
1

SystemC – Lecture 1

Prof. Gerald E. Sobelman
Dept. of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN 55455 USA

© 2009 by Gerald E. Sobelman

Outline
• Overview of SystemC

Simulation environment
Modules and processes
Ports, channels and interfaces
Transaction-Level Modeling (TLM)
SystemC Verification Library (SCV)

• Simple Design Example
Half adder and full adder modules
Testbench: DUT, Driver, Monitor, Main

• General Module Structure
2

© 2009 by Gerald E. Sobelman 3

Introduction to SystemC
• Complex electronic systems require modeling and

verification at higher-levels of abstraction in order to test
them over lengthy, realistic sets of input conditions.

• Can also be used to maintain a consistent set of models
and testbenches throughout the design refinement
process.

• SystemC:
Provides a C++ class library for hardware
Support for Transaction-Level Modeling (TLM)
Support for functional verification

© 2009 by Gerald E. Sobelman 4

SystemC Overview
• SystemC runs in a C++ development environment,

allowing modeling and verification of both hardware and
software within a common framework.

• It is well suited for high-level hardware descriptions: RTL
and above.

• The necessary libraries can be downloaded from
http://www.systemc.org or they are available within
commercial CAD environments (Cadence, Synopsys, etc).

• Compiling and linking the SystemC source files creates an
executable file which, when run, performs the simulation.

• Results can be viewed in text files or through a waveform
viewer.

© 2009 by Gerald E. Sobelman

Simulation Environment
• The organization of a SystemC simulation is shown below:

5

source files

C++ complier
and linker

SystemC libraries
& simulation kernel

executable file

© 2009 by Gerald E. Sobelman 6

Modules
• An SC_MODULE is the basic unit of

hardware description. Module designs are
usually separated into two files:

A .h header file containing the
input/output ports and a declaration of the
functions which are used and their
sensitivity lists, as well as instances of
other modules.
A .cpp program file containing the
implementations of those functions.

© 2009 by Gerald E. Sobelman

Example Header Structure
• A header file HalfAdder.h contains the following:

#include "systemc.h"
SC_MODULE(HalfAdder) {

sc_in<bool> a, b;
sc_out<bool> s, c;
void HalfAdderProcess();
SC_CTOR(HalfAdder) {

SC_METHOD(HalfAdderProcess);
sensitive << a << b;

}
};

Ref: J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.
7

© 2009 by Gerald E. Sobelman

Example Program File Structure
• A program file HalfAdder.cpp specifies the details of the process

declared in the header file. It contains the following:

#include "HalfAdder.h"

void HalfAdder::HalfAdderProcess() {
s = a ^ b;
c = a & b;

}

8

© 2009 by Gerald E. Sobelman 9

Processes
• There are two ways of specifying functional

behavior: SC_METHOD and SC_THREAD.
• An SC_METHOD process can be used to

specify either combinational or sequential
logic.

The function is called according to its
sensitivity list.
Once invoked, it executes and then
returns control to the simulation kernel.

© 2009 by Gerald E. Sobelman

Processes – Cont.
• An SC_THREAD process is used to specify more

complex behaviors which can be suspended and
then reactivated.

The function is called when an event occurs on
its sensitivity list.
A wait() function is used to suspend
execution at various points.
The process can be suspended for a specified
time interval or until a specified event occurs.
Useful for modeling complex behaviors at the
system/algorithmic level, as well as for
testbenches.

10

© 2009 by Gerald E. Sobelman

Processes – Cont.
• The sensitivity lists can contain signal names

and/or specified events such as rising or falling
edges.

• We can also have dynamic sensitivity in either
type of process:

Add arguments to the wait() function in an
SC_THREAD so that the process is activated
when a specified combination of events occurs.
Use a next_trigger() function with
arguments to specify the combination of events
that will cause the next activation of an
SC_METHOD.

