpha, 2, 3.0) isa 3 vector of type Real.
Angleg[3] a= {1.0, alpha, 4}; //typeofaisReal[3].
]

3.4.4.2 Array Concatenation

The function cat(k,A,B,C,...) concatenates arrays A,B,C,... along dimension k according to the following rules:
* ArraysA, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

* ArraysA, B, C, ... must be type equivalent. The datatype of the result array is the maximally expanded type
of the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

» Kk hasto characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C); k shall be an
integer number.

» Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of dimension
k,i.e, size(A,j) = size(B,j), for 1 <=j <= ndims(A) and j <> k.

[ Examples:
Real [2,3] rl =cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real [2,6] r2 = cat(2, rl, 2*rl);

]

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) = ...., then
size(R,k) = size(A k) + size(B k) + size(CKk) + ...
size(R,j) =size(A,j) =size(B,j) =sze(Cjj) = ..., for L<=j<=nandj <> k.
R[i_1, ...,i Kk, ..,i_n]=A[i_1,.. ik, ..in]fori_k<=szeA,Kk),
R[i_1,.. ik, ..,in=8BJ[i_1,..i k-size(A,), ...,i_n], fori_k <= size(A k) + size(B,k),

where 1l <=i_j <= size(Rj) for 1 <=j <=n.
3.4.4.3 Array Concatenation along First and Second Dimensions

For convenience, a specia syntax is supported for the concatenation along the first and second dimensions.

»  Concatenation along first dimension:
[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

e Concatenation along second dimension:
[A, B, C,..] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where
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n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, especially that each operand has at least two dimensions.

«  Thetwo forms can be mixed. [...,...] has higher precedencethan[...;...], 9., [a b; ¢, d] is parsed as [[a,b];
[c.d]].

e [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has2 or more dimensions, and it isa matrix with the
elementsof A, if A isascaar or avector.

e There must be at least one argument (i.e. [] is not defined)
[ Examples:
Real s1, s2, vi[nl], v2[n2], M1[m1,n], M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,K] ;

[vi;v2] isa(n1+n2) x 1 matrix
[M1;M2] isa(ml+m2) x n matrix
[M3,M4] isanx (ml+m2) matrix
[K1;K2] isa(ml+m2) xnxkarray
[s1;82] isa2x1matrix

[s1,51] isalx2matrix

[s1] isa1lx1matrix

[vl] isanlx1matrix

Real[3] vl = array(1, 2, 3);

Real[3] V2 = {4, 5, 6};

Real[3,2] ml = [v1, vZ];

Real[3,2] m2 = [v], [4;5;6]]; //ml=m2

Real[2,3] m3=[1,2,3; 4,5, 6];
Real[1,3] M4 =[1,2, 3];
Real[3,1] m5=[1; 2; 3];

]
3.4.4.4 Vector Construction

Vectors can be constructed with the general array constructor, eg., Real [3] v = {1, 2, 3}.

The colon operator of simple-expression can be used instead of or in combination with this general constructor to
construct Real and Integer vectors. Semantics of the colon operator:

* | :k isthelnteger vector {j, j+1, ..., K}, if j and k are of type Integer.

» j:k istheRed vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.

* j:k is aReadl or Integer vector with zero elements, if j > k.

e j:d:k isthelnteger vector {j, j+d, ..., j+n*d}, with n = (k —j)/d, if j, d, and k are of type Integer.
e j:d:k istheReal vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type Real.

e j:d:k isaReal or Integer vector with zero elements, if d>0andj >k orifd<0Oandj <k.
[ Examples:

Real vi1[5] = 2.7 : 6.8;

Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; /|l = sane as vl

]
3.4.5 Array access operator

Elements of vector, matrix or array variables are accessed with [ ] . A colon isused to denote al indices of one
dimension. A vector expression can be used to pick out selected rows, columns and elements of vectors,
matrices, and arrays. The number of dimensions of the expression is reduced by the number of scalar index
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arguments.

[ Examples:

e 4, j] isavector of the j-th column of a,
« aj:Kis{[a]], aj+1], ..., ak]},

o & Klis[al:], &+, ..., Akl

o Vv[2:2.8] =v[{24,68}] .

e ifxisavector, X[ 1] isascalar, but thedicex[ 1: 5] isavector (avector-valued or colon index
expression causes a vector to be returned).]

[ Examples given the declaration x[n, m], V[K], Zi, j, p]:

Expression # dimensions Type of value

x[1, 1] 0 Scalar

X[:, 1] 1 n — Vector

X[1, ] 1 m — Vector

v[1p] 1 p — Vector

X[1:p, :] 2 p X m— Matrix
X[1:1, :] 2 1xm-"row" matrix
X[{1, 3,5}, :] 2 3 X m—Matrix

X[:, V] 2 nx k —Matrix
Z[:,3,] 2 i X p—Matrix
X[scalar([1]), ‘] 1 m — Vector
x[vector([1]), 1] 2 1Xx m-"row" matrix

]
3.4.6 Scalar, vector, matrix, and array operator functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

In al contexts that require an expression which is a subtype of Real, an expression which is a subtype of Integer
can also be used; the Integer expression is automatically converted to Real.

The term numeric class is used below for a subtype of the Real or Integer type class.
3.4.6.1 Equality and Assignment of type classes

Equality “a=b" and assignment “a:=b” of scalars, vectors, matrices, and arraysis defined element-wise and
require both objects to have the same number of dimensions and corresponding dimension sizes. The operands
need to be type equivalent.

Typeof a Typeof b Result of a=b Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a=b

\Vector[n] Vector[n] Vector[n] alj] = bfj]

Matrix[n, m] Matrix[n, m] Matrix[n, m] alj, K] = b[j, K]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] alj, k, ...] =b[j, Kk, ...]
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Addition “at+b” and subtraction “a-b” of numeric scalars, vectors, matrices, and arrays is defined element-wise
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and require size(a) = size(b) and a numeric type class for aand b.

Typeof a Typeof b Result of a+/- b Operation ¢ := a+/- b (j=1:n, k=1:m)
Scalar Scalar Scalar c:=at/-b

\Vector[n] Vector[n] Vector[n] c[j] :=&[j] +/- b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, K] := &[j, K] +/- b[j, K]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] cli,k, ...1 =4dj, k, ...] +-b[j, k, ...]

3.4.6.3 Scalar Multiplication of numeric type classes

Scalar multiplication “s*a” or “a*s’ with numeric scalar s and numeric scalar, vector, matrix or array ais defined

element-wise:

Typeof s Typeof a Typeof s* aand a*s [Operation c:=s*a or c:=a*s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=s*a

Scalar Vector [n] Vector [n] c[j] :=s* dj]

Scalar Matrix [n, m]  [Matrix [n, m] clj, K] :=s* dj, K]

Scalar Array[n, m, ...] |Array [n, m, ...] clj, k, ...] :=s*d[j, k, ...]

