AADL : about code generation

AADL objectives

0 AADL requirements document (SAE ARD 5296)
= Analysis and Generation of systems

O Generation can encompasses many dimensions

1. Generation of skeletons from AADL components
Like from UML class diagrams

2. Generation of system archetypes
Tasks, types, runtime configuration parameters, etc.

O In the following, we consider option #2
= Supported by Ocarina, see

AADL and code generation

0 AADL has a full execution semantics

= Allow for full analysis:
Scheduling, security, error, behavior

O Issue: what about the implementation ?
= How to go to code?

= While preserving both the semantics and non
functional properties ?

O Solution: enrich AADL with annexes documents
= To describe application data
m To detail how to bind code to AADL models

About AS5506/2 (Jan. 2011)

O This document consists of three annexes to the
SAE AADL standard that

= The Data Modeling Annex provides guidance on a
standard way of associating data models expressed
In other data modeling notations such as UML or
ASN.1 with architecture models expressed in AADL,

= The Behavior Annex enables modeling of
component and component interaction behavior in a
state-machine based annex sublanguage, and

= The ARINC653 Annex provides guidance on a
standard way of representing ARINC653 standard
compliant partitioned embedded system architectures
iIn AADL models.

About data modeling annex

O Allow one to clarify actual representation of data
= Integer, floats, etc. with Data_Representation

O Actual size of data
= 16/32/64 bits integers with Source Data_Size

O Admissible range, precision
O Patterns for composite types, unions, etc.

0O Based on a dedicated property set Data_Model

AADL: modeling data types

O Solution : enhance definition of types
= One step closer to source code
= Note: irrelevant for scheduling analysis

subpr ogr am Receiver_Spg

f eat ures
receiver_out : out paraneter Target Distance;
receiver_in : | n par anet er Target Distance;

end Receiver _Spg;

dat a Target Distance

properties
Data_Model::Data_Representation => integer;

end Target Distance;

AADIL and subprograms

O Issue: how to bind user code ?
O Solution: use default AADLv2 properties

subpr ogr am Receiver_Spg

f eat ures
receiver_out : out paranet er Target Distance;
receiver_in : | n paranet er Target Distance;
properties
Source Language => (Ada95); -- defined in AADL_Project

Source_Name => "radar.receiver";
end Receiver_Spg;

AADL and programming languages

O Issue: how to map source code ?

O Solution: guidelines provided in the
programming language annex document

= Mapping rules from AADL and the target language
Similarly OMG IDL mappings for CORBA

subpr ogr am Receiver_Spg

features
receiver_out : out par aneter Target Distance;
receiver_in : I n paranet er Target Distance;

end Receiver_Spg; procedure Receiver -- Ada

(Receiver_Out : out Target Distance;
l Receiver_In : Target Distance);
voi d receiver [* C99 */

(target_distance *receiver_out,
target_distance receiver_in);

About AADI._Project

0 AADL _Project Is a property set, project specific
O Enumerators for particular configuration
0 Defined w.r.t. model processing tools

Supported Scheduling_Protocols: type enuneration
(SporadicServer, RMS, FixedTimeline, EDF, ...

Supported _Concurrency_Control_Protocols: type enuneration
(None_Specified, Priority _Inheritance, Priority _Celling, ..

Supported _Source Languages: type enuneration
(Ada95,C, Scade, Simulink, ...

Attaching code to components

O Connecting subprograms to threads

thread receiver
features
receiver_out out data port radar_types::Target_Distance;
receiver_in in data port radar_types::Target_Distance;
end receiver;

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute Entrypoint_Source Text => «radar.transmitter » ;
-- Attaching subprogram to thread, executed at each dispatch
end receiver.impl;

O Early specifications, for referring to a symbol

10

Attaching code to components

O Connecting subprograms to threads

thread receiver
features
receiver_in in event data port radar_types:.Target_Distance
{Compute Entrypoint_Source Text => «radar.transmitter » ;
-- Attaching subprogram to port, executed at each dispatch
|3

end receiver:;

thread receiver2
features
receiver_in in data port radar_types::Target Distance
{Compute Entrypoint => classifier (transmitter _spg);
-- Attaching subprogram to port, more precise
|3

end receiver2;