11

© 2009 by Gerald E. Sobelman 12

Ports and Channels
• Connections between objects are created using three

types of elements:
A port of type sc_in, sc_out, or sc_inout is at the
edge of a module.
A channel:

specifies the type of link between either:
the ports of different modules
different processes within a single module

may consist of either:
one of the built-in primitive types:

sc_signal, sc_fifo, sc_mutex, etc.
a user-defined type with arbitrarily complex
behavior

© 2009 by Gerald E. Sobelman

Interfaces
An interface specifies the way that a given
channel is accessed. Each channel has a set
of corresponding interfaces. For example,
interfaces for the channel sc_fifo:
sc_fifo_in_if:

takes data from an sc_fifo channel and
puts it into a port

sc_fifo_out_if:
takes data from a port and puts it into an
sc_fifo channel

13

© 2009 by Gerald E. Sobelman 14

Top-Level Function and the Design
Hierarchy

• The top-level of a design is placed in a function sc_main,
which is put into the file main.cpp. It is called by the
SystemC environment and this function contains:

Instances of top-level design modules (which, in turn,
may contain instances of lower-level modules, and so
on) and a testbench (with stimulus and checking).
Interconnections between modules using positional or
named associations.
Specification of one or more clock signals using
sc_clock.
Simulation control commands (start time, stop time,
etc.) using sc_start.

© 2009 by Gerald E. Sobelman

Top-Level Module Example
// include the necessary header files
…

int sc_main(int argc, char* argv[]) {
// instantiate and connect the top-level
// modules and testbench
…
sc_clock … (…); // specify clock parameters
sc_start(…); // specify sim. controls
return(0);

}

15

© 2009 by Gerald E. Sobelman 16

Transaction-Level Model (TLM)
• A higher-level event-based approach for modeling a set of

functional blocks (processors, memories, etc.)
communicating with each other over a bus or a network.

The bit-level details of the communication between
blocks is abstracted away.
Blocks communicate with each other via transaction-
oriented functions such as read()and write().
The transactions may or may not be clock-cycle
accurate, depending on the degree of detail that is
desired in the simulations.
The major benefit of using TLMs is much higher
simulation speed so that more extensive verification
suites can be run.

© 2009 by Gerald E. Sobelman

TLM - Continued
• Once the functionality of a TLM has been verified, the

design can be refined to the register-transfer level by:
Using adaptors to provide pin-accurate/cycle-accurate
interfaces
Converting abstract data types into SystemC data types
such as sc_logic (a 4-valued logic signal that is 0, 1,
X or Z).

• The original TLM-level testbench can be kept as the
design is refined to an RTL model.

The TLM of the design under verification (DUV) serves
as the golden model for comparison purposes.

17

© 2009 by Gerald E. Sobelman 18

SystemC Verification (SCV) Library
• Originated and adapted from the

TestBuilder verification library developed by
Cadence.

• Uses the C++ notion of smart pointers to
create input streams of arbitrary types.

The scv_smart_pointer allows
introspection to be used
This means that generally applicable test
generation methods can be applied to
arbitrary data types.

© 2009 by Gerald E. Sobelman

SCV Library – Cont.
• The library supports several types of

stimulus generation methods:
directed tests: using a user-specified set
of test vectors
random tests: the system generates
pseudo-randomly generated test vectors:

constraints may be used to keep the
vectors within specified ranges
weighting may be used to generate
more vectors in interesting ranges

19

© 2009 by Gerald E. Sobelman

SCV Library – Cont.
• Several built-in functions available to control stimulus

generation:
next() creates a uniformly distributed set of random
values of the desired type
keep_only() is used to specify an allowed range of
values
keep_out() is used to specify a disallowed range of
values

• A built-in data type called scv_bag can also be used to
specify the relative weightings of certain input values.

Create a “bag” object.
Then, add randomly generated elements into the bag
using desired percentage amounts.

20

© 2009 by Gerald E. Sobelman

Working with SystemC

• The SystemC libraries are available for
download from:

http://www.systemc.org

• For these lectures, I will be using the
following version of SystemC:

systemc-2.2.0.

running under linux.