3.4.6.4 Matrix Multiplication of numeric type classes

Multiplication “a*b” of numeric vectors and matrices is defined only for the following combinations:

Typeofa [Typeofb  [Typeof a* b|Operationc:=a*b
Vector [n] [Vector [n] |Scalar ¢ := sumy(a[k]*b[k]), k=1:n
Vector [n] Matrix [n, m] Mector [m] |c[j] := sumy(aK]*b[K, j]), j=1:m, k=1:n
Matrix [n, m] Vector [m]  Vector [n] [c[j] := sumy(dj, K]*b[K])
Matrix [n, m] Matrix [m, p] Matrix [n, p] (c[i, j] = sumy(a[i, K]*b[K, j]), i=1:n, k=1:m,
j=1:p
[ Example:
Real A[3,3], x[3], b[3];
A*X = b;
X*A = b; /I same as transpose([x])*A*b

[v]*transpose([V])

Al \YAY;

tranpose([v])*Mv

]

// outer product
/I scalar

/I vector with one element

3.4.6.5 Scalar Division of numeric type classes

Division “&/s’ of numeric scalars, vectors, matrices, or arrays a and numeric scalars sis defined element-wise.

Theresult is always of real type. In order to get integer division with truncation use the function div.

Type of a Typeof s Result of a/ s Operation ¢ :=a/ s(j=1:n, k=1:m)
Scalar Scalar Scalar c:=als
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\Vector[n] Scalar Vector[n] c[k] :=dKk] /s
Matrix[n, m] Scalar Matrix[n, m]| clj, kK] :==4d[j,K] /s
Array[n, m, ...] Scalar Array[n, m, ...] clj, k, ...] :==4dj,k,...]/s

3.4.6.6 Exponentiation of Scalarsof numeric type classes

Exponentiation “a*b” is defined as pow( ) in the C language if both “a’ and “b” are scalars of a numeric type
class.

3.4.6.7 Scalar Exponentiation of Square M atrices of numeric type classes

Exponentiation “a&'s’ is defined if “a’ is a square numeric matrix and “s’ is a scalar as a subtype of Integer with
s>= 0. The exponentiation is done by repeated multiplication
(e.g. &3 =a*a*a; a0 = identity(size(a,1)); assert(size(a,1)==size(a,2),” Matrix must be square”); a*1 = a).

[Non-Integer exponents are forbidden, because this would require to compute the eigenvalues and eigenvectors
of “@” and thisisno longer an elementary operation] .

3.4.6.8 Sliceoperation

If aisanarray of records and misacomponent of that record, the expression amisinterpreted as slice
operation. It returns the array of components{a[1].m, ...}.

If misalso an array component, the slice operation isvalid only if size(a[1].m)=size(a[2].m)=...
3.4.6.9 Relational operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar arguments. The result isBoolean and is
trueor falseif therelation isfulfilled or not, respectively.

In relations of the form vl ==v2 or v1 <> v2, v1 or v2 shall not be a subtype of Real. [ The reason for thisruleis
that relations with Real arguments are transformed to state events (see section Events below) and this
transformation becomes unnecessarily complicated for the == and <> relational operators (e.g. two crossing
functions instead of one crossing function needed, epsilon strategy needed even at event instants). Furthermore,
testing on equality of Real variablesis questionable on machines where the number length in registersis
different to number length in main memory] .

Relations of the form “v1rel_op v2”, with v1 and v2 variables and rel_op arelational operator are called
elementary relations. If either v1 or v2 or both variables are a subtype of Real, the relation is called a Real
elementary relation.

3.4.6.10 Vectorized call of functions

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A isavector of reas, then
sin(A) isavector where each element is the result of applying the function sin to the corresponding element in
A.

Consider the expression f (ar g1, . .., argn), an application of the function f to the arguments argl, ..., argn
is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If thetypes match, nothing is done.
2. If the types do not match, and a type conversion can be applied, it is applied. Continued with step 1.

3. If thetypes do not match, and no type conversion is applicable, the passed argument type is checked to see if
itisan n-dimensional array of the formal parameter type. If it isnot, the function call isinvalid. If itis, we
call this aforeach argument.
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4. For al foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call isinvalid. If no foreach argument exists, the function is applied in the normal fashion, and the
result has the type specified by the function definition.

5. Theresult of the function call expression isan n-dimensional array with the same dimension sizes asthe
foreach arguments. Each element €i,..,j isthe result of applying f to arguments constructed from the original
argumentsin the following way.

e If theargument is not aforeach argument, it isused as-is.
» If theargument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, al of them have to be the same size, and they are traversed in paralel.

[ Examples:
sin({a, b, c}) = {sin(a), sin(b), sin(c)} /I argument is a vector
sin([a, b, c]) [sin(a),sin(b),sin(c)] [/l argument may be a matrix

atan({a, b,c},{d, e, f})

Thisworks even if the function is declared to take an array as one of its arguments. If pval is defined asa
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a two-dimensional array (a vector of vectors). The result type in this case will be a vector of
Real.

pval ([ 1, 2;3,4])
sin([1,2;3,4])

{atan(a,d), atan(b,e), atan(c,f)}

[pval ([1,2]); pval ([3,4])]
[sin({1,2}); sin({3,4})]
[sin(l), sin(2); sin(3), sin(4)]

function Add
i nput Real el, eZ2;
out put Real sunt;

al gorithm
suml := el + e2;
end Add;

Add(1, [1, 2, 3]) adds one to each of the elements of the second argument giving the result [2, 3, 4] . However, it
isillegal towrite 1 + [1, 2, 3], because the rules for the built-in operators are more restrictive.]

3.4.6.11 Empty Arrays

Arrays may have dimension sizes of 0. E.g.
Real x[0]; [/l an empty vector
Real A[O, 3], B[5, 0], C[0, 0];  // empty matrices

»  Empty matrices can be constructed with the fill function. E.g.
Read  A[:;] =fill(0.0,0,1) /l aReal 0 x 1 matrix
Boolean B[:, :, :] =fill(false, 0, 1, 0) // aBoolean 0 x 1 x 0 matrix

e Itisnot possible to access an element of an empty matrix, e.g. v[j,k] iswrong if “v=[]" because the assertion
failsthat the index must be bigger than one.

e Size-requirements of operations, such as +, -, have also to be fulfilled if adimension is zero. E.g.
Real[3,0] A, B;
Real[0,0] C;
A +B [/ fine, result isan empty matrix
A+ C [/l error, sizes do not agree

»  Multiplication of two empty matrices resultsin a zero matrix if the result matrix has no zero dimension
sizes, i.e.,
Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
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Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = zeros(m,n) (non-empty matrix, with zero elements).

[Example:
Real u[p], x[n], y[al, Aln,n], B[n,p], C[q,n], Dq,p];
der(x) = A*x + B*u
y = Cx + Dtu

Assume n=0, p>0, g>0: Resultsin "y = D*u"
]
3.4.7 Functions

There are two forms of function application, see section In the first form,
f(3.5, 5.76)

the arguments are associated with the [ formal] parameters according to their position in the argument list. Thus
argument i is passed to parameter i, where the order of the parametersis given by the order of the component
declarations in the function definition. The first input component is parameter number 1, the second input
component is parameter number 2, and so on. When afunction is called in this way, the number of arguments
and parameters must be the same.

