
Introduction to Robot 
Operating System (ROS)

System Integration Using ROS Framework Mayank Mittal



Outline
● What is ROS?
● ROS Communication Layer

○ ROS Master
○ ROS Nodes
○ Topics, Services, Actions

● ROS Ecosystem 
○ ROS Packages
○ Catkin build system

● Libraries/Tools in ROS
○ Point Cloud (PCL Library)
○ Coordinate Transformation (Tf Library)

System Integration Using ROS Framework Mayank Mittal



IMU
Laser 
scanner

Camera

GPS
Motor and 
Encoder

Robot

How to integrate sensors and 
actuators in your robot 

software suite?

AE640A: Lecture 1: System Integration Using ROS Framework Mayank MittalMayank MittalSystem Integration Using ROS Framework



Raspberry Pi

Intel NUC Arduino

ODROID XU4

Mayank Mittal

Robot

How to interface the hardware 
using microprocessors and 

microcontrollers?

System Integration Using ROS Framework



What is ROS?
● A “meta” operating system for robots
● A collection of packaging, software 

building tools
● An architecture for distributed 

interprocess/ inter-machine 
communication and configuration

● Development tools for system runtime 
and data analysis

● A language-independent architecture 
(c++, python, lisp, java, and more)

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



What is ROS?

Slide Credit: Marco Hutter, ETH Zurich

Mayank MittalSystem Integration Using ROS Framework



What is ROS not?

● An actual operating system
● A programming language
● A programming environment / IDE
● A hard real-time architecture

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



What does ROS get you?
All levels of development

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



ROS Communication Layer : ROS Core

● ROS Master

○ Centralized Communication Server based on XML and RPC

○ Negotiates the communication connections

○ Registers and looks up names for ROS graph resources

● Parameter Server

○ Stores persistent configuration parameters and other arbitrary data.

● `rosout`

○ Network based `stdout` for human readable messages.

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



ROS Communication Layer : Graph Resources

● Nodes
○ Processes distributed over the network.
○ Serves as source and sink for the data sent over the network

● Parameters
○ Persistent data such as configuration and initialization settings, i.e the 

data stored on the parameter server. e.g camera configuration
● Topics

○ Asynchronous many-to-many communication stream
● Services

○ Synchronous one-to-many network based functions

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



ROS Communication Protocols: Connecting Nodes
● ROS Topics

○ Asynchronous “stream-like” communication
○ Strongly-typed (ROS .msg spec)
○ Can have one or more publishers
○ Can have one or more subscribers

● ROS Services
○ Synchronous “function-call-like” communication
○ Strongly-typed (ROS .srv spec)
○ Can have only one server
○ Can have one or more clients

● Actions
○ Built on top of topics
○ Long running processes
○ Cancellation

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

Image Courtesy: Lorenz Mösenlechner, TU Munich

Interfaces with the camera 
hardware and reads the data 

transmitted by the sensor

Used to display images

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

advertise(“images”)

camera node is run. It starts advertising the 
data it has received 

Image Courtesy: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

topic:images

master registers the topic with name images

Image Courtesy: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

topic:images

subscribe(“images”)

viewer node is run. It asks for data being 
published in topic with name images

Image Courtesy: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

topic:images

subscribe(“images”)

master ‘connects’ the viewer node to the 
camera node.

Image Courtesy: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

images(tcp)

topic:images

Image Courtesy: Lorenz Mösenlechner, TU Munich

master ‘connects’ the viewer node to the 
camera node.

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer 
node using TCP/IP based protocol

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer 
node using TCP/IP based protocol

System Integration Using ROS Framework



Asynchronous Distributed Communication

Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer 
node using TCP/IP based protocol

System Integration Using ROS Framework



ROS Master

Mayank Mittal

● Manages the communication 
between nodes

● Every node registers at startup with 
the master

Slide Credit: Marco Hutter, ETH Zurich

$ roscore

Master

Start a master with

More info:
http://wiki.ros.org/Master

System Integration Using ROS Framework



ROS Nodes

Mayank Mittal

● Single-purpose, executable program
● Individually compiled, executed, and 

managed
● Organized in packages

Slide Credit: Marco Hutter, ETH Zurich

$ rosrun package_name node_name

Master

Run a node with

$ rosnode list

See active nodes with

Node 1 Node 2

Registration Registration

More info:
http://wiki.ros.org/rosnode

System Integration Using ROS Framework



ROS Topics

Mayank Mittal

● Nodes communicate over topics
○ Nodes can publish or subscribe to a topic
○ Typically, 1 publisher and n subscribers

● Topic is name for stream of messages

Slide Credit: Marco Hutter, ETH Zurich

$ rostopic list

Master

See active topics with

$ rostopic echo /topic

Subscribe and print the contents of a topic with

Node 1
Publisher

Node 2
Subscriber

Registration Registration

TopicPublish Subscribe

More info:
http://wiki.ros.org/rostopic

System Integration Using ROS Framework



ROS Messages

Mayank Mittal

● Data structure defining the type of a topic
○ Comprised of a nested structure of integers, 

floats, strings etc. and arrays of objects
● Defined in *.msg files

Slide Credit: Marco Hutter, ETH Zurich

$ rostopic type /topic

Master

See the type of a topic

$ rostopic pub /topic type args

Publish a message to a topic

Node 1
Publisher

Node 2
Subscriber

Registration Registration

TopicPublish Subscribe

More info:
http://wiki.ros.org/messages

int num
double width 
string data etc.