21

© 2009 by Gerald E. Sobelman 22

Recall the Half Adder Header File
• A header file HalfAdder.h contains the following:

#include "systemc.h"
SC_MODULE(HalfAdder) {

sc_in<bool> a, b;
sc_out<bool> s, c;
void HalfAdderProcess();
SC_CTOR(HalfAdder) {

SC_METHOD(HalfAdderProcess);
sensitive << a << b;

}
};

© 2009 by Gerald E. Sobelman

Recall the Half Adder Program File
• A program file HalfAdder.cpp specifies the details of the process

declared in the header file. It contains the following:

#include "HalfAdder.h"

void HalfAdder::HalfAdderProcess() {
s = a ^ b;
c = a & b;

}

23

© 2009 by Gerald E. Sobelman

Using Instances in a Design Hierarchy
• We can construct a hierarchical description of a full adder

by using two instances of the half adder module, together
with a process to perform an OR function:

Ref: J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.

24

half_adder
(instance ha1)

half_adder
(instance ha2)

OrProcess()

a

b

cin

cout

s

c

s

c

s

x

y

z

© 2009 by Gerald E. Sobelman

Full Adder Header File: FullAdder.h
#include "HalfAdder.h"
SC_MODULE(FullAdder) {

sc_in<bool> a, b, cin;
sc_out<bool> s, cout;
sc_signal<bool> x, y, z;
void OrProcess();
HalfAdder *ha1, *ha2;
SC_CTOR(FullAdder) {

ha1 = new HalfAdder("ha1"); ha2 = new HalfAdder("ha2");
ha1->a(a); ha1->b(b); ha1->s(x); ha1->c(y);
ha2->a(x); ha2->b(cin); ha2->s(s); ha2->c(z);
SC_METHOD(OrProcess); sensitive << y << z;

}
~FullAdder() {

delete ha1; delete ha2;
}

};

25

© 2009 by Gerald E. Sobelman

Full Adder Program File: FullAdder.cpp

#include "FullAdder.h"

void FullAdder::OrProcess() {
cout = y | z;

}

26

© 2009 by Gerald E. Sobelman

Testbench Structure
• One possible way to organize a testbench is to create a

driver module (for generating the input patterns) and a
monitor module (for analyzing, printing or recording the
output patterns.)

• These would be instantiated at the top level function,
which is always called sc_main, and has the format:

int sc_main(int argc, char* argv[]) {
...
return(0);
}

Ref: J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.

27

© 2009 by Gerald E. Sobelman

Files Used in the Simulation
• We will build up a simulation for the full adder design using

the following set of files:
• The design-under-test (DUT):

HalfAdder.h, HalfAdder.cpp
FullAdder.h, FullAdder.cpp

• The driver for the testbench:
Driver.h, Driver.cpp

• The monitor for the testbench:
Monitor.h, Monitor.cpp

• The top-level main program:
FullAdderMain.cpp

Ref: J. Bhasker, A SystemC Primer, Star Galaxy Publishing, 2002.
28

© 2009 by Gerald E. Sobelman

Driver Header File: Driver.h
#include "systemc.h"

SC_MODULE(Driver) {
sc_out<bool> Da, Db, Dcin;

void DriverProcess();

SC_CTOR(Driver) {
SC_THREAD(DriverProcess);

}
};

29

© 2009 by Gerald E. Sobelman

Driver Program File: Driver.cpp
#include "Driver.h"

void Driver::DriverProcess() {
sc_uint<3> InputVector;
InputVector = 0;

while(1) {
Da = InputVector[2];
Db = InputVector[1];
Dcin = InputVector[0];
wait(10, SC_NS);
InputVector++;

}
}

30

© 2009 by Gerald E. Sobelman

Monitor Header File: Monitor.h
#include "systemc.h"

SC_MODULE(Monitor) {
sc_in<bool> Ma, Mb, Mcin, Ms, Mcout;

void MonitorProcess();

SC_CTOR(Monitor) {
SC_METHOD(MonitorProcess);
sensitive << Ma << Mb << Mcin << Ms << Mcout;

}
};

31

© 2009 by Gerald E. Sobelman

Monitor Program File: Monitor.cpp
#include "Monitor.h"

void Monitor::MonitorProcess() {
cout << "Time is: " << sc_time_stamp();
cout << " Inputs are: " << Ma << Mb << Mcin;
cout << " Sum is: " << Ms;
cout << " Carry out is: " << Mcout << endl;

}

32

© 2009 by Gerald E. Sobelman

Main Program File: FullAdderMain.cpp
#include "FullAdder.h"
#include "Driver.h"
#include "Monitor.h"

int sc_main(int argc, char* argv[]) {
sc_signal<bool> A, B, CIN, S, COUT;