In the second form of function application,
g(x=3.5, y=5.76)

the parameters are explicitly associated with the arguments by means of equationsin the argument list.
Parameters that have default values need not be specified in the argument list.

The type of each argument must agree with the type of the corresponding parameter, except where the standard
type coercions can be used to make the types agree. (See also section B.4.6.10{on applying scalar functions to

arrays.)
[ Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real vy;

i nput Real z := 10.0;
out put Real r;

end. f
Then the following two applications are equivalent:

f(1.0, 2.0, 10.0)
f(y = 2.0, x =1.0)

]

A function may have more than one output component, corresponding to multiple return values. When a function
has a single return value, afunction application is an expression whose value and type are given by the value and
type of the output component.

The only way to call afunction having more than one output component is to make the function call the RHS of
an equation or assignment. In these cases, the LHS of the equation or assignment must be alist of component
references within parentheses. The component references are associated with the output components according
to their position in the list. Thus output component i is set equal to, or assigned to, component referencei in the
list, where the order of the output componentsis given by the order of the component declarationsin the function
definition.
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The number of component references in the list must agree with the number of output components.

The type of each output parameter must agree with the type of the corresponding component referencesin the
list onthe LHS.

[ Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real v;

out put Real r1;
out put Real r2;
out put Real r3;

end. f
Then the following equation and assignment show the two possible ways of calling f:

(x, y, z) =f(2.0, 2.0);
(x, vy, z) :=f(1.0, 2.0);

]

The only permissible use of an expression in the form of alist of expressions in parentheses, iswhen it isused as
the LHS of an equation or assignment where the RHS is an application of a function with more than one output
component. In this case, the expressionsin the list shall be component references.

[ Example. The following areillegal:

(x+1, 3.0, z/y) =f(1.0, 2.0); /I Not alist of component references.
(x, y, z) + (u, v, W) /I Not LHS of suitable eqn/assignment.

3.4.8 Variability of Expressions

Constant expressions are;
* Real, Integer, Boolean and String literals.
* Read, Integer, Boolean and String variables declared as constant .

»  Except for the specia built-in operatorsinitial, terminal, der, edge, change, sample, preand
analysisType afunction or operator with constant subexpressions as argument (and no parameters
defined in the function) is a constant expression.

Parameter expressions are;
e Constant expressions.
¢ Redl, Integer, Boolean and String variables declared as parameter.

«  Except for the special built-in operatorsinitial, terminal, der, edge, change, sampleand prea
function or operator with parameter subexpressions is a parameter expression.

»  Thefunction analysisType() is parameter expression.
Discrete-time expressions are:
»  Parameter expressions.

» Discrete-time variables, i.e. Integer, Boolean and String variables, as well as Real variables assigned in
when-clauses
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*  Function calls where all input arguments of the function are discr ete-time expressions.
»  Expressions where al the subexpressions are discr ete-time expressions.
e Expressionsin the body of awhen clause.

¢ Unlessinside noEvent: Ordered relations (>,<,>=,<=) and the functions ceil, floor, div, mod, rem, abs,
sign. These will generate eventsif they have continuous-time subexpressions. [In other words, relations
inside noEvent(), such as noEvent(x > 1), are continuous-time expressions) .

e Thefunctions pre, edge, and change result in discrete-time expressions.
¢ Expressionsin functions behave as though they were discr ete-time expressions.

If the value of a constant or parameter expression is either directly or indirectly used as structural expression (i.e.
to compute the size of a component or for if-statements with unequal sizes of the branches) it is a quality-of-
implementation issue whether any calls of non-builtin functions are allowed as subexpressions. [ The intention is
to erase thisrestriction for Modelica 2.0.]

Components declared as constant shall have an associated declaration equation with a constant expression. The
value of a constant cannot be changed after its declaration.

For an assignment v:=expr or declaration equation v=expr, v must be declared to be at least as variable as expr.

=  The declaration equation of a parameter component and of the base type attributes [ such as start] needsto
be a parameter expression.

= If visadiscrete-time component then expr needs to be a discrete-time expression.

For an equation exprl = expr2 where neither expression is of base type Real, both expressions must be discrete-
time expressions. For record equations the equation is split into basic types before applying this test. [ This
restriction guarantees that the noEvent() operator cannot be applied to Boolean, Integer or String equations
outside of a when-clause, because then one of the two expressionsis not discrete-time]

[ Example;
nodel Constants
paraneter Real pl = 1;
constant Real cl = pl + 2; /1 error, no constant expression

par anet er Real p2
end Constants;

pl + 2; /1l fine

nodel Test

Constants cl(pl=3); /1 fine

Constants c2(p2=7); /1 fine, declaration equation can be nodified

Bool ean b;

Real X;
equation

b = noEvent(x > 1) // error, since b is a discrete-tinme and

/1 noEvent(x > 1) is a continuous-tinme expression

end Test;

3.5 Eventsand Synchronization

Theintegration is halted and an event occurs whenever a Real elementary relation, e.g. “x > 27, changesits
value. The value of arelation can only be changed at event instants [in other words, Real elementary relations
induce state or time events] . The relation which triggered an event changes its value when evauated literally
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before the model is processed at the event instant [in other words, a root finding mechanismis needed which
determines a small time interval in which the relation changes its value; the event occurs at the right side of this
interval]. Relations in the body of a when-clause are always taken literally. During continuous integration a
Real elementary relation has the constant value of the relation from the last event instant.

[Example:
y = if u > uMax then uMax else if u < uMn then uMn el se u;
During continuous integration always the same if branch is evaluated. The integration is halted whenever u-

uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration is
restarted.

Numerical integration methods of order n (n>=1) require continuous model equations which are differentiable
upto order n. This requirement can be fulfilled if Real elementary relations are not treated literally but as
defined above, because discontinuous changes can only occur at event instants and no longer during continuous
integration.]

[Itisa quality of implementation issue that the following special relations
time >= discrete expression
time < discrete expression

trigger atime event at “ time = discrete expression” , i.e., the event instant is known in advance and no iteration
is needed to find the exact event instant ]

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation is present, are the argument of the noEvent(..) function. The noEvent feature is propagated to all
subrelations in the scope of the noEvent function.

[Example:

y = noEvent( if u > uMax then uMax else if u < uMn then uMn else u);
The if-expression is taken literally without inducing state events.
The noEvent function is useful, if e.g. the modeller can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event

iterations occur during integration. Furthermore, the noEvent function is used to guard agains “ outside
domain” errors, e.g. y = if noEvent(x >= 0) then sgrt(x) else 0]

All equations and assignment statements within when clauses and all assignment statements within function
classes are implicitly treated with the noEvent function, i.e., relations within the scope of these operators never
induce state or time events. [ Using state events in when-clauses is unnecessary because the body of a when
clause is not evaluated during continuous integration.]

