
Presentation of the AADL:

Architecture Analysis and

Design Language

Outline

1. AADL a quick overview
2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 2

Introduction

� ADL, Architecture Description Language:

� Goal : modeling software and hardware architectures
to master complexity … to perform analysis

� Concepts : components, connections, configuration.

� Many ADLs : formal/non formal, application domain,
…

� ADL for real-time systems: AADL (Architecture
Analysis and Design Language).

page 3

AADL: Architecture Analysis & Design Language

� International standard promoted by the SAE (Society of
Automotive Engineers), AS-2C committee, released as AS-
5506A.

� Version 1.0 published in 2004, version 2 in 2009
� http://aadl.info list all resources around AADL

� Public wiki with lot of resources:
https://wiki.sei.cmu.edu/aadl/index.php/Main_Page

� Include link to most research activities around AADL

� Different representations :
� Graphical (high-level view of the system),
� Textual (to view all details),
� XML (to ease processing by 3rd party tool)

page 4

A is for Analysis

� AADL objectives are “to model a system”
� With analysis in mind (different analysis)
� To ease transition from well-defined

requirements to the final system : code
production

� Require semantics => any AADL entity has a
semantics (natural language or formal methods).

page 5

AADL components

� AADL model : hierarchy/tree of components

� AADL component:
� Model a software or a hardware entity
� Has a type/interface, one or several implementations
� May be organized in packages (reusable)
� May have subcomponents
� May combine/extend/refine others
� May have properties : valued attributes (source code file name,

priority, WCET, memory consumption, …)

� Component interactions :
� Modeled by component connections
� AADL features are connection points

page 6

AADL components

� How to declare a component:
� Component type: name, category, properties, features.
� Component implementation: internal structure (subcomponents),

properties

� Component categories: model real-time abstractions,
close to the implementation space (ex : processor, task,
…). Each category has a well-defined semantics/behavior,
refined through the property mechanism
� Hardware components: execution platform
� Software components
� Systems : bounding box of a system. Model a deployment.

page 7

Component type

� AADLv2 distinguished type and implementation
� Component type = high-level specification of a

component
� All component type declarations follow the same

pattern:

page 8

<category> foo [extends <bar>]
features

-- list of features
-- interface

properties
-- list of properties
-- e.g. priority

end foo;

Inherit features and
properties from parent

Interface of the component:
(event) ports, access to data
or subprograms

Some properties describing
non-functional aspect of the
component

Component type

� Example:

page 9

subprogram Spg -- Spg is modelling a
C function, stored

features -- in file "foo.c",
that takes one

in_param : in parameter foo_data; -- parameter as input
properties
Source_Language => C;
Source_Text => ("foo.c");

end Spg;

thread bar_thread -- bar_thread is a
sporadic thread,

features -- it is dispatched
whenever it

in_data : in event data port foo_data; -- receives an event
on its"in_data"

properties -- port
Dispatch_Protocol => Sporadic;

end bar_thread;

Standard properties, one can
define its own properties

Note: standard defines validity of
combination of properties. To be complete,
a sporadic thread must define a minimal
Inter-arrival time

Component implementation

� AADLv2 distinguishes type from implementation
� Component Implementation complete the interface

� Similar to spec/body of Ada, interface/implementation in
Java

page 10

<category> implementation foo.i [extends <bar>.i]
subcomponents

-- …
calls

-- subprogram subcomponents
-- called, only for threads or subprograms

connections
properties

-- list of properties
-- e.g. priority

end foo.i;

foo.i implements foo

Component implementation

� Example:

page 11

thread bar_thread -- bar_thread is a sporadic thread,
features -- it is dispatched whenever it
in_data : in event data port foo_data; -- receives an event on its "in_data"

properties -- port
Dispatch_Protocol => Sporadic;

end bar_thread;

thread implementation bar_thread.impl -- in this implementation, at each
calls -- dispatch we execute the "C" call
C : { S : subprogram spg; }; -- sequence. We pass the dispatch

connections -- parameter to the call sequence
parameter in_data -> S.in_param;

end bar_thread.impl;

Connect data flow

AADL concepts

� AADL introduces many other concepts:
� Related to embedded real-time distributed systems :

� AADL flows: capture high-level data+execution flows
� AADL modes: models an operational mode in the form of an alternative set

of active components/connections/…
� To ease models design/management:

� AADL packages (similar to Ada, renames, private/public)
� AADL abstract component, component extension
� …

� AADL is a rich language :
� 100 entities in the meta-model

� BNF has 185 syntax rules

� Around 250 legality rules and more than 500 semantics rules

� 400 pages core document + various annex documents

page 12

Outline

1. AADL a quick overview
2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 13

A full AADL system : a tree of component

instances

� Component types and
implementations only define a
library of entities (classifiers)

� An AADL model is a set of
component instances (of the
classifiers)

� System must be instantiated
through a hierarchy of
subcomponents, from root
(system) to the leafs
(subprograms, ..)