// instantiate the DUT
FullAdder a1("DUT");
a1.a(A); a1.b(B); a1.cin(CIN);
a1.s(S); a1.cout(COUT);

// instantiate the DriverBlock
Driver d1("DriverBlock");
d1.Da(A); d1.Db(B); d1.Dcin(CIN);

33

© 2009 by Gerald E. Sobelman

Main Program File – Cont.
//instantiate the MonitorBlock
Monitor m1("MonitorBlock");
m1.Ma(A); m1.Mb(B); m1.Mcin(CIN);
m1.Ms(S); m1.Mcout(COUT);

// stop the simulation after 90 ns
sc_start(90, SC_NS);

// we're done
return(0);

}

34

© 2009 by Gerald E. Sobelman

Linux Make File Used: MakeFullAdder
TARGET_ARCH = linux

CC = g++
OPT = -O3
DEBUG = -g
OTHER = -Wall
CFLAGS = $(OPT) $(OTHER)

MODULE = FullAdder.run
SRCS = FullAdderMain.cpp \

HalfAdder.cpp \
FullAdder.cpp \
Driver.cpp \
Monitor.cpp

OBJS = $(SRCS:.cpp=.o)
include Makefile.defs

35

© 2009 by Gerald E. Sobelman

Linux Procedure to Compile and Run
• Compile the code using the command:

make -f MakeFullAdder

• Execute the code using the command:

./FullAdder.run.x

• The output produced is shown on the following page. Note that there
are generally several lines of output at each time value. This is
because the sensitivity list in the Monitor causes a line to be printed
each time an input or output changes. These changes may be at the
same simulation time but still treated as sequential events due to the
"delta delay."

36

© 2009 by Gerald E. Sobelman

Time is: 0 s Inputs are: 000 Sum is: 0 Carry out is: 0
Time is: 10 ns Inputs are: 001 Sum is: 0 Carry out is: 0
Time is: 10 ns Inputs are: 001 Sum is: 1 Carry out is: 0
Time is: 20 ns Inputs are: 010 Sum is: 1 Carry out is: 0
Time is: 20 ns Inputs are: 010 Sum is: 0 Carry out is: 0
Time is: 20 ns Inputs are: 010 Sum is: 1 Carry out is: 0
Time is: 30 ns Inputs are: 011 Sum is: 1 Carry out is: 0
Time is: 30 ns Inputs are: 011 Sum is: 0 Carry out is: 0
Time is: 30 ns Inputs are: 011 Sum is: 0 Carry out is: 1
Time is: 40 ns Inputs are: 100 Sum is: 0 Carry out is: 1
Time is: 40 ns Inputs are: 100 Sum is: 1 Carry out is: 1
Time is: 40 ns Inputs are: 100 Sum is: 1 Carry out is: 0
Time is: 50 ns Inputs are: 101 Sum is: 1 Carry out is: 0
Time is: 50 ns Inputs are: 101 Sum is: 0 Carry out is: 0
Time is: 50 ns Inputs are: 101 Sum is: 0 Carry out is: 1
Time is: 60 ns Inputs are: 110 Sum is: 0 Carry out is: 1
Time is: 60 ns Inputs are: 110 Sum is: 1 Carry out is: 1
Time is: 60 ns Inputs are: 110 Sum is: 0 Carry out is: 1
Time is: 70 ns Inputs are: 111 Sum is: 0 Carry out is: 1
Time is: 70 ns Inputs are: 111 Sum is: 1 Carry out is: 1
Time is: 80 ns Inputs are: 000 Sum is: 1 Carry out is: 1
Time is: 80 ns Inputs are: 000 Sum is: 0 Carry out is: 1
Time is: 80 ns Inputs are: 000 Sum is: 0 Carry out is: 0

37

© 2009 by Gerald E. Sobelman

SystemC Module Structure
• The basic unit of design is the module:

SC_MODULE.
• Each module contains a constructor

SC_CTOR.
The constructor gives the names of the processes
contained in the module, along with their sensitivity
lists.
It can also contain instances of other modules.