[ Example:
Limtl = noEvent(x1 > 1);

// Error since Limtl a discrete-tine variable

al gorithm
when noEvent (x1>1) or x2>10 then

/1 error, when-conditions is not a discrete-tine expression
Cl ose : = true;
end when;

Modelicais based on the synchronous data flow principle which is defined in the following way:

1. All variables keep their actual values until these values are explicitly changed. Variable values can be
accessed at any time instant during continuous integration and at event instants.

2. At every timeinstant, during continuous integration and at event instants, the active equations express
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relations between variables which have to be fulfilled concurrently (equations are not active if the
corresponding if-branch, when-clause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not take time. [ If computation or communication
time has to be simulated, this property has to be explicitly modeled].

4. Thetotal number of equationsisidentical to the total number of unknown variables (= single assignment
rule).

[ These rules guarantee that variables are always defined by a unique set of equations. It is not possible that a
variableis e.g. defined by two equations, which would give rise to conflicts or non-deterministic behaviour.
Furthermore, the continuous and the discrete parts of a model are always automatically “ synchronized” .
Example:

al gorithm
when conditionl then
close := true;
end when;
al gorithm
when condition2 then
close := fal se;
end when;

Thisisnot a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If thiswould be a valid model, a conflict occurs when both conditions become true at the sametime
instant, since no priorities between the two equations are assigned. To become valid, the model hasto be
changed to:

al gorithm

when conditionl then
cl ose := true;

el sewhen condition2 then

cl ose := fal se;
end when;

Here, it iswell-defined if both conditions become true at the same time instant (conditionl has a higher priority
than condition2).]

Thereis no guarantee that two different events occur at the same time instant.

[ As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters.
Example:

Bool ean fast Sanpl e, sl owSanpl e;
I nteger ticks(start=0);

equati on
fast Sanpl e = sanpl e(0, 1);

al gorithm
when fast Sanpl e then
ticks = if pre(ticks) <5 then pre(ticks)+1l else O;
sl owSanpl e : = pre(ticks) == 0;
end when;
al gorithm

when fastSanple then // fast sanpling

end. Wﬁen;
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al gorithm

when sl owSanpl e t hen /1 slow sampling (5-tinmes slower)
end. Wﬁen;
The slowSample when-clause is evaluated at every 5™ occurrence of the fastSample when clause]

[ The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile time. For example, “ deadlock” between different when-
clausesis present if there are algebraic loops between the equations of the when-clauses.]

3.6 Variableattributes of predefined types

The attributes of the predefined variable types are described bel ow with Modelica syntax although they are
predefined; redeclaration of any of these typesisan error. It is furthermore not possible to combine extends from
the predefined types with other components. The definitions use Real Type, IntegerType, BooleanType and
StringType as mnemonics corresponding to machine representations. [ Hence the only way to declare a subtype
of e.g. Real isto use the extends mechanism.]

type Real
Real Type val ue; /1l Accessed wi thout dot-notation
paranmeter StringType quantity "
paraneter StringType unit "Unit used in equations";
paraneter StringType displayUnit "Default display unit";
par armet er Real Type m n=-1nf, max=+Inf; [/ Inf denotes a |large val ue
par anet er Real Type start 0; /1 Initial value
par anet er Bool eanType fi xed true, // default for parameter/constant;
false; // default for other variables
par armet er Real Type nom nal ; /1 Nom nal val ue
equati on
assert(value >= mn and value <= max, "Variable value out of Iimt");
assert(nomnal >= mn and nomi nal <= max, "Nom nal value out of limt");
end Real ;

type | nteger
I nt eger Type val ue; /1l Accessed without dot-notation
paranmeter StringType quantity ="";
par armet er | ntegerType mn=-1nf, max=+Inf;
par armet er | ntegerType start 0; /1 Initial value
par armet er Bool eanType fi xed true, // default for paraneter/constant;

false; // default for other variables

equati on
assert(value = nin and value <= max, "Variable value out of limt");
end | nteger;

type Bool ean
Bool eanType val ue; /1l Accessed without dot-notation
paraneter StringType quantity =""
par armet er Bool eanType start false; // Initial value
par armet er Bool eanType fi xed true, // default for paraneter/constant;

false, // default for other variables

end Bool ean;

type String
StringType val ue; /1l Accessed wi thout dot-notation
paranmeter StringType quantity ="";
parameter StringType start = ""; /1l Initial value

end String;
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The attributes “start” and “fixed” define theinitial conditions for avariable for analysisType = "static".
“fixed=false” means an initial guess, i.e., value may be changed by static analyzer. “fixed=true” means a
required value. Before other analysisTypes (such as "dynamic") are performed, the analysisType "static" hasto
be carried out first. The resulting consistent set of values for ALL model variablesisused asinitia values for the
analysisto be performed.

The attribute “nominal” gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. [ The nominal value can be used by an analysis tool to determine
appropriate tolerances or epsilons, or may be used for scaling. For example, the absolute tolerance for an
integrator could be computed as“ absTol = abs(nominal)* rel Tol/100” . A default valueis not provided in order
that in cases such as“ a=b" , where “ b” hasanominal value but not “ a” , the nominal value can be propagated
to the other variable).][For external functionsin C89, Real Type by default mapsto doubl e and Integer Type by
default mapstoi nt . In the mapping proposed in Annex F of the C99 standard, Real Type/double matches the
|EC 60559:1989 (ANSI/IEEE 754-1985) double format. Typically Integer Type represents a 32-bit 2-complement
signed integer.]

3.7 Built-in variabletime

All declared variables are functions of the independent variable time. Timeis abuilt-in variable available in all
classes, which istreated as an input variable. It isimplicitly defined as:

i nput Real tine (final quantity = "Tinme",
final unit ="s");
The value of the start attribute of time is set to the time instant at which the simulation is started.
[Example:
Trigger an event at start time+ 10 s:

paranmeter Real TO = tinme.start + 10;
al gorithm
when tinme >= TO then

end. Wﬁen;
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4 Mathematical description of Hybrid
DAESs

In this section, the mapping of a Modelica model into an appropriate mathematical description formis discussed.

In afirst step, a Modelica trandlator transforms a hierarchical Modelica model into a"flat" set of Modelica
statements, consisting of the equation and algorithm sections of all used components by:

» expanding all class definitions (flattening the inheritance tree) and adding the equations and assignment
statements of the expanded classes for every instance of the model

» replacing all connect-statements by the corresponding equations of the connection set (see .
*  mapping al agorithm sections to equation sets.
*  mapping al when clauses to equation sets (see .
As aresult of this transformation process, a set of equations is obtained consisting of differential, algebraic and
discrete equations of the following form (V :=[X; X; y; t; m; pre(m); p]):
(1a) c:=f_(relation(v))
(Ab) m:=f_(v,c)
(Ic) 0=f,(v.0)

where

p Modelica variables declared as parameter or constant, i.e., variables without any time-
dependency.

t Modelica variable time, the independent (real) variable.

