Presentation of the AADI.:
Architecture Analysis and
Design Language

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL.: tool support

page 2

Introduction

O ADL, Architecture Description Language:

= Goal : modeling software and hardware architectures
to master complexity ... to perform analysis

= Concepts : components, connections, configuration.
= Many ADLs : formal/non formal, application domain,

O ADL for real-time systems: AADL (Architecture
Analysis and Design Language).

page 3

AADL

AADIL: Architecture Analysis & Design L.anguage

O International standard promoted by the SAE (Society of
Automotive Engineers), AS-2C committee, released as AS-

5506A.
O Version 1.0 published in 2004, version 2 in 2009

O list all resources around AADL
m Public wiki with lot of resources:

m Include link to most research activities around AADL

O Different representations :
= Graphical (high-level view of the system),
= Textual (to view all details),
= XML (to ease processing by 3rd party tool)

page 4

A 1s for Analysis

0 AADL objectives are “to model a system”
= With analysis in mind (different analysis)

= To ease transition from well-defined
requirements to the final system : code
production

O Require semantics => any AADL entity has a
semantics (natural language or formal methods).

page 5

AADIL components

O AADL model : hierarchy/tree of components

O AADL component:
Model a software or a hardware entity
Has a type/interface, one or several implementations
May be organized in packages (reusable)
May have subcomponents
May combine/extend/refine others

May have properties : valued attributes (source code file name,
priority, WCET, memory consumption, ...)

o Component interactions :
= Modeled by component connections
= AADL features are connection points
page 6

AADL components

O How to declare a component:
= Component type: name, category, properties, features.

= Component implementation: internal structure (subcomponents),
properties

O Component categories: model real-time abstractions,
close to the implementation space (ex : processor, task,
...). Each category has a well-defined semantics/behavior,
refined through the property mechanism

= Hardware components: execution platform
= Software components
= Systems : bounding box of a system. Model a deployment.

page 7

Component type

0 AADLV2 distinguished type and implementation

0 Component type = high-level specification of a
component

O All component type declarations follow the same

pattern: cat egory> foo [extends <hag !nherit features and
properties from parent

features

-- list of fea_ture& | nterface of the conponent:

- interface (event) ports, access o data
properties or subprograns

-- list of properties | Sone prop_erti es descri bing

- e.q. priorit non-functi onal aspect of the
end fOOg' P y\ conponent

page 8

Component type

O Example:

subprogram Spg
C function, stored
features
that takes one

Spg is modelling a

in file "foo.c",

| n_par am :in parameters——
properties

orfé aSdAput

es

St andard properti es,
define its own properti

Sour ce_Language => C
Source_Text => ("foo.c");

end Spg;
thread bar thread -- bar_thread is a
sporadic thread,
featureg Not e: standard defines validity of
whenever it <—)) .
) o conbi nati on of properties. To be|conpl ete,
I n_data : ineventdata port . : C
on its"in_data” a sporadic thread nust define a m ni mal
- Inter-arrival tine
properties :

Di spat ch_Pr ot ocol
end bar _thread;
page 9

=> Spor adi c;

Component implementation

0 AADLvV2 distinguishes type from implementation

0 Component Implementation complete the interface
= Similar to spec/body of Ada, interface/implementation in

Java
<cat egor y> implementation foo.i [extends <k
subcomponents \
- foo.i1 1 nplenents fo
calls
-- subprogram subcomponents
-- called, only for threads or subprograms
connections
properties
-- list of properties
vage 10 -- e.g. priority

end foo.i;

Component implementation

O Example:
thread bar thread -- bar_threadis az¢
features -- itis dispatched v
I n_data : ineventdata port foo data; -- receives an ever
/ properties -- port
Di spatch_Prot ocol => Sporadi c;

end bar thread;

Connect data flow

thread implementation bar thread. i npl -- inthis implemen
calls -- dispatch we exe

C: { S : subprogram spg; }; -- sequence. We p
connections -- parameter to the

parameter in_data -> S.in_param
end bar_thread.inpl;

page 11

AADL concepts

O AADL introduces many other concepts:

= Related to embedded real-time distributed systems :
AADL flows: capture high-level data+execution flows
AADL modes: models an operational mode in the form of an alternative set
of active components/connections/...