� We must choose a system
implementation component as
the root system model !

page 14

Root System

Sub System Process Processor

Thread Data

Subprogram

Software components categories

� thread : schedulable execution flow, Ada or VxWorks task,
Java or POSIX thread. Execute programs

� data : data placeholder, e.g. C struct, C++ class, Ada record
� process : address space. It must hold at least one thread
� subprogram : a sequential execution flow. Associated to a

source code (C, Ada) or a model (SCADE, Simulink)
� thread group : hierarchy of threads

Thread data Threadgroup processsubprogram

page 15

Software components

thread receiver
end receiver;

thread implementation receiver.impl
end receiver.impl;

thread analyser
end analyser;

thread implementation analyser.impl
end analyser.impl;

process processing
end processing;

process implementation processing.others
subcomponents

receive : thread receiver.impl;
analyse: thread analyser.impl;
. . .

end processing.others;

page 16

� Example of a process component : composed
of two threads

Software components

� Example of a thread component : a thread
may call different subprograms

page 17

thread receiver
end receiver;

thread implementation receiver.impl
CS : calls {

call1 : subprogram Receiver_Spg;
call2 : subprogram ComputeCRC_Spg;

};
end receiver.impl;

subprogram Receiver_Spg
end Receiver_Spg;

subprogram ComputeCRC_Spg
end Compute_CRCSpg;

. . .

Hardware components categories

� processor/virtual processor : schedule component
(combined CPU and RTOS scheduler). A processor may
contain multiple virtual processors.

� memory : model data storage (memory, hard drive)
� device : component that interacts with the environment.

Internals (e.g. firmware) is not modeled.
� bus/virtual bus : data exchange mechanism between

components

page 18

Device Memory bus Processor

« system » category

� system :

1. Help structuring an architecture, with its own
hierarchy of subcomponents. A system can include
one or several subsystems.

2. Root system component.

3. Model the deployment of components inside the
component hierarchy. Concept of binding.

System

page 19

subprogram Receiver_Spg …
thread receiver …

thread implementation receiver.impl
… call1 : subprobram Receiver_Spg; …
end receiver.impl;

processprocessing
end processing;

process implementationprocessing.others
subcomponents
receive : thread receiver.impl;
analyse : thread analyser.impl;
. . .

end processing.others;

« system » category

systemradar
end radar;

system implementationradar.simple
subcomponents

main : processprocessing.others;
cpu : processorleon2;

properties
Actual_Processor_Binding =>

referencecpu applies tomain;
end radar.simple;

deviceantenna
end antenna;

processorleon2
end leon2;

page 20

About subcomponents

� Semantics: some restrictions apply on
subcomponents
� A hardware cannot contain software, etc

page 21

data data, subprogram

thread data, subprogram

thread group data, thread, thread group, subprogram

process thread, thread group, data

processor Memory, virtual processor, bus, virtual processor

memory Memory, bus

system All except subprogram, thread et thread group

Outline

1. AADL a quick overview
2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 22

AADL properties

� Property:
� Typed attribute, associated to one or more components
� Property = name + type + associated components
� Property association = property name + value.

� Allowed types in properties:
� aadlboolean , aadlinteger , aadlreal , aadlstring ,

enumeration, classifier (component, connection, etc.),
reference (component…), list of …

� Can be propagated to subcomponents: inherit
� Can override parent’s one, case of extends

page 23

AADL properties

� Property sets :
� Group property definitions.
� Property sets part of the standard, e.g. AADL_Project.
� Or user-defined, e.g. for new analysis: power, weight

� Example :
property set Thread_Propertiesis

. . .
Deadline : aadlinteger applies to (thread, device, …);
Source_Text : inherit list of aadlstring applies to (data, port, thread, …);
. . .

endThread_Properties;

page 24

AADL properties

� Properties are typed with units to model physical
systems

page 25

property set AADL_Projects is
Time_Units: type units (

ps,
ns => ps * 1000,
us => ns * 1000,
ms => us * 1000,
sec => ms * 1000,
min => sec * 60,
hr => min * 60);

-- …
end AADL_Projects;

property set Timing_Properties is

Time: type aadlinteger
0 ps .. Max_Time units Time_Units;

Time_Range: type range of Time;

Compute_Execution_Time: Time_Range
applies to thread, device, subprogram,

event port, event data port);

end Timing_Properties;

AADL properties

� Properties are associated to a component type
(1) or implementation (2), as part of a
subcomponent instance (3), or a contained
property association (4).

page 26

process implementationprocessing.others
subcomponents
receive1 : thread receiver.impl;
receive2 : thread receiver.impl