11

Attaching code to components

O Related properties

= Activate Entrypoint: upon thread activation

= Compute_Entrypoint: dispatch

= Finalize_Entrypoint: finalization

= |nitialize_Entrypoint: initialization of component
= Recover_Entrypoint: in case of error

O Exist for both textual symbols (<x>_ Source Text
property) or subprograms classifiers

O Applied to thread, device, subprogram, event port, event
data port entities

12

AADL and code generation

O Issue: How much code should we write ? Tasks
? Queues ?

O Answer: the architecture says all

= One can define a full framework and use it
Limited value

= Generate as much things as possible
Reduce as much as possible error-prone and tedious tasks

O Ocarina: massive code generation

= Take advantage of global knowledge to optimize

code, and generate only what is required 5

Building process for HI-DRE systems using
Ocarina

l Final
application

a B o

' > —~

Generated

application >[Integratuon] \
| components

Configured
middleware
components

7 S
Deployment

Minimal Required
middleware

components

middleware
components

I

Benefits of code generation ?

O Isitworth atry ?
o Of course yes !

0 One pivot notation based on a unique notation

= A-priori validation, using Cheddar, BIP, TINA ..

= Optimized code generation
Measures show a difference of 6% in size

O Part of the promise of MBSE

= One binary, no source code written for the most
difficult part: the architecture, buffer, concurrency

= Could be combined with other code generators like
SCADE or Simulink to achieve zero-coding paradigm

Radar demo: code generation

walkthrough

The Radar case study vl

0 Model done with OSATEZ2
= IMV for graphical view

O Text-based to have full
control on properties

0 Ocarina for code
generation

Deployment on native target

0 AADL Processor: execution platform

processor cpu_leon2
properties
Scheduling_Protocol => (RMS);
-- Configuration of scheduler
Deployment::Execution_Platform => Native;
-- Target platform
end cpu_leon2;

O + simulation code for devices

page 18

Generating Cheddar + code

0 Result from Cheddar

2) Feasibility test based on

wor st case task response tine :

- Bound on task response time :
main_analyse => 130
main_display => 70
main_receive => 40
main_control_angle => 20
main_transmit => 10

- All task deadlines will be met :
the task set is schedul abl e.

O Traces from

macbookair-hugues% ./radar_vl/main/main

[O] Transmitter

[O] Controller, motor is at angular position 1

[1] Analyser - target is at distance: 0 at angular positior
[1] Display_Panel: target is at (0, 0)

[1] Receiver, target is at distance 1

[500] Transmitter

[1001] Transmitter

[1500] Transmitter

[1500] Receiver, target is at distance 2

[1500] Controller, motor is at angular position 2
[2000] Display_Panel: targetis at (0, 0)

[2001] Transmitter

[2500] Transmitter

[3000] Transmitter

[3000] Receiver, target is at distance 3

[3000] Controller, motor is at angular position 3
[3500] Transmitter

[4000] Transmitter

[4000] Display_Panel: targetis at (0, 0)

Assessment

O It works ;)
= Execution traces meet scheduling simulation
= And expected behavior

O Initial models use event ports
m For each thread: one mutex + PCP Is used

E

The Radar case study v2

0 Change port communication with shared
variable

i
1
H i
| controller_out "—————} from_controller

t_angle "
? + controller_in
1
[}
from_transmitter {

#ive-pube targel_distance]

to_scree

Generating Cheddar + code

0 Result from Cheddar

2) Feasibility test based on

wor st case task response tine :

- Bound on task response time :
main_analyse => 130
main_display => 70
main_receive => 40
main_control_angle => 20
main_transmit => 10

- All task deadlines will be met :
the task set is schedul abl e.