= To ease models design/management:
AADL packages (similar to Ada, renames, private/public)
AADL abstract component, component extension

o AADL is arich language :
= 100 entities in the meta-model

= BNF has 185 syntax rules
= Around 250 legality rules and more than 500 semantics rules

= 400 pages core document + various annex documents

page 12

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 13

A full AADL system : a tree of component
instances

O

O

Component types and
Implementations only define a
library of entities (classifiers)

An AADL model is a set of
component instances (of the
classifiers)

System must be instantiated
through a hierarchy of
subcomponents, from root
(system) to the leafs
(subprograms, ..)

We must choose a system
Implementation component as
the root system model !

page 14

Root System
| |
Sub System | Process | Processor
Thr ead Dat a
Subpr ogram

Software components categories

O thread : schedulable execution flow, Ada or VxWorks task,
Java or POSIX thread. Execute programs

O data : data placeholder, e.g. C struct, C++ class, Ada record
process . address space. It must hold at least one thread

O subprogram : a seguential execution flow. Associated to a
source code (C, Ada) or a model (SCADE, Simulink)

O thread group : hierarchy of threads

O

[Thread ! data : >
: rea ! | Threadgroup ,I /process /

Software components

0 Example of a process component: composed
of two threads

thread receiver processprocessing
endreceiver, end processing;

thread implementationreceiver.impl | process implementatiorprocessing.others

endreceiver.impl; subcomponents

receive: thread receiver.impl;
thread analyser analyse thread analyser.impl;
end analyser;

end processing.others;
thread implementation analyser.impl
end analyser.impl;

page 16

Software components

O Example of a thread component : a thread
may call different subprograms

subprogram Receiver_Spg thread receiver
end Receiver_Spg; endreceiver,

subprogram ComputeCRC_Spg| thread implementation receiver.impl

end Compute_CRCSpg; CS:calls {

calll: subprogram Receiver_Spg;

call2: subprogram ComputeCRC_Spg;
I3

endreceiver.impl;

page 17

Hardware components categories

O processor/virtual processor . schedule component
(combined CPU and RTOS scheduler). A processor may
contain multiple virtual processors.

O memory : model data storage (memory, hard drive)

O device . component that interacts with the environment.
Internals (e.g. firmware) is not modeled.

O bus/virtual bus : data exchange mechanism between
components

< bus > Processor

page 18

« System » Category

O system:

1. Help structuring an architecture, with its own
hierarchy of subcomponents. A system can include
one or several subsystems.

2. Root system component.

3. Model the deployment of components inside the
component hierarchy. Concept of binding.

[System]

page 19

« System » Category

subprogram Receiver_Spg ...
thread receiver ...

thread implementation receiver.impl
... calll: subprobram Receiver_Spg; ...
endreceiver.impl;

processprocessing
end processing;

process implementationprocessing.otherg
subcomponents

receive : thread receiver.impl;

analyse : thread analyser.impl;

end processing.others;

deviceantenna
end antenna;

processorleon2
endleon2;

page 20

systemradar
endradar;

system implementationradar.simple
subcomponents
main :processprocessing.others;
Cpu :processorleonz;
properties
Actual_Processor_Binding =>
referencecpuapplies tomain;
end radar.simple;

About subcomponents

O Semantics: some restrictions apply on
subcomponents

= A hardware cannot contain software, etc

page 21

data
thread
thread group

process

processor

memory

system

data, subprogram
data, subprogram

data, thread, thread group, subprogram

thread, thread group, data

Memory, virtual processor, bus, virtual processor

Memory, bus

All except subprogram, thread et thread group

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL.: tool support

page 22

AADL properties

O Property:
= Typed attribute, associated to one or more components
= Property = name + type + associated components
= Property association = property name + value.