{Deadline => 200 ms;}; -- (3)
properties – (4)

Deadline => 300 ms applies to receive1;
endprocessing.others;

thread receiver
properties -- (1)
Compute_Execution_Time => 3 .. 4 ms;

Period => 150 ms;
end receiver;

thread implementation receiver.impl
properties – (2)

Deadline => 150 ms;
Period => 160 ms,

end receiver.impl;

Outline

1. AADL a quick overview
2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 27

Component connection

� Component connection: model component interactions, control
flow and/or data flow. E.g. exchange of message, remote call (RPC),

� features : component point part of the interface. Each feature has a
name, a direction, and a category

� Features category: specification of the type of interaction
• event port : event exchange (e.g. alarm, interruption)
• data port/event data port : synchronous/asynchronous exchange of

data/message
• subprogram parameter
• data access : access to a data, possibly shared
• subprogram access : RPC or rendez-vous

� Features direction for port and parameter:
• input (in), output (out), both (in out).

page 28

Component connection

� Features of subcomponents are connected in
the “connections” subclause of the enclosing
component

� Ex: threads & thread connection on data port

page 29

thread analyser
features

analyser_out : out data port
Target_Position.Impl;

end analyser;

thread display_panel
features

display_in : in data port Target_Position.Impl;
end display_panel;

process implementation processing.others
subcomponents

display : thread display_panel.impl;
analyse: thread analyser.impl;

connections
port analyse.analyser_out -> display.display_in;

end processing.others;

Data connection policies

� Multiple policies exist to control production
and consumption of data by threads:

1. Sampling connection: takes the latest value
� Problem: stability of control/command algorithm

page 30

Data connection policies

2. Immediate: receiver thread is immediately
awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the
next time frame
1. These two policies allow for deterministic

communication, hence stability of the computation

page 31

Component connection

� Thread & subprogram connection

page 32

subprogram Receiver_Spg
features

spg_out : out parameter
Target_Distance;

spg_in : in parameter
Target_Distance;

end Receiver_Spg;

thread receiver
features
receiver_out: out data port

Target_Distance;
receiver_in: in data port

Target_Distance;
end receiver;

thread implementation receiver.impl
calls {

RS: subprogram Receiver_Spg;
};
connections
parameter RS.spg_out -> receiver_out;
parameter receiver_in -> RS.spg_in;

end receiver.impl;

data shared_var;
endshared_var;

data implementationshared_var.impl
endshared_var.impl;

thread analyser
features
share : requires data accessshared_var.impl;
endanalyser;

thread display_panel
features
share : requires data accessshared_var.impl;

enddisplay_panel;

process implementationprocessing.others
subcomponents

analyse : thread analyser.impl;
display : thread display_panel.impl;
a_data : data shared_var.impl;

connections
data a_data -> display.share;
data a_data -> analyse.share;

endprocessing.others;

Component connection

�Connecting threads and shared data:

page 33

Component connection

� Thread & thread : RPC, rendez vous

page 34

thread Remote
features

MyCalc: provides subprogram access Calc;
end Remote;

thread caller
features
MyCalc: requires subprogram access Calc;

end caller;

Outline

1. AADL a quick overview
2. AADL key modeling constructs

1. AADL components
2. Properties
3. Component connection

3. AADL: tool support

page 35

AADL & Tools

� Tools are mandatory to exploit any models
� Otherwise, resort to traditional engineering, no value added

� OSATE (SEI/CMU), http://aadl.info
� Eclipse-based tools
� Supports the textual syntax, reference implementation
� Supports syntactic and semantic checks
� Some plug-ins integrated (ARINC653 patterns)
� Support for reliability analysis (Error Modeling annex)
� OSATE2 meta-model as a UML2 meta-model, to ease writing

your own analysis or transformation plug-ins

page 36

AADL & Tools

� STOOD, ADELE (Ellidiss) http://www.ellidiss.com
� Graphical editors for AADLv1 et v2, code/documentation

generation

page 37

AADL & Tools

� Cheddar (UBO/Lab-STICC) http://beru.univ-brest.fr/~singhoff/cheddar/

� Import of AADLV1 models
� Performance analysis, dimensioning
� Based on real-time scheduling theory, and queueing theory

page 38

AADL & Tools

� AADLInspector (Ellidiss) http://www.ellidiss.com
� Lightweight tool to inspect AADL models, in text form
� Connection with Cheddar, Simulation Engine,
� AADLv2 only

page 39

AADL & Tools

� Ocarina (ISAE -- http://www.openaadl.org)

� Command line tool, library to manipulate AADL models
� AADLv1 & v2 parser, analyzer
� Code generation for High-Integrity system, in C and Ada

� Support for native, RTOS (RTEMS, RT-Linux), bare boards

� Mapping to colored or timed Petri Nets, WCET, …

page 40