Message Definition

System Integration Using ROS Framework



ROS Messages

Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/std_msgs

System Integration Using ROS Framework



ROS Services

Mayank Mittal

● Request/response communication 
between nodes is realized with services

○ The service server advertises the service
○ The service client accesses this service

● Similar in structure to messages, services 
are defined in *.srv files

Slide Credit: Marco Hutter, ETH Zurich

$ rosservice list

Master

List available services with

$ rosservice type /service_name

Show the type of a service

Node 1
Service Client

Node 2
Service Server

Registration Registration

Service 
NameRequest Response

More info:
http://wiki.ros.org/messages

Request
---
Response

Service Definition

System Integration Using ROS Framework



ROS Action

Mayank Mittal

● Similar to service calls, but provide 
possibility to

○ Cancel the task (preempt)
○ Receive feedback on the progress

● Best way to implement interfaces to 
time- extended, goal-oriented 
behaviors

● Similar in structure to services, action 
are defined in *.action files

● Internally, actions are implemented 
with a set of topics

Slide Credit: Marco Hutter, ETH Zurich

Master

Node 1
Action Client

Node 2
Action Server

Registration Registration

Action

Goal
Cancel

Status
Result
Feedback

More info:
http://wiki.ros.org/messages

Goal
---
Result
---
Feedback

Action Definition

System Integration Using ROS Framework



ROS Action

Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/messages

System Integration Using ROS Framework



$ catkin_create_pkg package_name {dependencies}

ROS Packages

Mayank Mittal

● ROS software is organized into 
packages, which can contain source 
code, launch files,configuration files, 
message definitions, data, and 
documentation

● A package that builds up on/requires 
other packages (e.g. message 
definitions), declares these as 
dependencies

To create a new package, use:

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Packages

Separate message definition
packages from other packages!

System Integration Using ROS Framework



How to organize code in a ROS ecosystem?
ROS code is grouped at two different levels:

● Packages: 
○ A named collection of software that is built and treated as an atomic dependency in the ROS 

build system. 
● Stacks: 

○ A named collection of packages for distribution.

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

System Integration Using ROS Framework



How to organize code in a ROS ecosystem?

Mayank Mittal

“package” “stack”

System Integration Using ROS Framework



catkin Build System
● catkin is the ROS build system to generate executables, libraries, and 

interfaces
● The catkin command line tools are pre-installed in the provided installation.

Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

$ cd ~/catkin_ws

Navigate to your catkin workspace with

$ catkin_make --package package_name

Build a package with

$ source devel/setup.bash

Whenever you build a new package, update your environment

System Integration Using ROS Framework



catkin Build System
The catkin workspace contains the following spaces

Mayank Mittal

The source space contains 
the source code. This is 

where you can clone, 
create, and edit source 

code for the packages you 
want to build.

The build space is where
CMake is invoked to build 

the packages in the source
space. Cache information 

and other intermediate files 
are kept here.

The development (devel)
space is where built targets 
are placed (prior to being 

installed).

Slide Credit: Marco Hutter, ETH Zurich

System Integration Using ROS Framework



ROS Launch

Mayank Mittal

● launch is a tool for launching multiple 
nodes (as well as setting parameters)

● Are written in XML as *.launch files
● If not yet running, launch automatically 

starts a roscore

Slide Credit: Marco Hutter, ETH Zurich

$ roslaunch package_name file_name.launch

Start a launch file from a package with

More info:
http://wiki.ros.org/roslaunch

System Integration Using ROS Framework



$ rosparam list

ROS Parameter Server

Mayank Mittal

● Nodes use the parameter server to 
store and retrieve parameters at 
runtime

● Best used for static data such as 
configuration parameters

● Parameters can be defined in launch 
files or separate YAML files

List all parameters with

More info:
http://wiki.ros.org/rosparam

System Integration Using ROS Framework



ROS GUI Tools

Mayank Mittal

More info:
http://wiki.ros.org/rqt

rqt : A QT based GUI developed for ROS rviz : Powerful tool for 3D Visualization 

(demo in next class)

System Integration Using ROS Framework



ROS Time
● Normally, ROS uses the PC’s system 

clock as time source (wall time)
● For simulations or playback of logged 

data, it is convenient to work with a 
simulated time (pause, slow-down 
etc.)

● To work with a simulated clock:
○ Set the /use_sim_time parameter

○ Publish the time on the topic /clock from
■ Gazebo (enabled by default)
■ ROS bag (use option --clock)

Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosparam set use_sim_time true

● To take advantage of the simulated 
time, you should always use the 
ROS Time APIs:

○ ros::Time

○ ros::Duration

ros::Time begin = ros::Time::now();
double secs = begin.toSec();

ros::Duration duration(0.5); // 0.5s

System Integration Using ROS Framework



ROS Bags
● A bag is a format for storing 

message data
● Binary format with file extension *.bag
● Suited for logging and recording 

datasets for later visualization and 
analysis

Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosbag record --all

Record all topics in a bag

$ rosbag record topic_1 topic_2 topic_3

Record given topics

$ rosbag info bag_name.bag

Show information about a bag

$ rosbag play [options] bag_name.bag

--rate=factor Publish rate factor
--clock Publish the clock time (set 

param use_sim_time to true)
--loop Loop playback

Record given topics

System Integration Using ROS Framework



Libraries/Tools available with ROS

Mayank Mittal

Image Courtesy: Open Source Robotics Foundation

System Integration Using ROS Framework