O Allowed types in properties:

m aadlboolean ,aadlinteger ,aadlreal , aadlstring
enumeration, classifier (component, connection, etc.),
reference (component...), list of ...

O Can be propagated to subcomponents: inherit
O Can override parent’s one, case of extends

page 23

AADL properties

O Property sets :
= Group property definitions.
= Property sets part of the standard, e.g. AADL_Project.
= Or user-defined, e.g. for new analysis: power, weight

O Example :
property set Thread Properties

Deadline :aadlinteger applies to (thread, device, ...);
Source_Text inherit list of aadlstring applies to (data, port, thread, ...)

end Thread_Properties
page 24

AADL properties

O Properties are typed with units to model physical

(

systems
property set AADL_ Proj ects
Time_Units: type units

PS,

ns => ps * 1000,

us =>ns * 1000,

ms => us * 1000,

sec => ns * 1000,

mn => sec * 60,

hr => mn * 60);

end AADL_ Proj ects;

page 25

isproperty set Timng _Properties is

Ti me: type aadlinteger
O ps .. Max _Tinme units Tinme _Units;

Ti me_Range: type range of Ti me;
Conput e_Execution_Tinme: Tinme_Range
applies to t hread, device, subprogran

event port, event data port);

end Tim ng Properties;

AADL properties

O Properties are associated to a component type
(1) or implementation (2), as part of a
subcomponent instance (3), or a contained
property association (4).

thread receiver

properties -- (1)
Compute Execution_Time => 3 .. 4 ms}
Period => 150 ms;

endreceiver;

process implementationprocessing.others
subcomponents
receivel thread receiver.impl;
receive2 thread receiver.impl
thread implementation receiver.impl {Deadline =>200 ms;}; -- (3)
properties — (2) propertl_es - (4) _ _
Deadline => 150 ms: Deadline => 300 ms applies to receivel,;
Period => 160 ms, end processing.others;
endreceiver.impl;
page 26

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL.: tool support

page 27

Component connection

o Component connection: model component interactions, control
flow and/or data flow. E.g. exchange of message, remote call (RPC),

O features ;. component point part of the interface. Each feature has a
name, a direction, and a category

O Features category. specification of the type of interaction
- event port : event exchange (e.g. alarm, interruption)

data port/event data port : synchronous/asynchronous exchange of
data/message

) - Subprogram parameter
- data access : access to a data, possibly shared
}) - subprogram access : RPC or rendez-vous

O Features direction for port and parameter:
input (i n), output (out), both (i n out).

page 28

Component connection

O Features of subcomponents are connected In
the “connections” subclause of the enclosing
component

O EX: threads & thread connection on data port

thread analyser

features process implementationprocessing.others

analyser_outout data port subcomponents _
Target_Position.Impl; display: thread dlsplay_p.anel.lmpl;
end analysey analys_e thread analyser.impl;
connections
thread display_panel port analyse.analyser_out -> display.display_in;
features end processing.others;

display _in :in data port Target_Position.Impl;
enddisplay_panel;

page 29

Data connection policies

O Multiple policies exist to control production
and consumption of data by threads:

1. Sampling connection: takes the latest value
Problem: stability of control/command algorithm

Perodc 10H: Periodic 202

..........................

‘hreaa

‘hread 7 N ~a
+ + $
Tr. T T:

-
page 30 Sampling Connection

Data connection policies

2. Immediate: receiver thread is immediately
awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the
next time frame

1. These two policies allow for deterministic
communication, hence stability of the computation

Femcoiz Wik pui:n:.l -
Thread P [hreac? Thiead 1 P40 Thread 2
I*re2c * Ihread | .
| T T T . ———— .--i'__ Ihredd & . FISSE——
3 | » i
Te T . : 'a T, , Vs
Immediate Connection Delayed Connection