X(t) Modelica variables of type Real, appearing differentiated.

m(te) Modelica variables of type discrete Real, Boolean, Integer which are unknown. These variables
change their value only at event instants te. pre(m) are the values of m immediately before the
current event occurred.

y(t) Modelica variables of type Real which do not fall into any other category (= agebraic
variables).

c(te) The conditions of all if- expressions generated including when-clauses after conversion, see

B.34).
relation(v) A relation containing variablesv;, e.g. vy > V,, v3 >= 0.

For simplicity, the special cases of the noEvent() operator and of the reinit() operator are not contained in the
equations above and are not discussed below.

The generated set of equationsis used for simulation and other analysis activities. Simulation means that an
initial value problem is solved, i.e., initial values have to be provided for the states x. The equations define a
DAE (Differential Algebraic Equations) which may have discontinuities, a variable structure and/or which are
controlled by a discrete-event system. Such types of systems are called hybrid DAEs. Simulation is performed in
the following way:
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1. TheDAE (1c) is solved by anumerical integration method. In this phase the conditions c of theif- and
when-clauses, as well as the discrete variables m are kept constant. Therefore, (1¢) is a continuous function
of continuous variables and the most basic requirement of numerical integratorsis fulfilled.

2. During integration, all relations from (1a) are monitored. If one of the relations changesits value an event is
triggered, i.e., the exact time instant of the change is determined and the integration is halted. As discussed
in section relations which depend only on time are usually treated in a special way, because this allows
to determine the time instant of the next event in advance.

3. Ataneventinstant, (1) isamixed set of agebraic equations which is solved for the Real, Boolean and
Integer unknowns.

4. After an event is processed, the integration is restarted with 1.

Note, that both the values of the conditions ¢ as well as the values of m (all discrete Real, Boolean and Integer
variables) are only changed at an event instant and that these variables remain constant during continuous
integration. At every event instant, new values of the discrete variables m and of new initial values for the states
x are determined. The change of discrete variables may characterize a new structure of a DAE where elements of
the state vector x are disabled. In other words, the number of state variables, algebraic variables and residue
equations of a DAE may change at event instants by disabling the appropriate part of the DAE. For clarity of the
equations, thisis not explicitly shown by an additional index in (1).

At an event instant, including the initial event, the model equations are reinitialized according to the following
iteration procedure:

known variables: x, t, p
unkown variables: dx/dt, y, m pre(m, c

/1l pre(m = value of m before event occured
| oop
solve (1) for the unknowns, with pre(n fixed
if m== pre(n) then break
pre(m :=m
end | oop
Solving (1) for the unknownsis non-trivial, because this set of equations contains not only Real, but also
Boolean and Integer unknowns. Usually, in afirst step these equations are sorted and in many cases the Boolean
and Integer unknowns can be just computed by a forward evaluation sequence. In some cases, there remain
systems of equations (e.g. for ideal diodes, Coulomb friction elements) and specialized algorithms have to be
used to solve them.

Due to the construction of the equations by "flattening" a Modelica model, the hybrid DAE (1) contains a huge
number of sparse equations. Therefore, direct simulation of (1) requires sparse matrix methods. However,
solving thisinitial set of equations directly with a numerical method is both unreliable and inefficient. One
reason is that many Modelica models, like the mechanical ones, have aDAE index of 2 or 3, i.e., the overall
number of states of the model is less than the sum of the states of the sub-components. In such a case, every
direct numerical method has the difficulty that the numerical condition becomes worsg, if the integrator step size
is reduced and that a step size of zero leads to a singularity. Another problem is the handling of idealized
elements, such asideal diodes or Coulomb friction. These elements lead to mixed systems of equations having
both Real and Boolean unknowns. Specialized algorithms are needed to solve such systems.

To summarize, symbolic transformation techniques are needed to transform (1) in a set of equations which can
be numerically solved reliably. Most important, the algorithm of Pantelides should to be applied to differentiate
certain parts of the equationsin order to reduce the index. Note, that also explicit integration methods, such as
Runge-K utta algorithms, can be used to solve (1c), after the index of (1¢) has been reduced by the Pantelides
algorithm: During continuous integration, the integrator provides x and t. Then, (1c) isalinear or nonlinear
system of equations to compute the algebraic variables y and the state derivatives dx/dt and the model returns
dx/dt to theintegrator by solving these systems of equations. Often, (1c) isjust alinear system of equationsin
these unknowns, so that the solution is straightforward. This procedure is especially useful for real-time
simulation where usually explicit one-step methods are used.
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5 Unit expressions

Unless otherwise stated, the syntax and semantics of unit expressionsin Modelica are conform with the
international standards 1SO 31/0-1992 "General principles concerning quantities, units and symbols* and 1SO
1000-1992 "SI units and recommendations for the use of their multiples and of certain other units".
Unfortunately, neither these two standards nor other existing or emerging 1SO standards define a formal syntax
for unit expressions. There are recommendations and Modelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" "L/rad", "mm/s".

5.1 The Syntax of unit expressions

uni t _expression:
unit_nunerator [ "/" unit_denom nator ]

uni t _nuner at or:
"1" | unit_factors | "(" unit_expression ")"

unit _denoni nat or:

unit_factor | "(" unit_expression ")"
The unit of measure of a dimension free quantity is denoted by "1". The | SO standard does not define any
precedence between multiplications and divisions. The SO recommendation isto have at most one division,
where the expression to the right of "/* either contains no multiplications or is enclosed within parentheses. It is
also possible to use negative exponents, for example, "J/(kg.K)" may be written as "J.kg-1.K-1".

unit_factors:
unit_factor [ unit_mulop wunit_factors ]

uni t _mul op:

The ISO standard allows that a multiplication operator symbol is left out. However, Modelica enforces the 1SO
recommendation that each multiplication operator is explicitly written out in formal specifications. For example,
Modelica does not support "Nm" for newtonmeter, but requiresit to written as"N.m".

The preferred 1SO symbol for the multiplication operator isa"dot" abit above the base line: "*'. Modelica

supports the |SO aternative ".", which is an ordinary "dot" on the base line.

unit_factor:
unit_operand [ unit_exponent ]

uni t _exponent:

[ "+ | "-" 1 integer
The 1SO standard does not define any operator symbol for exponentiation. A unit_factor consists of a
unit_operand possibly suffixed by a possibly signed integer number, which isinterpreted as an exponent. There
must be no spacing between the unit_operand and a possible unit_exponent.
uni t _oper and:

unit_synbol | unit_prefix unit_synbol

uni t _prefix:
Y| Z| E] P T|] G M| k| h|Jda]d|]c|m|]ul|lp]|f]alz]
y
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A unit_symbol isastring of letters. A basic support of unitsin Modelica should know the basic and derived units
of the SI system. It is possible to support user defined unit symbols. In the base version Greek lettersis not
supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second alternative
assuming a prefixed operand should be exploited. There must be no spacing between the unit_symbol and a
possible unit_prefix. The value of the prefixes are according to the |SO standard. The letter "u" isused asa
symbol for the prefix micro.