O Traces from

macbookair-hugues% ./radar_v2/main/main

[O] Transmitter

[O] Controller, motor is at angular position 1

[1] Analyser - target is at distance: 0 at angular positior
[1] Display_Panel: target is at (0, 0)

[1] Receiver, target is at distance 1

[500] Transmitter

[1001] Transmitter

[1500] Transmitter

[1500] Receiver, target is at distance 2

[1500] Controller, motor is at angular position 2
[2000] Display_Panel: targetis at (0, 0)

[2001] Transmitter

[2500] Transmitter

[3000] Transmitter

[3000] Receiver, target is at distance 3

[3000] Controller, motor is at angular position 3
[3500] Transmitter

[4000] Transmitter

[4000] Display_Panel: targetis at (0, 0)

Assessment

o It still works ;)

0 We can exploit models a little more

dat a PO_Target Distance
features

properties
Concurrency_Control_Protocol => Priority _Ceiling;
Priority is not set, will use default value
of maximum priority
end PO_Target Distance;

0 Cheddar indicates that Scheduling simulation, processor cpu :
- Number of preemptions : 0

- Number of context switches : 4

0 We can change protocol to none safely

page 23

AADL & Analysts: scheduling

analysis strikes back
I 4 44

What about WCET?

O Issue: Cheddar can evaluate schedulabllity of
an AADL model, extracting all relevant
Information

= What about figures for WCET ?
= Usually relies on user-provided inputs, possibly wrong

= Yet, we have code generated provided by AADL-to-
code + user-code

O Solution: Integrate a WCET tool in the toolchain
= In Ocarina, use of Bound-T (Tidorum LtD)
= Others exist: Absint, Rapita, ...

25

WCET computation

m Three-step process

Code generation: Ocarina / PolyORB-HI/Ada

Analysis binary with Bound-T, retrofit to AADL models

Evaluation using Cheddar

files

binary
' code
G

l

binaries
analysis

annoted
architectural
model

model
evaluation

26

WCET computation

m Three-step process
- Code generation: Ocarina / PolyORB-HI/Ada
- Analysis binary with Bound-T, retrofit to AADL mode
- Evaluation using Cheddar

code
generation

! compilation
legacy code

annoted
architectural
model

Is

model
evaluation

27

WCET computation

m Three-step process
- Code generation: Ocarina / PolyORB-HI/Ada
- Analysis binary with Bound-T, retrofit to AADL models
- Evaluation using Cheddar

l

architectural
model

legacy code

files

code ; code
generation :
compilation H

binaries
analysis

Integration to Ocarina

O Issue: Bound-T walks through
| ti ths, includi Sourcecode | | e | |cuieoptouni
all execution paths, including anlocp bourds
. . call coarts, ete.
useless (exception, drivers), or P

. . .Cmpr’fer & knker
unbounded (periodic task body) / e
- Decode instr.

O Solution: assertion file to guide - Contrl flow

. Sbprog calls
the analysis Leoploudh
= RTOS-dependent |
= AADL runtime specific s Fe o
= Generated from model o 20

E,o Salve ..Coart 303
O Bound-T can now analyze

Bvter Foo()

Rt |C0:|nt ||0nes |

..Ores 721
safely the whole system, user
code is “just” sequential
page 29

Copyrigh Tidorum Ltd.

AADL & other MDE frameworks

I
Integration with Simulink, SCADE et al.

AADL and other modeling notations

0 AADL helps modeling architectures
= Capture key aspects of design: hardware/software

= Expression of some non functional properties: priority,
resource consumption, latency, jitter, ...

= Enables: scheduling analysis, resource dimensioning,
mapping to formal methods, fault analysis, ...

O Functional notations (Simulink, SCADE, ..)
describes precisely system behavior
= Provides a high-level behavioral/computational view
= mapped onto hardware/software elements

O Natural complement to ADLs

31

’/ero coding” paradigm

0 Code generation from models Is now a reality
= Proposed by many tools

O Functional models
= kcg: SCADE's certified code generation
= Simulink Coder

O Architectural models
= Ocarina: AADL code generator for Hlsystems

O Foundations for a “zero coding” approach
= Model, then integrate code generated from each view

O Issue: which integration process ?
= Two approaches, driven by user demand

32

Code generation patterns

O Each functional framework relies on same foundations
= Synchronous: discrete computation cycles
= Asynchronous: function calls