Component connection

O Thread & subprogram connection

subprogram Receiver_Spg
features
Spg_out out parameter
Target_Distance;
spg_in: in parameter
Target_Distance;
end Receiver_Spg;

thread implementation receiver.impl
calls {

RS: subprogramReceiver_Spg;
3
connections
parameter RS.spg_out -> receiver_out;
parameter receiver_in -> RS.spg_in;

end receiver.impl; thread receiver

features
receiver_out out data port
Target_Distance;
receiver_in in data port
Target_Distance;
endreceiver;

page 32

Component connection

1 Connecting threads and shared data:

data shared _var;
endshared_var;

process implementatiorprocessing.othery data implementation shared_var.impl

subcomponents end shared_var.impl;
analyse thread analyser.impl;
display :thread display panel.impl; thread analyser
a_data data shared_var.impl; features
connections share requires data accesshared_var.impl;
data a_data -> display.share; end analyser;
data a_data -> analyse.share;
end processing.others; thread display_panel
features

share requires data accesshared_var.impl;
enddisplay_panel;

page 33

Component connection

0 Thread & thread : RPC, rendez vous

thread Renote
features

MyCal c: provides subprogram access Cal c;
end Renvot e;

thread caller
features

MyCal c: requires subprogram access Cal c;
end caller;

page 34

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL.: tool support

page 35

AADL & Tools

O Tools are mandatory to exploit any models

Otherwise, resort to traditional engineering, no value added

0 OSATE (SEI/CMU),

page

Eclipse-based tools

Supports the textual syntax, reference implementation
Supports syntactic and semantic checks

Some plug-ins integrated (ARINC653 patterns)
Support for reliability analysis (Error Modeling annex)

OSATEZ2 meta-model as a UML2 meta-model, to ease writing
your own analysis or transformation plug-ins

36

AADL & Tools

0o STOOD, ADELE (Ellidiss)

= Graphical editors for AADLvV1 et v2, code/documentation

generation

[«

il Stood for AADL - Virtualys

Fle Edt Design Component Feature Tools Help

(design) flight_manager

- (design) avionics_datatypes
& (design) flight_manager
flight_manager
NSP
INav

FPP
APC
pageFeed
avionics_datatypes
(design) test1

0 DDEDD
X XX

Requirements Graphic Design | Detailed Design | Checkers | Code | Documentation | Deployment |
" Hood & m L T TS &

e D H o Beaa @

® AADL

0ds |ada | o] cpp | aadi |test| checks |

mReferenced Documents T

SOLUTION

E- INTERFACE

@ PROPERTIES

— PORT GROUPS

= PORTS and SUBPROGRAMS
@ maguidance ToFPP
s-canavDataFromiN

-mafpDataFromFPP

l e Sketch of the Problem |
L.y

—emmportor subpgp!opemes (hood) -

standard AADL properties

—maother port or subpg properties (aadl)
worst case time

flight_manager

ey Fge To-Pel|
w M

FO :

N“'”"’ a?e"?—FD r— @% _'1;332 Fr'Dm PCM

1 Newpodeore" |

:NewPage ror_FD ;

navDataToGP AP,
! mvSensur[)amFromNS

»Emu{d&}.;;'r'}éyhep
‘ DataFromAPC !

P oDaTa TOBPAPC

Av
VS
5
o
o
2
i

Ll

¢ | _previcus | 1124 portor subpg dectaration

fpDataFromFPP(Flow : in avionics_datatypes.FPDaca); (ty) avionics_datatypes FPData

<pa>Flow

page 37

AADL & Tools

O Cheddar (UBO/Lab-STICC)
= Import of AADLV1 models
= Performance analysis, dimensioning
= Based on real-time scheduling theory, and queueing theory