5.2 Examples

«  Theunit expression "m" means meter and not milli (10°3), since prefixes cannot be used in isolation. For
millimeter use "mm" and for squaremeter, m? write "m2".

«  Theexpression "mm2" means mm? = (10°m)? = 10°m? Note that exponentiation includes the prefix.

The unit expression " T" means Tesla, but note that the letter "T" is also the symbol for the prefix tera
which has amultiplier value of 10%.
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6 External function interface

6.1 Overview

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has areturn
value or returnsits result via output parameters (or both). The Modelica external function call interface provides
the following:

e Support for external functionswritten in C and FORTRAN 77. Other languages, e.g. C++ and
Fortran 90, may be supported in the future.

*  Mapping of argument types from Modelicato the target language and back.

» Natura type conversion rulesin the sense that there is a mapping from Modelica to standard libraries of
the target language.

» Handling arbitrary parameter order for the externa function.

» Passing arraysto and from external functions where the dimension sizes are passed as explicit integer
parameters.

» Handling of external function parameters which are used both for input and output.

The format of an external function declaration is as follows.
function | DENT string_conment

{ conponent _cl ause ";" }
[ protected { component _clause ";" } ]
external [ |anguage_specification ] [ external _function_call ] ";"
[ annotation ";" ]
end | DENT;

Componentsin the public part of an external function declaration shall be declared either asinput or output.
[Thisisjust asfor any other function. The componentsin the protected part allows local variables for temporary
storage to be declared.]

The language-specification must currently be one of " C' or " FORTRAN 77" . Unlessthe external languageis
specified, it is assumed to be C.

The external-function-call specification allows functions whose prototypes do not match the default assumptions
as defined below to be called. It also gives the name used to call the external function. If the external call is not
given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressionsin the argument list are identifiers, scalar constants, and the function
si ze applied to an array and a constant dimension number. The annotations are used to pass additional
information to the compiler when necessary. Currently, the only supported annotationisar r ayLayout , which
can be either "r owiVaj or " or "col unmMaj or ".

6.2 Argument type mapping

The arguments of the external function are declared in the same order asin the Modelica declaration, unless
specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are passed in the
same way as outputs, whereas constants and size-expression are passed as inputs.
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6.2.1 Simpletypes
Arguments of simple types are by default mapped as follows for C:
Modelica C
Input Output
Real doubl e doubl e *
I nt eger i nt int *
Bool ean i nt int *
String const char * Not allowed.

An exception is made when the argument is of the form si ze( ..,
size_t.

..) . Inthis case the corresponding C-typeis

Strings are NUL-terminated to facilitate calling of C functions. Currently, returning strings from external C-
functionsis not supported.

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output
Real DOUBLE PRECI SI ON DOUBLE PRECI SI ON
I nt eger | NTEGER | NTEGER
Bool ean LOG CAL LOG CAL

Passing strings to FORTRAN 77 subroutines/functionsis currently not supported.

6.2.2 Arrays

Unless an explicit function call is present in the external declaration, an arraysis passed by its address followed
by n arguments of type si ze_t with the corresponding array dimension sizes, where n is the number of
dimensions. [Thetypesi ze_t isa C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order when
caling FORTRAN 77 functions. These defaults can be overridden by the array layout annotation. See the
example below.

The table below shows the mapping of an array argument in the absence of an explicit external function call
when calling a C function. The type T is alowed to be any of the simple types which can be passed to C as
defined in section .2.1] or arecord type as defined in section [p.2.3]and it is mapped to the type T’ as defined in
these sections.

Modelica C
Input and Output
T[ di m] T *, size_t dim
T[ di m, di mp] T *, size_t dim, size t dim
T[dim, ., dim] T *, size_t dim, ., size_t dim

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit external
function call is similar to the one defined above for C: first the address of the array, then the dimension sizes as
integers. See the table below. Thetype T is allowed to be any of the simple types which can be passed to
FORTRAN 77 as defined in section .2.1]and it is mapped to the type T' as defined in that section.
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Modelica FORTRAN 77
Input and Output
T[ di m] T, INTEGER di m
T[ di m, di mp] T, INTEGER dim, | NTEGER di m
T[dim, .., dim] T, INTEGER dim, .., |NTEGER di m,

[ The following two examplesillustrate the default mapping of array argumentsto external C and FORTRAN 77
functions.

function foo

i nput Real al:,:,:1;
out put Real X;
ext ernal ;

end foo;

The corresponding C prototype is asfollows:

doubl e foo(double *, size t, size t, size_t);
If the external function iswritten in FORTRAN 77, i.e.:

function foo

i nput Real al:,:,:1;
out put Real X;
external "FORTRAN 77";

end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTI ON foo(a, di, d2, d3)
DOUBLE PRECI SI ON(d1, d2,d3) a

I NTEGER dl
I NTEGER d2
I NTEGER d3
DOUBLE PRECI SI ON foo

END
]

When an explicit call to the external function is present, the array and the sizes of its dimensions must be passed
explicitly.

[ This example shows how to arrays can be passed explicitly to an external FORTRAN 77 function when the
default assumptions are unsuitable.

function foo

i nput Real x[:];

i nput Real y[size(x,1),:];
i nput I nteger i;

out put Real ull si ze(y, 1)];

output Integer u2[size(y,2)];
external "FORTRAN 77" nyfoo(x, vy, size(x,1), size(y,?2),

ul, i, u2);
end foo;
The corresponding FORTRAN 77 subroutine would be declared as follows:
SUBRQUTI NE nmyfoo(x, y, n, m ul, i, u2)

DOUBLE PRECI SI ON( n) X
DOUBLE PRECI SION(Nn, m) vy
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| NTEGER n

| NTEGER m
DOUBLE PRECI SION(n)  ul
| NTEGER i

DOUBLE PRECI SI ON(m) u2

END

This example shows how to pass an array in column major order to a C function.
function fie
input Real[:,:] &g
out put Real b;
ext ernal ;
annot ati on(arrayLayout = "col unmMaj or");
end fie;
This corresponds to the following C-prototype:
doubl e fie(double *, size t, size_ t);

]
6.2.3 Records

Mapping of record typesis only supported for C. A Modelicarecord class that contains simple types, other
record elements, or arrays with fixed dimensions thereof, is mapped as follows:

* Therecord classisrepresented by astruct in C.

» Each element of the Modelicarecord is mapped to its corresponding C representation.
The elements of the Modelica record class are declared in the same order in the C struct.

» Arraysare mapped to the corresponding C array, taking the default array layout or any explicit
arr ayLayout -directive into consideration.

» Records are passed by reference (i.e. a pointer to the record is being passed).