• Each process is specified to be one of two kinds, i.e. a
method or a thread:

SC_METHOD
SC_THREAD

38

© 2009 by Gerald E. Sobelman

Example Outline of a Module Specification
SC_MODULE (module_name) {

// declare inputs, outputs, signals and variables
// declare processes (return type must be void)
// point to lower-level modules
SC_CTOR (module_name) {

// list all of the method and thread processes
SC_METHOD(process_name);
// sensitivity list for this process
SC_METHOD(process_name);
// sensitivity list for this process
SC_THREAD(process_name);
// sensitivity list for this process

}
};

39

© 2009 by Gerald E. Sobelman

A Module Destructor
• A destructor is used when the constructor for a

module contains the new operator.
The new operator is used to create instances of
other modules in the current module.
The new operator allocates memory.
The destructor is used in order to avoid a
"memory leak."

• The format for the destructor is to use the ~
character in front of the name of the module.

40

© 2009 by Gerald E. Sobelman

A Module Destructor – Cont.
• For example, if the constructor created pointer_1,

pointer_2, ..., then the destructor would be as
follows:

~module_name() {
delete pointer_1;
delete pointer_2;
...

}

41

© 2009 by Gerald E. Sobelman

Modeling Logic with SC_METHOD
• An SC_METHOD process can be used to model either

combinational logic or sequential logic.
• To obtain a combinational logic design, use a sensitivity

list with the keyword sensitive which includes the
names of all of the input signals

• To obtain a sequential logic design, use a a sensitivity list
with the keyword sensitive_pos or sensitive_neg,
which models rising or falling edge triggered behavior,
respectively.

• The format for a sensitivity list uses C++ stream notation:
For example:
sensitive << a << b;

42

© 2009 by Gerald E. Sobelman

Modeling with SC_THREAD
• A thread process, using SC_THREAD, is more

general than a method process.
• The major difference is that the thread process

can be suspended.
This is accomplished by using one or more
wait() statements within the thread process.

• Thread process may have level-sensitive and/or
edge-sensitive types of sensitivity list(s).

43

© 2009 by Gerald E. Sobelman

References
• Open SystemC Initiative (OSCI), http://www.systemc.org
• IEEE Standard SystemC® Language Reference Manual,

IEEE, IEEE Std 1666TM-2005, 31 March 2006.
• J. Bhasker, A SystemC Primer, Star Galaxy Publishing,

2002.
• SystemC Tutorial, Doulos Ltd.,

http://www.doulos.com/knowhow/systemc/tutorial/
• Getting Started with TLM-2.0, Doulos Ltd.,

http://www.doulos.com/knowhow/systemc/tlm2/
• SystemC：An Introduction for beginners,

electroSofts.com,
http://electrosofts.com/systemC/index.html

44

http://www.systemc.org/
http://www.doulos.com/knowhow/systemc/tutorial/
http://www.doulos.com/knowhow/systemc/tlm2/
http://electrosofts.com/systemC/index.html

	��SystemC – Lecture 1
	Outline
	Introduction to SystemC
	SystemC Overview
	Simulation Environment
	Modules
	Example Header Structure
	Example Program File Structure
	Processes
	Processes – Cont.
	Processes – Cont.
	Ports and Channels
	Interfaces
	Top-Level Function and the Design Hierarchy
	Top-Level Module Example
	Transaction-Level Model (TLM)
	TLM - Continued
	SystemC Verification (SCV) Library
	SCV Library – Cont.
	SCV Library – Cont.
	Working with SystemC
	Recall the Half Adder Header File
	Recall the Half Adder Program File
	Using Instances in a Design Hierarchy
	Full Adder Header File: FullAdder.h
	Full Adder Program File: FullAdder.cpp
	Testbench Structure
	Files Used in the Simulation
	Driver Header File: Driver.h
	Driver Program File: Driver.cpp
	Monitor Header File: Monitor.h
	Monitor Program File: Monitor.cpp
	Main Program File: FullAdderMain.cpp
	Main Program File – Cont.
	Linux Make File Used: MakeFullAdder
	Linux Procedure to Compile and Run
	Slide Number 37
	SystemC Module Structure
	Example Outline of a Module Specification
	A Module Destructor
	A Module Destructor – Cont.
	Modeling Logic with SC_METHOD
	Modeling with SC_THREAD
	References