T~ Cheddar : a free real time scheduling simulator _ =] x|
File Edit Yiew Tools Help
olelolslal <zees=
= —
Task name=T17.0thers 28 C 7 D 29; Start time= O, Priority= 1; Cpu=cpu
Task name=TZ2.others Period= 5; Capacity= 1; Deadline= 5; Start time= O; Priority= 1, Cpu=cpu
[i ; i i
Task name=T3.others 10; Cap ty= 2 Di 10; Start time= 0; Priority= 1; Cpu=cpu
il
S —— Lo
=
Scheduling feasibility, Processor cpu :
1) Feasibility test based on the processor utilization factor :
— The base period is 290 (see [18], page 5) .
— 104 units of time are unused in the base period.
— Processor utilization factor with deadline is 0.64138 (see [1], page =
&) .
— Processor utilization factor with period is 0.64138 (see [1], page -
6 .
— In the preemptive case, with RM, the task set is schedulable because =
tChe processor utilization factor 0.64138 is egual or less than 0.77976 =n
(see [1], page 16, theorem 8) .
2) Feasibility test based on worst case task response time 3
— Bound on task response Lime 3 (see [2], page 3, egquation 4).
Tl.others => 14
T3 .others => 3
T2 .0thers => 1
pE“Je :38 — All task deadlines will be met : the task set is schedulable.

AADL & Tools

O AADLInspector

(Ellidiss)

= Lightweight tool to inspect AADL models, in text form
= Connection with Cheddar, Simulation Engine,

= AADLV2 only

17|

18|PROCESSOR powerpc

19END powerpc;

20|

21|PROCESSOR IMPLEMENTATION powerpc.impl
22|SUBCOMPONENTS

23| partl : VIRTUAL PROCESSOR partitionl rt.impl;
24| part2 : VIRTUAL PROCESSOR partition2 rt.impl;
25|PROPERTIES -

page 39

28| Scheduling_ Protocol => ARINCES3:

27| ARINCE53::Partition_Slots => (10ms, 10ms):

28| ARINCE53: :5lots_Allocation => (reference(partl),reference
29| ARINCE53::Module Major_Frame => 20ms;

30|END powerpc.impl:

31

32|VIRTUAL PROCESSOR partitionl_rt -

< m 0

% AADL (C/Proe/ARDL Al-1 farincsimple2.aadi) (=3 =
File View Tools ?

CBe” sl JHE)

arincsimple2 ~ | Schedulability |Schedule Table | C | Legality | Metrics | Naming |

arincsimple2 | ARINCES3 |

1 :PAC'RAGE arincsimple Pkg -~ - »
2 |PUBLIC Il test entity =
3 |WITE RRINCES3: @'ask p time computed from simul cpu No deadline mis‘
& Number of preemptions cpu 4

5 |SYSTEM arincsimple B

6 |END arinsimple: Number of context switches cpu 74

7 Task resp time ¢ 1 from simulatic cpu.partition]_pr.T worst = 5, best =
8 |SYSTEM IMPLEMENTATICN arincsimple.others |= Task resp time d from simulatiec cpu.partitionl_pr.T worst = 15, best
9 |SUBCOMPONENTS Task response time c 1from simulatio cpu.partition2_pr.T worst = 15, best
105 cpu : PROCESSOR powerpc.impl; o rdli M o

11| particionl pr : PROCESS partitionl process.impl; @ Set priorities according to Rate Monotonic oo

12| parvition2_pr : PROCESS partition2_process.impl; [Set priorities according to Deadline Monotoni cpu =
13|PROPERTIES 3| =] T
14| Actual Processor Binding => (REFERENCE (cpu.partl)) APPL

155 Actual Processor_Binding => (REFERENCE (cpu.part2)) APPL « | 1] »
16(END arincsimple.others; 20 40 60 80 100 120 140 160 180

tition2_pr.T2

-8 —8—8 8888

partition2_pr-
titionl_pr.T3
titionl_pr.T1

partitionl_pr

Il N N . - .-
- —E—a—a a8 T T
—a—8—8 88 88—

l Simulator Stop

AADL & Tools

O Ocarina (ISAE --)

= Command line tool, library to manipulate AADL models
= AADLV1 & v2 parser, analyzer

= Code generation for High-Integrity system, in C and Ada
Support for native, RTOS (RTEMS, RT-Linux), bare boards

= Mapping to colored or timed Petri Nets, WCET, ...