For example,
record R struct R {
Real x; doubl e x;
I nteger y[10]; is mapped to i nt y[ 10];
Real z; doubl e z;
end R };

6.3 Return type mapping

If there isasingle output parameter and no explicit call of the external function, or if there is an explicit external
call in the form of an equation, in which case the LHS must be one of the output parameters, the external routine
is assumed to be a value-returning function. Mapping of the return type of functionsis performed asindicated in
the table below. Storage for arrays as return values is allocated by the calling routine, so the dimensions of the
returned array are fixed at call time. Otherwise the external function is assumed not to return anything; i.e, itis
really a procedure or, in C, avoi d-function. [In this case, argument type mapping according to section f.2]is
performed in the absence of any explicit external function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77
Real doubl e DOUBLE PRECI SI ON
I nt eger i nt | NTEGER
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Bool ean i nt LOG CAL
T[dim, ., dim] [T * T
Record See section Not allowed.

The element type T of an array can be any simple type as defined in section or, for C, arecord type as
defined in section The element type T is mapped to thetype T as defined in these sections.

6.4 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An external
function is not allowed to internally change the inputs (even if they are restored before the end of the function).
[ Example;

function foo

i nput Real x;

i nput Real v;

out put Real z:=x;

external "FORTRAN 77" nyfoo(Xx,Yy,z);
end foo;

The following Modelica function;

function f
i nput Real a;
out put Real b;

al gorithm
b: =f oo(a, a);
b: =f oo( b, 2*b) ;

end f;

can on most systems be transformed into the following C function

doubl e f(double a) {
extern voi d nyfoo_(doubl e*, doubl e*, doubl e*);
doubl e b, tenpl,tenp2;
nyfoo_ (&a, &a, &b) ;
templ=2*b;
t enp2=b;
nyfoo_( &b, & enpl, & enp2);
return tenpz;
}

The reason for not allowing the external function to change the inputsisto ensure that inputs can be stored in
static memory and to avoid superfluous copying (especially of matrices). If the routine does not satisfy the
requirements the interface must copy the input argument to a temporary. Thisisrare but occurse.g. in dormiqin
some Lapack implementations. In those special casesthe writer of the external interface have to copy the input
to atemporary. If thefirst input was changed internally in myfoo the designer of the interface would have to
change the interface function “ foo” to:

function foo
i nput Real x;
protected Real xtenp:=x; // Temporary used because myfoo changesitsinput
public input Real vy;
out put Real z;
external "FORTRAN 77" nyfoo(xtenp,vy, z);
end foo;

Note that we discuss input arguments for Fortran-routines even though Fortran 77 does not formally have input
arguments and forbid aliasing between any pair of arguments to a function (section 15.9.3.6 of X3J3/90.4). For
the few (if any) Fortran 77 compilers that strictly follow the standard and are unable to handle aliasing between
input variables the tool must transform the first call of foo into
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tenpl=a; /* Tenporary to avoid aliasing */
nyfoo_( &a, & enpl, &b);

The use of the function foo in Modelica is uninfluenced by these considerations.]

6.5 Examples

6.5.1 Input parameters, function value

[Here all parametersto the external function are input parameters. One function valueisreturned. If the
external language is not specified, the default is"C", as below.

function foo

i nput Real X;
i nput Integer v;
out put Real W,
ext ernal ;

end foo;

This corresponds to the following C-prototype:
doubl e foo(double, int);
Example call in Modélica:
z = foo(2.4, 3);
Trandated call in C:
z = foo(2.4, 3);

6.5.2 Arbitrary placement of output parameters, no external function value

In the following example, the external function call is given explicitly which allows passing the argumentsin a
different order than in the Modelica version.

function foo

i nput Real X;
i nput Integer v;
out put Real ul;

out put Integer u2;
external "C' nyfoo(x, ul, y, u2);
end foo;

This corresponds to the following C-prototype:

voi d nyfoo(double, double *, int, int *);
Example call in Modélica:

(z1,i2) = foo(2.4, 3);
Trangdated call in C:

nmyfoo(2.4, &1, 3, & 2);

6.5.3 External function with both function value and output variable

The following external function returns two results: one function value and one output parameter value. Both
are mapped to Modelica output parameters.

function foo

i nput Real X;
i nput Integer v;
out put Real funcval ue;

out put I nteger outl;
external "C' funcval ue = nyfoo(x, y, outl);
end foo;
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This corresponds to the following C-prototype:

doubl e nyfoo(double, int, int
Example call in Modelica:

(z1,i2) = foo(2.4, 3);
Trandated call in C:

z1l = nyfoo(2.4, 3, & 2);

*);
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7/ Mod€licastandard library

The pre-defined, free "package Modelica’ is shipped together with aModelicatranslator. It is an extensive
standard library of pre-defined componentsin several domains. Futhermore, it contains a standard set of type
and interface definitionsin order to influence the trivial decisions of model design process. If, as far as possible,
standard quantity types and connectors are relied on in modeling work, model compatibility and thereby reuseis
enhanced. Achieving model compatibility, without having to resort to explicit coordination of modeling
activities, is essential to the formation of globally accessible libraries. Naturally, a modeller is not required to use
the standard library and may add any number of local base definitions.

Thelibrary will be amended and revised as part of the ordinary language revision process. It is expected that
informal standard base classes will develop in various domains and that these gradually will be incorporated into
the Modelica standard library.

The type definitionsin the library are based on SO 31-1992. Several | SO quantities have long names that tend
to become awkward in practical modeling work. For this reason, shorter alias-names are also provided if
necessary. Using, e.g., "ElectricPotential” repeatedly in a model becomes cumbersome and therefore "V oltage™
issupplied as an aternative.

The standard library is not limited to pure Sl units. Whenever common engineering practice uses a different set
of (possibly inconsistent) units, corresponding quantities will be allowed in the standard library, for example
English units. It is also frequently common to write models with respect to scaled Sl unitsin order to improve
the condition of the model equations or to keep the actual values around one for easier reading and writing of
numbers.

The connectors and partial models have predefined graphical attributesin order that the basic visual appearance
isthe samein all Modelica based systems.

The complete Modelica package can be downloaded from http://www.Modelica.org/library/library.html. Below,
the introductory documentation of thislibrary is given. Note, that the Modelica package is still under
development.

package Modelica
package Info
/* The Modelica package is a standardized, pre-defined and free
package, that is shipped together with a Modelicatrandator. The
package provides constants, types, connectors, partial models and
model componentsin various disciplines.

In the Modelica package the following conventions are used:

- Class and instance names are written in upper and lower case
letters, e.g., "ElectricCurrent”. An underscoreisonly used
at the end of aname to characterize alower or upper index,
e.g., body low_up.

- Type names start always with an upper case letter.
Instance names start always with a lower case letter with only
afew exceptions, such as"T" for atemperature instance.