O SCADE/Simulink/Esterel: a 3-step process
= Fetch in parameters from AADL subprograms
= Call the reaction function to compute output values
= Send the output as out parameters of the AADL subprogram

O Architectural blocks are mapped onto programming
language equivalent constructs

= Ocarina relies on stringent coding guidelines to meet
requirements for High-Integrity systems, validated though test
harness by ESA, Thales, SEI, and their partners

33

From AADI. + X tocode

O Ocarina handles all code integration aspects

= How to map AADL concepts to source code artefacts
(POSIX threads, Ada tasks, mutexes, ...)

= Handle portability concerns to several platforms, from
bare to native

O + some knowledge on how a SCADE or Simulink
models Is mapped onto C code
= So that integration is done by the code generator
= No manual intervention required

O Supports “zero coding” approach

34

Application-driven process

O Functions may be defined first, then refined to
be bound to an existing architecture”

Stick, in 5 N
5 deg wdot, ftisec wdot, ftisec
o, radisec Scmd, deg e
L, rad
Controller qdot, radisec? gdot MNzPilot, g dl:l::ﬁlul’,'; > @
L Mz Pilot, g
—b«lzw/ wGust, ftisec
q, radfsec q, radfsec
woust - Pilot G-force
wg B W qGust, radisec I calculation
’ ikl
ag |-acust ik
Ajrcraft
Dryden Wind .
- Dygamics
Gust Models | Mg
— aircrafts
aircrafts
F-14 Lon inal Flight Control

This dem
for the lonaitudina)

n models a flight control
n of a Grumman Agrospace F-14.

controlle

...........

Architecture-driven process

O Reverse option: architecture is defined first, then
a skeleton of the functional model is deduced,
then implemented

subpr ogr am spg_scade
features
input: I n par anet er integer {Source_Name => "add_|input";};
output: out paranet er integer {Source_Name => "add T
properties

source_name =>"inc";

source_language => Scade;

source_location => "/path/to/scade-code/":
end spg_scade;

36

How to bind to AADIL models ?

O In both cases, we rely on standard AADLv2
patterns
= Source_Language <-> SCADE or Simulink
= Source_Name <-> SCADE node or Simulink block

= Source_Location <-> path to kcg orSimulink Coder
generated code

O Smooth integration of AADL and other functional
modeling
= Providing only required information
= While remaining 100% automatic 37

—
=
(D

>
)
%
1]

RT ESA demonstrator (2008)

Control PTOBasic ControDOWNTOBasic
| (ctriUPOUT) < { (ctriDOWNOUT)
writeln writeln
("™RECEVE: ControlUPTOBasIC*"") ("RECEVE ControlDOWNTOBasic*")
T ConeurrencyView_Async
end boost s reached=
thrusters_opening = wmmm:,m“u,uw‘
clriPOUTHhrusters_opening sun_is_simed=
SrDOHOUTn s aned CYCLIC_APLC

| I

cyce CyclicActivation
o or CyclicActivation

oo I

* e]
s T S
| A A e] S) : /
B E— . ! BASIC_APLC | '
“ || Sinudaen | "R i ”i SPQ 1) CYCIiCACﬂVGﬂJl:l.‘Lfn' TETeTT Ir
N S a et VAR =5 | ControlUPTORasic
_ =5 | Contral DOWNTO Basic
L Basic_Op | »
Basic TQContral | 3—

) L CONTROL_APLC
SPO %y (Basic TOControl
Control UPTQBasic ;.._..
ControlDOWNTQBasic | p——
IF_Upstream | »

IF_Downstream | >

38

Conclusion

O System are heterogeneous, so are models
= AADL separates architecture from functional models
= Allows reference from the architecture to function blocks

O Integration of AADL and SCADE or Simulink in to
perform full generation of systems is desirable

O Advantages
= “Zero coding” paradigm to ease integration work

= Quality of code generated for both functions and
architecture

= Opens the path towards qualification/certification of

complex embedded systems at model-level »