- A package XXX hasits interface definitions in subpackage
XXX.Interface, e.g., Electrical.Interface.
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- Preferred instance names for connectors:

p,n: positive and negative side of a partial model.

a,b: side"a" and side"b" of a partial model
(= connectors are completely equivalent).

end Info;
end Modelicg;
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8 Revision history

This section describes the history of the Modelica Language Design, and its contributors. The current version of
this document is available from http://www.modelica.org/.

81 Modelicalsd

Modelica 1.4 was released December 15, 2000. The Modelica Association was formed in Feb. 5, 2000 and is
now responsible for the design of the Modelica language. The Modelica 1.4 specification was edited by Hans
Olsson and Dag Bruck.

8.1.1 Contributorstothe Modelica Language, version 1.4

Bernhard Bachmann, Fachhochschule Bielefeld, Germany

Peter Bunus, MathCore, Linkoping, Sweden

Dag Briick, Dynasim, Lund, Sweden

Hilding EImqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linkoping University, Sweden

Jorge Ferreira, University of Aveiro, Portugal

Peter Fritzson, Linkoping University, Linkdping, Sweden

Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linkdping, Sweden

Mats Jirstrand, MathCore, Linkoping, Sweden

Clemens Klein-Robbenhaar, Germany

Pontus Lidman, MathCore, Linkoping, Sweden

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Tommy Persson, Linkdping University, Sweden

Levon Saldamli, Linkdping University, Sweden

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Detroit, U.S.A.

Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jurg Wiesmann, ABB Corporate Research Ltd., Baden, Switzerland

8.1.2 Contributorstothe Modelica Standard Library

Peter Beater, University of Paderborn, Germany

Christoph Clau3, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Hubertus Tummescheit, Lund Institute of Technology, Sweden

8.1.3 Main Changesin Modelica 1.4

¢ Removed declare-before-use rule. This simplifies graphical user environments, because there exists no
order of declarations when components are graphically composed together.

*  Refined package concept by introducing encapsulated classes and import mechanism. Encapsulated
classes can be seen as "self-contained units': When copying or moving an encapsulated class, at most
the import statements in this class have to be changed.
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*  Refined when-clause: The nondiscrete keyword is removed, equations in when-clauses must have a
unigue variable name on left hand side variable and the exact mapping of when-clauses to equationsis
defined. As aresult, when-clauses are now precisely defined without referring to a sorting algorithm
and it is possible to handle algebraic |oops between when-clauses with different conditions and between
when-clauses and the continuous-time part of a model. The discrete keyword is now optional,
simplifying the library development because only one type of connector is needed and not several types
which do contain or do not contain the discrete prefix on variables. Additionally, when-clauses in
algorithm sections may have elsewhen clauses which simplifies the definition of priorities between
when-clauses.

»  For replaceable declarations: allowed constraining clauses, and annotations listing suitable
redeclarations. This allows a graphical user environment to automatically build menus with meaningful
choices.

*  Functions can specify their derivative. Thisallows, e.g., the application of the Pantelides a gorithm to
reduce the index of a DAE also for external functions.

*  New built-in operator "rem" (remainder) and the built-in operators div, mod, ceil, floor, integer,
previously only allowed to be used in when-clauses can now be used everywhere, because state events
are automatically generated when the result value of one of these operator changes discontinuously.

¢ Quantity attribute also for base types Boolean, Integer, String (and not only for Real), in order to allow
abstracted variablesto refer to physical quantities (e.g. Boolean i(quantity="Current") istrueif current
isflowing and isfaseif no current isflowing).

» final keyword also allowed in declaration, to prevent modification. Example

nmodel A

Real x[:1];

final |nteger n=size(x,1);
end A

»  Severa minor enhancements, such as usage of dot-notation in modifications
(eg:"A x(B.C=1,B. D=2)" isthesameas "A x(B(C=1,D=2));").

* Internaly restructured specification.

Modelica 1.4 is backwards compatible with Modelica 1.3, with the exception of (1) some exotic cases where
different results are achieved with the removed " declare-before-use-rule" and the previous declaration order, (2)
when-clauses in equations sections, which use the general form "exprl = expr2" (now only "v=expr" is alowed
+ some specia cases for functions), (3) some exotic cases where a when-clause may be no longer evaluated at
theinitial time, because the initialization of the when-condition is now defined in a more meaningful way
(before Modelica 1.4, every condition in awhen-clause has a"previous' value of false), and (4) models
containing the nondiscrete keyword which was removed.

8.2 Modelical.3 and older versions.

Modelica 1.3 was released December 15, 1999.

8.2.1 Contributorsup to Modelica 1.3

The following list contributors and their affiliations at the time when Modelica 1.3 was released.

H. Elmquist!,

B. Bachmann?, F. Boudaud®, J. Broenink?, D. Briick®, T. Ernst®, R. Franke®, P. Fritzson’, A. Jeandel®, P.
Grozman®, K. Judin®, D. K&geda’, M. Klose’, N. Loubere®, S. E. Mattsson, P. J. Mosterman*!, H. Nilsson’, H.
Olsson', M. Otter™, P. Sahlin*?, A. Schneider®®, M. Tiller™, H. Tummescheit'®, H. Vangheluwe™

!Dynasim AB, Lund, Sweden
2 ABB Corporate Research Center Heidelberg
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3 Gaz de France, Paris, France

“ University of Twente, Enschede, Netherlands
®> GMD FIRST, Berlin, Germany

® ABB Network Partner Ltd. Baden, Switzerland
" Linképing University, Sweden

8VTT, Espoo, Finland

®Technical University of Berlin, Germany

19) und University, Sweden

1 DLR Oberpfaffenhofen, Germany

12 Bris Data AB, Stockholm, Sweden

2 Fraunhofer Institute for Integrated Circuits, Dresden, Germany
“DLR, Cologne, Germany

> Ford Motor Company, Detroit, U.S.A.

18 University of Gent, Belgium

8.22 Main changesin Modelica 1.3
Modelica 1.3 was released December 15, 1999.

= Defined connection semantics for inner/outer connectors.
= Defined semantics for protected element.

= Defined that least variable variability prefix wins.

= Improved semantic definition of array expressions.

= Defined scope of for-loop variables.

8.23 Main changesin Modelica 1.2
Modelica 1.2 was released June 15, 1999.

=  Changed the external function interface to give greater flexibility.
= [ntroduced inner/outer for dynamic types.

= Redefined final keyword to only restrict further modification.

= Redtricted redeclaration to replaceable elements.

= Defined semantics for if-clauses.

=  Defined allowed code optimizations.

= Refined the semantics of event-handling.

= Introduced fixed and nominal attributes.

= Introduced terminate and analysisType.

8.24 Main Changesin Modelica 1.1
Modelica 1.1 was released in December 1998.

Major changes:

= Specification as a separate document from the rationale.
= Introduced prefixes discrete and nondiscrete.

= Introduced pre and when.

=  Defined semantics for array expressions.

= Introduced built-in functions and operators (only connect was present in Modelica 1.0).
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8.25 Moddical.0

Modelica 1, thefirst version of Modelica, was released in September 1997, and had the language specification as
ashort appendix to the rationale.
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